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ABSTRACT

Nuclear Schiff Moment Search in Thallium Fluoride Molecular

Beam: Rotational Cooling

Konrad Wenz

The search for physics beyond the Standard Model has been a main focus of the scientific com-

munity for several decades. Unknown physics in the form of new interactions violating the simulta-

neous reversal of charge and parity symmetries (CP) would, for example, provide a significant step

towards understanding the baryon matter-antimatter asymmetry observed in the Universe. Such

parameters are predicted to also manifest themselves in atomic and molecular systems in the form

of both: permanent electric dipole moments and nuclear charge distribution asymmetries described

by the nuclear Schiff moment. Both can be measured to a high degree of precision in modern

experiments, allowing us to place stringent limits on parameters appearing in new fundamental

theories.

The Cold Molecule Nuclear Time Reversal Experiment (CeNTREX) is the latest approach

to probing these effects. CeNTREX is a molecular beam experiment that uses thallium fluoride

(205Tl19F) as its test species to measure energy shifts induced by the interaction of thallium’s

nuclear Schiff moment. It does so by performing nuclear magnetic resonance using a separate

oscillatory fields technique. The precision of this measurement is dictated by the free precession

time and the number of interrogated molecules, and is significantly enhanced by thallium fluoride’s

inherent properties.

Employing novel methods, CeNTREX strives to achieve significant improvements to limits



placed on the fundamental parameters. One such method is rotational cooling. It was thoroughly

analyzed, simulated and experimentally confirmed - with the help of optical and microwave pump-

ing, we collapsed the initial Boltzmann distribution of molecules amongst their rotational states

into one chosen hyperfine state of the ground rotational state manifold.

The efficiency of this process depends on multiple factors, the most crucial being the approach

towards dark state destabilization and remixing. After careful investigation, we chose the most

appropriate method and devised an efficient rotational cooling scheme. Experimental confirmation

showed an enhancement factor of rf = 23.70± 1.13, very close to our theoretical predictions. This

allows us to conclude that CeNTREX should provide a 2500-fold improvement over the current

best measurements of the nuclear Schiff moment in thallium nucleus.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 The Puzzle

Symmetries play one of the major roles in physics. One of the best examples is the so-called CPT-

symmetry which, to the best of our knowledge, is one of the most basic symmetries in nature.

However, only half a century ago it was assumed that CP was a good symmetry as well. If that was

the case, as was pointed by Landau [1], elementary particles would not be able to have permanent

electric dipole moments (EDM) along their spin axis, and so detecting one would be an unambiguous

sign of CP-violation.

As we know now, the Standard Model (SM) already predicts small amounts of CP-violating

interactions. Namely, it is violated by certain weak interactions and it has been observed in K-, B-,

and D-meson decays [2, 3]. Contributions from SM come from the Cabibbo-Kobayashi-Maskawa

(CKM) quark-mixing matrix [4, 5]. This so-called Kobayashi-Maskawa mechanism introduces the

third quark generation to explain the CP-violation [6], and the so-called CKM phase has been the

only source of CP-violation observed so far [3]. To be more precise, in the SM lagrangian the CKM

matrix appears when describing the weak coupling between quarks:

LCKM = − ig√
2

∑
p,q

V pqŪpL /W
+
Dq
L + h.c.,

1



CHAPTER 1. INTRODUCTION

where g is the weak coupling constant, /W
+

is the charged weak gauge field, UpL and Dq
L represent

p- and q-generation left-handed up and down quarks, and V pq is an element of CKM matrix. Due

to certain constraints, the matrix

V =


V ud V us V ub

V cd V cs V cb

V td V ts V tb


has only four independent elements: 3 non-CP-violating mixing angles and the aforementioned CP-

violating phase. The CP-violating effects can be written as proportional to the so-called Jarlskog

invariant δ̄ = Im(VusV
∗
csVcbV

∗
ub) [7].

One of the main motivations for searches for the CP-symmetry-violating effects is related to the

baryon asymmetry in the Universe. From observations it is known that the antimatter-to-matter

density ratio is bounded by a number between 10−15 to 10−6 [8], and no mechanism responsible for

this asymmetry has been experimentally proven to be true. It was speculated by Sakharov [9] that

this baryon imbalance necessitates violation of the CP-symmetry, and because the CP-violating

effects in SM are not enough to account for the observed antimatter-to-matter ratios, new and

unknown sources of CP-violation have to exist.

One of the most commonly used examples of a flavor-netural CP-violation can be already found

in the QCD lagrangian describing gluon fields. The CP-violating term is proportional to the QCD-

theta parameter θ̄ [10]:

Lθ̄ =
g2

32π2
θ̄Tr

(
GµνG̃µν

)
, (1.1.1)

where G is the gluon field tensor, g here is the strong coupling constant, and θ̄ is dimensionless.

Currently the upper bound placed on θ̄, with respect to the usual strong interaction, is
∣∣θ̄∣∣ < 9·10−11

as concluded from experiments in neutral 199Hg atoms [11] and ultracold neutrons [12, 13]. Such

a low value of this parameter is puzzling and has its own name - the strong CP problem. One of

the known solutions to it is the Peccei-Quinn mechanism with an accompanying elementary scalar

particle: the axion [14]. The axion would then lead to θ̄ ≈ 0, and is one of the leading candidates

for dark matter [15, 16, 17, 18].

2
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1.2 From Particle Physics to Schiff Moments

Physics beyond the SM or new interactions in the QCD sector can lead to effective charge asym-

metries along the spin of a particle, and eventually create observable effects in more macroscopic

systems. EDMs are one of the manifestations of this particle charge asymmetry. Another one is

the so-called Schiff moment [19], which appears in finite-size composite particles such as nuclei.

Both EDMs and nuclear Schiff moments (NSM) would have to be very small if only contributions

from SM were included. However, additional effects originating in the beyond SM theories can lead

to larger EDMs and NSMs, and so searches for either provide a nearly background-free signal for

new physics (the background expected from SM would only become apparent when probing effects

beyond the energy scale of ∼105 TeV [20]).

To understand how the observable effects arise in macroscopic systems, we start with the electron

and quarks’ EDMs. In the electron, EDM arises at four-loop level [21], and is estimated to be [22]:

dCKM
e ≈ eGF

π2

( α
2π

)3
meδ̄ ≈ 10−38 e cm. (1.2.1)

Similarly, we can compute EDMs for quarks: dd ≈ −0.7× 10−34 e cm and du ≈ −0.15× 10−34 e cm

for the down and up quark respectively, from which we can obtain proton’s and neutron’s EDMs.

For example, for neutron:

dCKM
n =

4

3
dd −

1

3
du ≈ −1.1× 10−34 e cm.

A much bigger contribution to neutron’s and proton’s EDM arises from “long distance” meson-

exchange interactions [7], not from EDMs of their constituents. These interactions appear in an

effective, non-relativistic lagrangian:

LπNN = N̄
[
ḡ(0)
π ~τ · ~π + ḡ(1)

π π0 + ḡ(2)
π (3τ3π

0 − ~τ · ~π)
]
N

where g(1,2,3) are coupling constants between nucleons N and pions π. These couplings appear in

the so-called Penguin process [23], where one of the vertices is CP-violating. Forgetting about the

g(2), which is expected to be at least two orders of magnitude smaller than other two constants

[24], the contributions to nucleon’s EDM can be written as:

dN = dCKM
N +

(
αN,0 ḡ

(0)
π + αN,1 ḡ

(1)
π

)
. (1.2.2)

3
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The α(p,n),(0,1) are proportionality constants for nucleons. The nucleon-pion couplings are also an

important element of the mentioned NSM, to which many EDM experiments are sensitive to. The

Schiff moment itself is a measure of charge asymmetry in the nucleus defined as r2-weighted dipole

distribution [25]:

S ≡ e

10

[〈
r2r
〉
− 5

3Z

〈
r2
〉
〈r〉
]
. (1.2.3)

In the definition, the expectation values 〈rn〉 ≡
∫
ρ(r)rnd3r are the moments of the nuclear charge

density ρ. The second term is then the electric dipole moment of the nucleus and is unobservable

in a neutral atom, and is therefore subtracted from S [7]. It can then be written as [7]:

S = sNdN +
mNgA
Fπ

(
a0ḡ

(0)
π + a1ḡ

(1)
π + a2ḡ

(2)
π

)
,

where sN parametrize contributions of the unpaired nucleon’s dipole moment, gA is the nucleon

axial-vector coupling, Fπ is pion decay constant and a1,2,3 parametrize direct contributions from

nucleon-pion coupling constants. Using Eq. (1.2.2) we obtain:

S = sNd
CKM
N +

(
mNgA
Fπ

a0 + sNαN,0

)
ḡ(0)
π +

(
mNgA
Fπ

a1 + sNαN,1

)
ḡ(1)
π . (1.2.4)

The contributions to both the Schiff moment, and nucleons’ or leptons’ EDM can arise also

from QCD lagrangian describing gluon fields of Eq. (1.1.1) and the parameter θ̄, which contributes

the most to the coupling constant g
(0)
π . Beyond Standard Model physics can change values of these

couplings and parameters as well. However, the new physics can also create additional CP-violating

contributions to the nucleons’ and leptons’ EDMs directly, i.e. not through quarks’ EDMs. The

most important contributions which are usually taken into account are the effective nucleon-spin-

independent and nucleon-spin-dependent electron-nucleon interactions described by the scalar (S):

LS = −GF√
2
ē iγ5 e N̄

(
C

(0)
S + C

(1)
S τ3

)
N

and tensor (T) interactions:

LT = −8GF√
2
ē σµν ev

ν N̄
(
C

(0)
T + C

(1)
T τ3

)
SµN,

The former, described by the C
(0,1)
S constants, is crucial in paramagnetic systems, while the latter,

with C
(0,1)
T constants, is of importance in diamagnetic systems.

4
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In general, following [7], we can summarize all the contributions to EDM systems which are

accessible to experiments using following parameters:

• Electron’s EDM de, which contributes in the first order to EDMs of paramagnetic atoms and

molecules.

• Nuclear-spin-indpendent electron-nucleon couplings C
(0,1)
S , which contributes mostly to the

paramagnetic systems.

• Nuclear-spin-dependent electron-nucleon couplings C
(0,1)
T important mostly in diamagnetic

systems.

• Schiff moment S important in diamagnetic atoms and molecules, which is related to unpaired

nucleon’s EDM and pion-nucleon couplings.

To the first order, we can write that for paramagnetic atoms:

dpara ≈ ηdede + k
C

(0)
S

C
(0)
S

and for diamagnetic ones:

ddia = κSS(ḡ(0,1)
π , dN ) + k

C
(0)
T

C
(0)
T + ... (1.2.5)

While experiments searching for EDMs and NSMs can in principle provide very stringent con-

straints on beyond SM physics, they have their limitations. As was pointed out by Schiff [19],

the CP-violating asymmetric charge distribution does not manifests itself in a linear term in the

interaction energy of non-relativistic electric dipoles that are bound in a neutral system while also

residing in an external electrostatic potential - the system “rearranges” itself to screen the external

field completely [26]. This so-called Schiff’s theorem is an obstacle that needs to be bypassed in

order to allow detection of the CP-violating effects in various constituents. Two such mechanisms

are: relativistic constituent motion and finite constituent size.

In case of atoms or molecules, the latter mechanism is the dominant one. After all, a nucleus is

non-relativistic, but has a finite size. This can cause a residual electromagnetic moment to appear

in the form of the already-mentioned Schiff moment S defined in Eq. (1.2.3) as a measure of charge

asymmetry, and which depends on the CP-violating parameters shown in Eq. (1.2.4). According to

5
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Eq. (1.2.5), in heavy diamagnetic atoms and diatomic molecules with such an atom (e.g. thallium

fluoride), this finite-size effect is responsible for the biggest contribution to the CP-violating signals.

The nuclear spin I is the only parameter in a nucleus with a preferred directions, and so the

quantum NSM S has to be parallel to this axis, i.e. S = S I/I. Therefore, NSM inherits all

symmetries of the nuclear spin - parity-reversing transformation P does not affect it, but the

time reversal T changes its sign (in comparison, the classical Schiff moment, being a static charge

distribution, changes sign under parity reversal, but not under the time reversal transformation). If

CPT symmetry is indeed a true symmetry of nature, then a non-zero Schiff moment, which violates

both T and P symmetries, has to be a signature of CP-violation.

The various contributions to NSM elucidated before play a bigger or smaller role depending on

the character of the atom or molecule. In the case of the thallium 205Tl nucleus [25, 27]:

S
(

205Tl
)
≈
(

0.13gAḡ
(0)
π − 0.004gAḡ

(1)
π − 0.27gAḡ

(2)
π

)
e fm3;

S
(

205Tl
)
≈ 0.027 θ̄ e fm3;

S
(

205Tl
)
≈
(

12 d̃d + 9 d̃u

)
e fm2;

S
(

205Tl
)
≈ 0.4 dp fm2,

(1.2.6)

where d̃d and d̃u are quark chromo-EDMs (including contributions from the gluon fields). We

should note here that the lack of dn contribution comes from the fact that this particular nucleus

has closed neutron shells. We can see that a nonzero NSM S
(

205Tl
)

would provide evidence for a

non-zero value of one or more of these fundamental CP-violating parameters.

1.3 Energy Shifts and Measured Quantities

Existence of a permanent electric dipole moment or the nuclear Schiff moment will cause energy

shifts if the systems is subject to external electric fields. These shifts can be significant in polar

molecules, where the internuclear axis n̂ adds an additional direction in the system other than

the nuclear spin. In thallium fluoride (TlF), which is the species of choice in our and previous

experiments looking for NSM, we define this vector as pointing from fluorine to thallium atom.

This vector is related to molecule’s permanent and internal dipole moment, and so a strong gradient

of electron density exists along it. It is this density gradient, creating effective electric field, that

6
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NSM (and other CP-violating effects [28]) of molecular nuclei interacts with. This interaction can

be described by an effective CP-violating hamiltonian [25]:

HCPV = WS S n̂ · I

I
, (1.3.1)

where WS is the proportionality constant between S and the CP-violating contribution to the

molecular energy, for a fully polarized molecule. This constant is usually obtained from ab initio

calculations and is determined by properties of the electronic wavefunctions [25, 29, 30, 31]. One

of its important features is its quadratic scaling with the atomic number Z of the nucleus [32].

While the interaction of NSM with the effective internal electric field, described by Eq. (1.3.1),

exists without submitting the molecule to any external fields E, it does not create any observable

first-order effects in any of system’s eigenstates. As was pointed out in previous searches for NSM in

TlF [33, 34], the internuclear axis vector n̂ averages to zero due to unpolarized molecule’s rotation,

and thus the expectation value 〈HCPV〉 = 0. The situation changes when an external electric field

is applied. The field polarizes the molecule and changes the expectation value of n̂, and therefore

the expectation value of the effective hamiltonian of Eq. (1.3.1) as well, to a non-zero value. In

fact, the expectation value of the internuclear axis vector becomes parallel to the direction of the

external electric field, i.e. 〈n̂〉 ‖ E, and from the combination of both we can define the degree of

electrical polarization of molecule:

P ≡ 〈n̂ · E〉E .

With such definition −1 ≤ P ≤ 1 and the energy shifts from Eq. (1.3.1) can be written as:

〈HCPV〉 = WS S P
〈E · I〉
E I . (1.3.2)

It was already 50 years ago that Sandars suggested [35] that a molecular beam experiment and a

resonance measurement could be used to find proton’s EDM, if a molecule with a heavy diamagnetic

atom, i.e. with an unpaired proton in its nucleus, is used, e.g. 205Tl. Such an experiment is possible,

because polar molecules can be quite easily polarized in modest and realistically realizable electric

fields (due to their small rotational level spacing of ∼ 10−4 eV), which allows us to achieve a near-

maximal NSM-induced energy shifts. The actual value of S can be measured by probing energy

difference of spin-up and spin-down states relative to 〈n̂〉, and therefore relative to polarizing electric

field E. Because magnitude of the external electric fields determines the degree of polarization, the

7
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NSM-induced splitting between these states changes with changing field’s magnitude. Moreover, if

direction of the electric field were to reverse, the energy splitting would either decrease or increase

depending on relative orientation of spins and field’s direction. Following Eq. (1.3.2), this difference

in level splittings is proportional to the electric polarization P, the interaction strength WS , and

S (Fig. 1.3.1), and it is exactly what can be measured experimentally.

Tl

F
Tl

Tl

F
Tl

F

F

μTlBint

Figure 1.3.1: Energy shift ∆CPV = WS S P associated with CP-violating effects, and created as a result of

a non-zero NSM given by the effective interaction HCPV = WS S I · n̂/I, shown for opposite orientations of

the external electric field E. Here µTl is the Tl magnetic moment and Bint
1 is the effective internal magnetic

field at the Tl nucleus due to the spin-rotation interaction.

To better understand the principle behind the NSM measurement, we can look at the magnetic

resonance measurement, which provides an oversimplified picture. Magnetic dipole moments, as

it is well known, are aligned with the angular momentum vector µB = γJ. When exposed to a

static magnetic field the effective hamiltonian H = −µ ·B describes the interaction and yields an

equation:
dJ

dt
= γJ×B,

which describes angular momentum vector precession with frequency ωR = γB/~. The an-

gle of precession is therefore equal to φ = γBT/~, where T is the total interaction (preces-

sion) time. In the simplest case with |J| = 1/2 the magnetic field splits the state into two

8
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states of different energy (∆E = 2µBB). If we prepare an atom or molecule in the initial

state |ψi〉 = (|J,+MJ〉 + |J,−MJ〉)/
√

2, after the interaction the state will evolve to |ψf 〉 =

(e−iφ |J,+MJ〉 + eiφ |J,−MJ〉)/
√

2. We can measure the precession angle by accessing transition

related to only one of the basis state, i.e. we can project the final state on a particular state, for

example the initial one. Then the probability of detection is proportional to cosine-squared of the

precession angle, i.e. P (φ) ∝ cos2 φ.

The electric dipole moment (or NSM), similarly to the magnetic dipole moment, should be

aligned with the angular momentum of the system. While in paramagnetic atoms it is aligned with

spin of the unpaired electron d ∝ S, in diamagnetic atoms (such as 205Tl) it is aligned with the spin

of the nucleus d ∝ I as was previously mentioned. In analogy to the shift experienced by magnetic

moments in a static magnetic field, a non-zero electric dipole moment would simply be described

by an interaction hamiltonian:

H = −d · E = −dI · E
I

creating energy difference of ∆E = 2dE between the two states. The electric dipole moment

can be aligned or anti-aligned with respect to the electric field, and so the precession angle is

simply φ = −dEeffT/~, where we emphasized that the electric field magnitude that is taken into

consideration in this case is the effective electric field probed by the spin (and part of the interaction

constant WS in our system). From the equation above we can see that changing the direction of

the electric field, if the electric dipole moment exists in the system, changes the precession angle

accumulated. Modern beam experiments, exploit this fact and measure these changes, which in

general are equal to [7]:

φ = T
|dEeff |
2π~J

|∆MJ | ∝ ∆E.

In the case of our NSM measurement, we use the effective interaction HCPV and observe that

the shift in the energy splitting between states with Tl spin-up and spin-down states, relative to

the quantization axis, can be written as:

∆E = 2∆CPV = 2WS S sgn(E) P, (1.3.3)

where the sign of E refers to the direction of E relative to a fixed quantizing axis z.

The Cold Molecule Nuclear Time Reversal Experiment (CeNTREX) is a molecular beam exper-

iment with a goal of measuring this energy splitting with unparalleled precision. It uses a cold beam

9
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of thallium fluoride to measure CP-violating effects in the 205Tl nucleus that appear due to the

existence of NSM. This particular nucleus is one of the most well-suited to measure CP-violating

effects: it is a polar diatomic molecule, that can be easily polarized; it has high electron density

gradient at the site of nuclei (Eeff) and therefore the WS constant; and it is a heavy nucleus with

A = 205 and Z = 81 leading to high NSM-induced energy shifts, which scale ∝ A2/3Z2 [35, 36].

Our species was also chosen due to several other reasons - its cold molecular beam can be obtained

using known experimental procedures, and its molecular states and transitions have already been

described in scientific publications. Finally, the 205Tl nucleus contains an unpaired proton in its

outer shell. Hence, CeNTREX will be mostly sensitive to proton EDM effects, as opposed to other

leading experiments which are more sensitive to the neutron EDM [11]. TlF is also not sensitive to

the electron EDM due to its zero total electron spin [37].

1.4 Precision of the Measurement

The precision of the measurement depends on the interrogation time T (in our case the free preces-

sion time) and the signal-to-noise ratio, which depends on the technique used. In most experiments

one is limited by the count rate. Its statistical uncertainty of single frequency measurement is:

σf =
1

2πT
√
N
,

where N is number of particles probed. Following the oversimplified picture of interaction described

byH = −d·E, the overall uncertainty of electric dipole moment measurement for a pair of frequency

measurements with opposite electric field and identical interrogation times is simply given by:

σd =
~I

2
√

2Eeff

1

T
√
N
. (1.4.1)

This already shows that the experiment becomes more sensitive to EDMs when electric fields,

interaction times and number of molecules are increased. As was mentioned before, the strength

of the effective electric field is mostly determined by the features of the chosen system, such as

TlF. Increases in sensitivity can therefore be achieved differently by different class of experiments.

While trapping experiments confine atoms or molecules and allow for long interaction times, their

sensitivity is limited by a relatively small number of trapped molecules. CeNTREX, being a beam
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experiment, tries to increase the number of molecules on which the measurement is performed,

while simultaneously sacrificing the interrogation time.

Currently, the best limits put on T-violating interactions associated with the Schiff moment

S
(

205Tl
)

were found by Cho, Sangster and Hinds in 1991 [33, 34], who measured a NSM-induced

frequency shift of ∆E = 2∆CPV = (1.4± 2.4)× 10−4 Hz, consistent with zero. In the TlF system

WS = 40539 a.u., polarization P = 〈n̂ · E/E〉 = 0.547 (in 30 kV/cm external field), which leads to

[27, 30]:

S
(

205Tl
)

= (3.6± 6.1)× 10−11 e fm3.

With Eq. (1.2.6), the following limits can be then placed:

θ̄ = (1.3± 2.3)× 10−9,

12d̃d + 9d̃u = (3.6± 6.1)× 10−24e cm,

dp = (0.9± 1.5)× 10−23 e cm,

0.13gAḡ
(0)
π − 0.004gAḡ

(1)
π − 0.27gAḡ

(2)
π = (3.6± 6.1)× 10−11.

(1.4.2)

1.5 Increasing Experimental Sensitivity

Comparing to previous experiments, we plan to utilize several methods that will improve our signal

and allow us to put more stringent limits on the sought-after parameters. One of the first major

advancements has already been demonstrated in other molecular beam experiments and will be

used in our experiment as well. Namely, we are using a cryogenic molecular beam source, which

allows us to achieve a cold beam with higher intensity and lower velocity spread compared to the

jet source used in the previous work. Another signal enhancement method that has been shown to

work is beam collimation with the help of a quadrupole electrostatic field - this technique increases

the total number of interrogated molecules that reach the detection area.

Particular properties of TlF allowed us to additionally develop new techniques for CeNTREX

that can further increase the signal by increasing the number of probed molecules. The first of

these methods is a rotational cooling process, which will be performed with optical and microwave

pumping. It collapses much of the initial Boltzmann distribution into one state, which increases

the number of molecules accessible for measurement by at least an order of magnitude. Then, the

final state detection, which will be performed through a laser-induced fluorescence, can achieve a

11
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near-unity detection efficiency with the help of a optical quasi-cycling (nearly-closed) transitions.

While both of these approaches are seemingly easy to implement, peculiarities of TlF make

both of these processes quite difficult to achieve experimentally. Specifically, low natural energy

splittings in molecular ground states, and high energy splittings in the excited state lead to creation

of coherent dark states - if the techniques are not implemented with care and precision, instead

of increasing our signal, we might lose a big number of molecules to non-interacting state super-

positions. The problem of understanding, and efficient remixing and destabilization of these dark

states, optimal schemes for optical cycling detection and rotational cooling, as well as experimental

realization of the rotational cooling process are the main topics of this thesis.

First, in Chapter 2, we will derive and discuss thallium fluoride’s peculiar structure and lay

ground for further analysis of the system. Then, in Chapter 3 we will go over different parts of

CeNTREX, show the progress that has already been made and problems that still remain to be

solved. In Chapter 4 we will briefly introduce the mathematical framework that will be used to

analyze light-molecule interaction of TlF. Dark states and their analysis in the context of our exper-

iment’s processes will be shown in Chapter 5. Conclusions drawn from it will be then implemented

in both Chapters 6 and 7, where we will propose, discuss and numerically simulate different schemes

for optical cycling and rotational cooling in TlF. From there, we will step into the experimental

realization of the rotational cooling process and start with describing the necessary apparatus: first,

in Chapter 8, our frequency-quadrupling laser system will be presented, and a further depiction of

the remainder of the setup will follow in Chapter 9. In Chapter 10 we will show specific experimen-

tal predictions, as well as obtained results. Final conclusion will be drawn in Chapter 11, where

we will talk about the impact of our rotational cooling experiment on the final molecule yield, and

what the eventual CeNTREX sensitivity to NSM might be.

12



CHAPTER 2. THALLIUM FLUORIDE STRUCTURE

Chapter 2

Thallium Fluoride Structure

2.1 Rotational and Hyperfine Levels in TlF

In our study it is important to first understand the molecule we are working with. Thallium fluoride

has already been studied [36, 38, 39] and used in experiments [40], so its structure and many of

the physical constants associated with it are already known. What is left for us is to thoroughly

evaluate the rotational and hyperfine structure as well as understand Stark and Zeeman shifts,

and the dipole transitions. We will also do so in both coupled and uncoupled bases - solutions in

coupled basis are needed in modeling of rotational cooling, while the uncoupled basis can be used

for calculations related to state transfer in other parts of our experiment.

The TlF molecule is diatomic and is described by its electronic state, vibrational and rota-

tional motion, plus the Tl and F nuclear spin states. In the experiment we use TlF in its ground

vibrational state, both in its ground electronic state X1Σ+ (ν = 0), and in an electronically ex-

cited B3Π1 (ν = 0) state. In both cases, the angular momentum couplings are best described in a

Hund’s case (c) basis, where the energy eigenstates are usually written in terms of the basis states

|η, J, F1, F,MF 〉. In this notation η represents both the electronic and vibrational quantum num-

bers, J is the total angular momentum (excluding the nuclear spins), F1 = J + I1, with I1 = 1/2

being thallium’s (205Tl) nuclear spin, F = F1 + I2 is the total angular momentum, with I2 = 1/2

being the nuclear spin for 19F, and MF is its projection along a quantization axis in the lab frame.

Field-free eigenstates are close to these basis states in the ground X1Σ+ state. However, in the

B3Π1 state, strong hyperfine interactions strongly mix states with different J and F1 values. We

13
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describe these eigenstates with a modified notation
∣∣∣η′, J̃ ′, F̃ ′1, F ′,M ′F〉, where J̃ ′ and F̃ ′1 correspond

to the largest component in their basis-state decomposition, and primes here simply indicate that

the quantum numbers refer to the B3Π1 excited state.

We begin here with the hyperfine and rotational structure of the electronic ground state - the

electronic and vibrational structure of the molecule are of smaller importance in the context of the

models presented in this thesis. Thallium fluoride’s hyperfine structure together with appropriate

constants (including its rotational constant) have already been presented in [36]. The rotational

structure is easy to evaluate. In Hund’s case (c) the rotational levels [41], up to first order, are

given as:

Hrot = hBrot

[
J(J + 1) + Ja(Ja + 1)− 2Ω2

]
,

with Brot being the effective rotational constant. In our case, Brot = Be + αe(ν + 1/2) + . . .

with Be = 6.68987 GHz and αe = −45.084 MHz [42], which gives effective Brot = 6.66733 GHz

(corresponding to temperature of T ≈ 0.3 K) for vibrational level ν = 0. We also have Ja = L + S,

J = Ja+R and Ω being projection of Ja and J on the internuclear axis. In the ground state X1Σ+

both Ja = 0 and Ω = 0, therefore the energy levels scale as J(J + 1). Molecules in the beam are

assumed to be in the vibrational ground state (ν = 0), since the beam temperature is much lower

than the energy scales associated with the electronic and vibrational excitations. However, even at

cryogenic temperatures, there is a Boltzmann distribution over many rotational and nuclear spin

states.

The hyperfine interaction is more difficult to evaluate. In [36] authors provide:

Hsr = cTl (I1 · J) + cF (I2 · J) (2.1.1)

Hss = 5c3
3 (I1 · J) (I2 · J) + 3 (I2 · J) (I1 · J)− 2 (I1 · I2) J2

(2J + 3)(2J − 1)
+ c4 (I1 · I2) . (2.1.2)

Hyperfine interactions split sublevels with different F values (F = J−1, J, J, J+1, except F = 0, 1

only for J = 0) in each rotational state, and there is a (2F + 1)-fold degeneracy of each state

with total angular momentum F , corresponding to the quantum numbers MF = −F, . . . , 0, . . . , F .

Thus, each rotational level has 4(2J+1) magnetic sublevels. The provided constants have following

numerical values [36]: cTl/h = 126.03 kHz, cF/h = 17.89 kHz, c3/h = 0.70 kHz and c4/h = −13.30

kHz. The first part, nuclear spin-rotation interaction, has already been evaluated [39], and it will
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be provided here as well. The second term describing nuclear spin-spin interaction can be divided

into two components: the first part is in fact a so-called dipolar interaction (evaluated for various

molecules in [41]), and the second term is the spin-spin interaction.

Including rotation, spin-rotation and spin-spin interactions, plus interactions with external elec-

tric (E) and magnetic (B) fields, the system is then described by the effective hyperfine hamiltonian

[36]:

HTlF = Hrot +Hsr +Hss +HS +HZ, (2.1.3)

where the last two terms correspond to Stark and Zeeman hamiltonians respectively:

HS = −µ · E

HZ = −µJ
J

(J ·B)− µ1

I1
(I1 ·B)− µ2

I2
(I2 ·B),

both of which will be discussed in this chapter as well.

2.2 Zero-field Hyperfine Structure

We begin with evaluating the terms Eq. (2.1.1) and Eq. (2.1.2) in the coupled basis following [41].

First, we look at the spin-rotation interaction for thallium nucleus forgetting about Ω (it does

not play any role in these particular interactions; the matrix element will simply contain a δΩ,Ω′

pre-factor):

〈
J, I1, F1, I2, F,MF

∣∣T 1(I1) · T 1(J)
∣∣J ′, I ′1, F ′1, I ′2, F ′,M ′F 〉 (A.6)

= δF,F ′δMF ,M
′
F
δI2,I′2〈

J, I1, F1

∣∣∣∣T 1(I1) · T 1(J)
∣∣∣∣J ′, I ′1, F ′1〉 .

Next, we use formula Eq. (A.5) with our coupling scheme, where, as mentioned earlier, F1 = J+ I1

and F = F1 + I2. To do that, we write the scalar product in the opposite order, so that J
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corresponds to j1 in the formula we want to use.

〈
J, I1, F1

∣∣∣∣T 1(J) · T 1(I1)
∣∣∣∣J ′, I ′1, F ′1〉 (A.5)

= δF1,F ′1
(−1)J

′+F1+I2

I ′1 J F1

J I1 1

〈J∣∣∣∣T 1(J)
∣∣∣∣J ′〉

〈
I1

∣∣∣∣T 1(I1)
∣∣∣∣I ′1〉

(A.2)
= δF1,F ′1

δI1,I′1δJ,J ′(−1)J
′+F1+I2

√
J(J + 1)(2J + 1)

√
I1(I1 + 1)(2I1 + 1)

I ′1 J F1

J I1 1

 .

Using the fact that I1 = I ′1 = 1/2 and I2 = I ′2 = 1/2 we obtain:〈
J, I1, F1, I2, F,MF

∣∣T 1(I1) · T 1(J)
∣∣J ′, I ′1, F ′1, I ′2, F ′,M ′F 〉 =δMF ,M

′
F
δF,F ′δF1,F ′1

δJ,J ′

(−1)J
′+F1+1/2

√
3

2

√
J(J + 1)(2J + 1)

 1
2 J ′ F1

J 1
2 1

 .
(2.2.1)

In a very similar manner we can evaluate the fluorine spin-rotation term. Like before, we will

also change the order of the scalar product in order to easily follow spherical tensor algebra formulas

in our coupling scheme. We begin with:〈
J, I1, F1, I2, F,MF

∣∣T 1(J) · T 1(I2)
∣∣J ′, I ′1, F ′1, I ′2, F ′,M ′F 〉 =

(A.5)
= δF,F ′δMF ,M

′
F

(−1)F
′
1+I2+F

I ′2 F ′1 F

F1 I2 1

〈I2

∣∣∣∣T 1(I2)
∣∣∣∣I ′2〉 〈J ′, I ′1, F ′1∣∣∣∣T 1(J)

∣∣∣∣J ′, I ′1, F ′1〉

(A.7)
= δF,F ′δMF ,M

′
F
δJ,J ′(−1)F

′
1+I2+F

I ′2 F ′1 F

F1 I2 1

〈I2

∣∣∣∣T 1(I2)
∣∣∣∣I ′2〉 (−1)J+I1+F ′1+1

√
(2F1 + 1)(2F ′1 + 1)

J ′ F ′1 I1

F1 J 1

〈J∣∣∣∣T 1(J)
∣∣∣∣J ′〉 .

Using Eq. (A.2) and the fact that both nuclei have spins of 1/2 we obtain:〈
J, I1, F1, I2, F,MF

∣∣T 1(I2) · T 1(J)
∣∣J ′, I ′1, F ′1, I ′2, F ′,M ′F 〉 =

√
3

2
δMF ,M

′
F
δF,F ′δJ,J ′(−1)J+F+2F ′1+2

√
(2F1 + 1)(2F ′1 + 1)

√
J(J + 1)(2J + 1)

 1
2 F ′1 F

F1
1
2 1


J ′ F ′1

1
2

F1 J 1

 . (2.2.2)
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The same way one can calculate the spin-spin interaction matrix element. We obtain:

〈
J, I1, F1, I2, F,MF

∣∣T 1(I1) · T 1(I2)
∣∣J ′, I ′1, F ′1, I ′2, F ′,M ′F 〉 =

(A.5)
= δF,F ′δMF ,M

′
F

(−1)F
′
1+I2+F

I ′2 F ′1 F

F1 I2 1

〈I2

∣∣∣∣T 1(I2)
∣∣∣∣I ′2〉 〈J, I1, F1

∣∣∣∣T 1(I1)
∣∣∣∣J ′, I ′1, F ′1〉

(A.7)
= δF,F ′δMF ,M

′
F

(−1)F
′
1+I2+F

I ′2 F ′1 F

F1 I2 1

〈I2

∣∣∣∣T 1(I2)
∣∣∣∣I ′2〉 (−1)J+I′1+F1+1

√
(2F1 + 1)(2F ′1 + 1)

I ′1 F ′1 J

F1 I1 1

〈I1

∣∣∣∣T 1(I1)
∣∣∣∣I ′1〉 .

And yet again using Eq. (A.2) and the fact that both nuclei have spins of 1/2 we end up with:

〈
J, I1, F1, I2, F,MF

∣∣T 1(I1) · T 1(I2)
∣∣J ′, I ′1, F ′1, I ′2, F ′,M ′F 〉 =

3

2
δMF ,M

′
F
δF,F ′δJ,J ′(−1)J+F+F ′1+F1+2

√
(2F1 + 1)(2F ′1 + 1)

 1
2 F ′1 F

F1
1
2 1


 1

2 F ′1 J

F1
1
2 1

 . (2.2.3)

The final contribution comes from the dipolar coupling of nuclear spins. The term can be

translated into spherical tensor representation. We write it as Hdip = 5c3

√
10 T 1(C2, I1) · T 1(I2),

where T 2(C) is a spherical tensor constructed from spherical harmonics, and its expectation value

for the ground electronic state is already taken into account in the constant c3 [41]. We should also

note that T 1(C2, I1) = T 2(C)× T 1(I1). We begin with:

〈
η; J,Ω, I1, F1, I2, F,MF

∣∣T 1(C2, I1) · T 1(I2)
∣∣η′; J ′,Ω′, I ′1, F ′1, I ′2, F ′,M ′F 〉 =

(A.5)
= δF,F ′δMF ,M

′
F

(−1)F
′
1+I2+F

I ′2 F ′1 F

F1 I2 1

〈I2

∣∣∣∣T 1(I2)
∣∣∣∣I ′2〉

〈
η; J,Ω, I1, F1

∣∣∣∣T 1(C2, I1)
∣∣∣∣η′; J ′,Ω′, I ′1, F ′1〉 ,
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which then, using Eq. (A.3), leads to:

〈
η; J,Ω, I1, F1, I2, F,MF

∣∣T 1(C2, I1) · T 1(I2)
∣∣η′; J ′,Ω′, I ′1, F ′1, I ′2, F ′,M ′F 〉 =

= δF,F ′δMF ,M
′
F

(−1)F
′
1+I2+F

I ′2 F ′1 F

F1 I2 1

√I2(I2 + 1)(2I2 + 1)
√

(2 + 1)(2F1 + 1)(2F ′1 + 1)


F1 F ′1 1

J J ′ 2

I1 I ′1 1


〈
η; J,Ω

∣∣∣∣T 2(C)
∣∣∣∣η′; J ′,Ω′〉 〈I1

∣∣∣∣T 1(I1)
∣∣∣∣I ′1〉 .

In the equation above η represents an electronic state (in our case X1Σ+) and other quantum

numbers. To evaluate the reduced matrix element of the spherical tensor T 2(C), we need to bring

the tensor into the molecule’s frame of reference and then use Eq. (A.9). Hence:

〈
η; J,Ω

∣∣∣∣T 2(C)
∣∣∣∣η′; J ′,Ω′〉 =

〈
η; J,Ω

∣∣∣∣∣∣
∣∣∣∣∣∣

2∑
q=−2

D (2)
.q (ω)∗T 2

q (C)

∣∣∣∣∣∣
∣∣∣∣∣∣η′; J ′,Ω′

〉
=

2∑
q=−2

〈
η
∣∣∣∣C2

q (θ, φ)
∣∣∣∣η′〉

(−1)J−Ω
√

(2J + 1)(2J ′ + 1)

 J 2 J ′

−Ω q Ω

 .

The term
〈
η
∣∣∣∣C2

q (θ, φ)
∣∣∣∣η′〉, as mentioned before, is included in the c3 constant. Therefore, after

dropping this term:

〈
η; J,Ω, I1, F1, I2, F,MF

∣∣T 1(C2, I1) · T 1(I2)
∣∣η′; J ′,Ω′, I ′1, F ′1, I ′2, F ′,M ′F 〉 =

= δF,F ′δMF ,M
′
F

(−1)F
′
1+I2+F+J−Ω

√
I1(I1 + 1)(2I1 + 1)

√
I2(I2 + 1)(2I2 + 1)

√
(2J + 1)(2J ′ + 1)

√
(2 + 1)(2F1 + 1)(2F ′1 + 1)

I ′2 F ′1 F

F1 I2 1



F1 F ′1 1

J J ′ 2

I1 I ′1 1


2∑

q=−2

 J 2 J ′

−Ω q Ω



Here, we are only considering the electronic ground state X1Σ+, in which Ω = 0, so in the sum
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only q = 0 term survives. Including I1 = I2 = 1/2 finally gives us:

〈
η; J,Ω, I1, F1, I2, F,MF

∣∣T 1(C2, I1) · T 1(I2)
∣∣η′; J ′,Ω′, I ′1, F ′1, I ′2, F ′,M ′F 〉 =

=
3
√

3

2
δMF ,M

′
F
δF,F ′(−1)F

′
1+F+J+1/2

√
(2F ′1 + 1)(2F1 + 1)(2J + 1)(2J ′ + 1) (2.2.4)

J 2 J ′

0 0 0

 1
2 F ′1 F

F1
1
2 1



F1 F ′1 1

J J ′ 2

1
2

1
2 1


By looking at all the evaluated contributions, one can see that there will be some mixing between

different states. One of it will happen between different rotational states due to the dipolar coupling

given in Eq. (2.2.4). However, because the constant c3 is 6 orders of magnitude smaller then the

rotational constant Brot, this mixing will be very miniscule and its contribution to energies of these

levels is negligible. We will also get mixing between levels of the same J, F and MF, and different

F1. For TlF in the ground electronic state this mixing moves the levels by approximately 1 kHz -

the states with lower F1 have their energy lowered and states with larger F1 have it made larger.

Next, we would like to evaluate the same terms in the uncoupled basis, which is proper to use in

the presence of external fields. Here, the proper quantum numbers are |J,Ω,MJ ; I1,MI1 ; I2,MI2〉.
In this basis the old notation formulas of Eq. (2.1.1) and Eq. (2.1.2) are actually easier to use in

practice, but for the sake of completeness we will use the approach used for the coupled basis.

Just like before, we start with the spin-rotation interaction. Because now both terms of the scalar

product act on uncoupled angular momenta with separate projections, we have to pay special

attention to the scalar product (as before, in these terms we ignore Ω and the resulting δΩ,Ω′

pre-factor):

〈
J,MJ ; I1,MI1 ; I2,MI2

∣∣T 1(I1) · T 1(J)
∣∣J ′,M ′J ; I ′1,M

′
I1 ; I ′2,M

′
I2

〉
=

δI2,I′2δMI2
,M ′I2

〈
J,MJ ; I1,MI1

∣∣∑
p

(−1)p T 1
p (J) · T 1

−p(I1)
∣∣J ′,M ′J ; I ′1,M

′
I1

〉
.
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J = 0+

J = 1−

J = 2+

J = 3−

X1Σ+

F1 = 1/2

F1 = 1/2

F1 = 3/2

F1 = 3/2

F1 = 5/2

F1 = 5/2

F1 = 7/2

F = 1

F = 0

F = 0

F = 1

F = 1

F = 2

F = 1

F = 2

F = 2

F = 3

F = 2

F = 3

F = 3

F = 4

τ = 99 ns

γ = 1.6 MHz

FCF00 = 0.99

J̃ ′ = 1−
B3Π1

F̃ ′1 = 3/2

F̃ ′1 = 1/2
F ′ = 0

F ′ = 1

F ′ = 2

F ′ = 1

1103.4 THz

0.30 GHz

0.55 GHz

13.52 GHz

13.33 GHz

26.67 GHz

40.00 GHz

13.30 kHz

22.24 kHz

175.95 kHz

14.54 kHz

35.22 kHz

278.81 kHz

44.52 kHz

54.38 kHz

384.58 kHz

63.95 kHz

Figure 2.2.1: Diagram of TlF states X1Σ+ and B3Π1 that are considered in the coupled basis, with no

applied fields. Splittings for the excited electronic states are obtained from spectroscopic measurements. All

numbers are provided in linear frequency units (i.e. E = hf).
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Because both operators act on uncoupled angular momenta, we can just simply separate the scalar

product. From there:

∑
p

(−1)p
〈
J,MJ

∣∣T 1
p (J)

∣∣J ′,M ′J〉 〈I1,MI1

∣∣T 1
−p(I1)

∣∣I ′1,M ′I1〉 (A.1)
=
∑
p

(−1)p(−1)J−MJ

 J 1 J ′

−MJ p M ′J


〈
J
∣∣∣∣T 1

p (J)
∣∣∣∣J ′〉 (−1)I1−MI1

 I1 1 I ′1

−MI1 −p M ′I1

〈I1

∣∣∣∣T 1
−p(I1)

∣∣∣∣I ′1〉
(A.2)
=
∑
p

(−1)pδJ,J ′δI1,I′1(−1)J−MJ (−1)I1−MI1

√
J(J + 1)(2J + 1)

√
I1(I1 + 1)(2I1 + 1)

 J 1 J ′

−MJ p M ′J

 I1 1 I ′1

−MI1 −p M ′I1

 .

Once we put everything together and remember that I1 = I ′1 = I2 = I ′2 = 1/2 we obtain:

〈
J,MJ ; I1,MI1 ; I2,MI2

∣∣T 1(I1) · T 1(J)
∣∣J ′,M ′J ; I ′1,M

′
I1 ; I ′2,M

′
I2

〉
=

√
3

2
δMI2

,M ′I2
(−1)J+1/2−MJ−MI1

√
J(J + 1)(2J + 1)

∑
p

(−1)p

 J 1 J

−MJ p M ′J

 1
2 1 1

2

−MI1 −p M ′I1

. (2.2.5)

Analogically, for the second spin-rotation term we get:

〈
J,MJ ; I1,MI1 ; I2,MI2

∣∣T 1(I2) · T 1(J)
∣∣J ′,M ′J ; I ′1,M

′
I1 ; I ′2,M

′
I2

〉
=

√
3

2
δMI1

,M ′I1
(−1)J+1/2−MJ−MI2

√
J(J + 1)(2J + 1)

∑
p

(−1)p

 J 1 J

−MJ p M ′J

 1
2 1 1

2

−MI2 −p M ′I2

. (2.2.6)

The direct spin-spin interaction term is trivial to evaluate in the uncoupled basis as well:

〈
J,MJ ; I1,MI1 ; I2,MI2

∣∣T 1(I1) · T 1(I2)
∣∣J ′,M ′J ; I ′1,M

′
I1 ; I ′2,M

′
I2

〉
=

3

2
δMJ ,M

′
J
δJ,J ′(−1)1−MI1

−MI2

∑
p

(−1)p

 1
2 1 1

2

−MI1 p M ′I1

 1
2 1 1

2

−MI2 −p M ′I2

. (2.2.7)

The dipolar term in the uncoupled basis is, on the other hand, truly messy. First, we use the

explicit form of scalar product of two rank-1 tensors and then combine this with Wigner-Eckart
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theorem and reduced matrix element for a rank-1 tensor:

〈
η; J,Ω,MJ ; I1,MI1 ; I2,MI2

∣∣T 1(C2, I1) · T 1(I2)
∣∣η′; J ′,Ω′,M ′J ; I ′1,M

′
I1 ; I ′2,M

′
I2

〉
=

=
∑
p

(−1)p
〈
I2,MI2

∣∣T 1
−p(I2)

∣∣I ′2,M ′I2〉 〈η; J,Ω,MJ ; I1,MI1

∣∣T 1
p (C2, I1)

∣∣η′; J ′,Ω′,M ′J ; I ′1,M
′
I1

〉

=
∑
p

(−1)p(−1)I2−MI2

√
I2(I2 + 1)(2I2 + 1)

 I2 1 I2

−MI2 −p M ′I2


〈
η; J,Ω,MJ ; I1,MI1

∣∣T 1
p (C2, I1)

∣∣η′; J ′,Ω′,M ′J ; I ′1,M
′
I1

〉
(A.4)
=
∑
p

(−1)p(−1)1/2−MI2

√
3

2

 1
2 1 1

2

−MI2 −p M ′I2

∑
p1p2

(−1)2−1+p
√

2 + 1

 1 2 1

p1 p2 −p


〈
η; J,Ω,MJ ; I1,MI1

∣∣T 2
p1

(C)T 1
p2

(I1)
∣∣η′; J ′,Ω′,M ′J ; I ′1,M

′
I1

〉
.

In the last line we decomposed the tensor product as well, which will allow us to easily evaluate

two spherical tensors separately. Namely (with I1 = 1/2):

〈
η; J,Ω,MJ ; I1,MI1

∣∣T 2
p1

(C)T 1
p2

(I1)
∣∣η′; J ′,Ω′,M ′J ; I ′1,M

′
I1

〉
=

=
〈
η; J,Ω,MJ

∣∣T 2
p1

(C)
∣∣η′; J ′,Ω′,M ′J〉 (−1)I1−MI1

√
I1(I1 + 1)(2I1 + 1)

 I1 1 I1

−MI1 p2 M ′I1


(A.1)
= (−1)J−MJ

 J 1 J ′

−MJ p1 M ′J

〈η; J,Ω
∣∣∣∣T 2(C)

∣∣∣∣η′; J ′,Ω′〉 (−1)1/2−MI1

√
3

2

 1
2 1 1

2

−MI1 p2 M ′I1

 .

The reduced matrix element above has already been evaluated. We can now put everything together

and note that, like before, in the electronic state we are considering Ω = 0 and the reduced matrix
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element of tensor T 2(C) is already included in the constant, and obtain:

〈
η; J,Ω,MJ ; I1,MI1 ; I2,MI2

∣∣T 1(C2, I1) · T 1(I2)
∣∣η′; J ′,Ω′,M ′J ; I ′1,M

′
I1 ; I ′2,M

′
I2

〉
=

=
∑
p,p1,p2

3
√

3

2
(−1)2+2J−MJ−MI1

−MI2 (−1)p
√

(2J + 1)(2J ′ + 1)

 1 2 1

p1 p2 −p


 1

2 1 1
2

−MI1 p2 M ′I1

 1
2 1 1

2

−MI2 p M ′I2

 J 1 J ′

−MJ p1 M ′J

J 2 J ′

0 0 0

 . (2.2.8)

2.3 Zeeman Effect in TlF

Thallium fluoride’s ground state X1Σ+ having L = 0 and S = 0 is not expected to experience

a strong Zeeman effect. Nevertheless, in the experiment the regions where state transfer and

projection occur will not be magnetically shielded, so it is crucial that we evaluate the magnetic

field contributions. Following [41], we effectively have the following terms contributing to the

Zeeman effect:

1. gSµBBzT
1
0 (S) - electron spin isotropic contribution

2. glµBBz
∑

q=±1 D
(1)
0q (ω)∗T 1

q (S) - electron spin anisotropic contribution

3. g′LµBBzT
1
0 (L) - electron orbital angular momentum (g′L is assumed to account for relativistic,

diamagnetic and non-adiabatic effects)

4. −grµBBzT 1
0 (R) - rotational magnetic moment contribution

5. −∑α g
α
NµNBzT

1
0 (Iα) - nuclear spins

6. µBBZ
∑

q=±1 e
−2iqφ

[
g′LD

(1)
0,−q(ω)∗ T 1

q (S)− ge′r
∑

p(−1)pD
(1)
−p,−q(ω)∗ T 1

p (R)D
(1)
0,−q(ω)∗

]
- parity-

dependent contributions for Π states

7. T 2(χ) · T 2
0 (B,B) - anisotropic magnetic susceptibility contribution

We will evaluate contributions 1 through 5 - we are considering a 1Σ state and look only at linear

terms. We shall do so in the basis with coupled nuclear spins, which is true only for small fields,

and in the uncoupled basis, and we will always assume that B-field defines a z-axis. We begin
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with the coupled basis and the electron spin isotropic contribution, which for the considered state

will be 0, but will be evaluated regardless. Remembering that in Hund’s case (c) J = R + Ja and

Ja = L + S. Our matrix element will be:

〈
gSµBBzT

1
0 (S)

〉
=
〈
Ja; J,Ω, F1, F,MF

∣∣gSµBBzT 1
0 (S)

∣∣J ′a; J ′,Ω′, F ′1, F ′,M ′F 〉
=
〈
Ja; J,Ω, F1, F,MF

∣∣gSµBBz ∑
q=−1,0,1

D
(1)
0,q (ω)∗ T 1

q (S)
∣∣J ′a; J ′,Ω′, F ′1, F ′,M ′F 〉 .

It is worth noting that the operator D
(1)
0,q (ω)∗, as we saw before, will act on J and Ω, while the spin

operator T 1
q (S) will act on Ja and Ω. We now obtain:

〈
gSµBBzT

1
0 (S)

〉
=
〈
Ja; J,Ω, F1, F,MF

∣∣gSµBBz ∑
q=−1,0,1

D
(1)
0,q (ω)∗T 1

q (S)
∣∣J ′a; J ′,Ω′, F ′1, F ′,M ′F 〉

= gSµBBz(−1)F−MF+F ′+F1+F ′1+J+3
√

(2F + 1)(2F ′ + 1)(2F1 + 1)(2F ′1 + 1)

 F 1 F ′

−MF 0 M ′F

F ′1 F ′ 1
2

F F1 1


J ′ F ′1

1
2

F1 J 1


∑

q=−1,0,1

〈
J,Ω

∣∣∣∣∣∣D (1)
.,q (ω)∗

∣∣∣∣∣∣J ′,Ω′〉 〈L, S, Ja,Ω∣∣T 1
q (S)

∣∣L′, S′, J ′a,Ω′〉 .
Due to Ω-doubling in some cases (for example in the B3Π1 state) normally we should include

parity of the states as well, but because we are considering the Σ state we will simply calculate the

matrix element for a single pure Ω state, not their superpositions with defined |Ω|. We can now

use Eq. (A.9) together with the Wigner-Eckart theorem to obtain:

〈
L, S, Ja,Ω

∣∣T 1
q (S)

∣∣L′, S′, J ′a,Ω′〉 = (−1)Ja−Ω

 Ja 1 J ′a

−Ω q Ω′

〈L, S, Ja∣∣∣∣T 1(S)
∣∣∣∣L′, S′, J ′a〉

= (−1)Ja−Ω

 Ja 1 J ′a

−Ω q Ω′

 (−1)Ja+L+S+1δL,L′
√

(2Ja + 1)(2J ′a + 1)

S′ J ′a L

Ja S 1

 δS,S′
√
S(S + 1)(2S + 1).
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Putting it all together we get:

〈
gSµBBzT

1
0 (S)

〉
= gSµBBzδL,L′δS,S′(−1)F−MF+F ′+F1+F ′1+2J+2Ja−2Ω+L+S+4

√
(2F + 1)(2F ′ + 1)√

(2F1 + 1)(2F ′1 + 1)(2J + 1)(2J ′ + 1)(2Ja + 1)(2J ′a + 1)S(S + 1)(2S + 1)

 F 1 F ′

−MF 0 M ′F

F ′1 F ′ 1
2

F F1 1


J ′ F ′1

1
2

F1 J 1


S J ′a L

Ja S 1


∑

q=−1,0,1

 J 1 J ′

−Ω q Ω′

 Ja 1 J ′a

−Ω q Ω′

 . (2.3.1)

In a very similar way, we can evaluate the orbital magnetic moment contribution:

〈
g′LµBBzT

1
0 (L)

〉
= g′LµBBzδL,L′δS,S′(−1)F−MF+F ′+F1+F ′1+2J+2Ja−2Ω+L+S+4

√
(2F + 1)(2F ′ + 1)√

(2F1 + 1)(2F ′1 + 1)(2J + 1)(2J ′ + 1)(2Ja + 1)(2J ′a + 1)L(L+ 1)(2L+ 1)

 F 1 F ′

−MF 0 M ′F

F ′1 F ′ 1
2

F F1 1


J ′ F ′1

1
2

F1 J 1


L′ J ′a S

Ja L 1


∑

q=−1,0,1

 J 1 J ′

−Ω q Ω′

 Ja 1 J ′a

−Ω q Ω′

 . (2.3.2)

As can be seen, both terms Eq. (2.3.1) and Eq. (2.3.2) are 0 for S = 0 and L = 0 respectively.

The anisotropic contribution will have an identical form to Eq. (2.3.1), though the sum will go over

q = ±1 and the g-factor will be changed to gl from gS . That term is also 0 for a 1Σ state.

To evaluate the rotational magnetic moment contribution, first let’s point out that R = J−Ja =

J− L− S. This means, that the rotational contribution will change the effective g-factors in spin

and orbital contributions: Eq. (2.3.1) will effectively have a g-factor of gS + gr and Eq. (2.3.2) a

g-factor of g′L + gr. A new contribution will come from coupling to the total angular momentum.
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We have:〈
−grµBBzT 1

0 (J)
〉

= −grµBBz(−1)F−MF+F ′+F1+F ′1+J+3
√

(2F + 1)(2F ′ + 1)(2F1 + 1)(2F ′1 + 1)

 F 1 F ′

−MF 0 M ′F

F ′1 F ′ 1
2

F F1 1


J ′ F ′1

1
2

F1 J 1

〈J∣∣∣∣T 1(J)
∣∣∣∣J〉

= −grµBBzδJ,J ′(−1)F−MF+F ′+F1+F ′1+J+3
√

(2F + 1)(2F ′ + 1)(2F1 + 1)(2F ′1 + 1)

√
J(J + 1)(2J + 1)

 F 1 F ′

−MF 0 M ′F

F ′1 F ′ 1
2

F F1 1


J ′ F ′1

1
2

F1 J 1

 . (2.3.3)

Contribution from the nuclear spin in coupled basis are also quite easy to evaluate. For I2 we

obtain:〈
−g(2)

N µNBzT
1
0 (I2)

〉
=
〈
J ;F1, I2, F,MF

∣∣−g(2)
N µNBzT

1
0 (I2)

∣∣J ;F ′1, I
′
2, F

′,M ′F
〉

= −g(2)
N µNBz(−1)F−MF+F ′+F1+3/2

√
(2F + 1)(2F ′ + 1)

 F 1 F ′

−MF 0 M ′F


I ′2 F ′ F1

F I2 1

 δF1,F ′1
δI2,I′2δJ,J ′

√
I2(I2 + 1)(2I2 + 1)

= −
√

3

2
g

(2)
N µNBzδJ,J ′δF1,F ′1

(−1)F−MF+F ′+F1+3/2
√

(2F + 1)(2F ′ + 1)

 F 1 F ′

−MF 0 M ′F

 1
2 F ′ F1

F 1
2 1

 . (2.3.4)

Analogically, for I1 we have:〈
−g(1)

N µNBzT
1
0 (I1)

〉
=
〈
J, I1, F1, I2, F,MF

∣∣−g(1)
N µNBzT

1
0 (I1)

∣∣J ′, I ′1, F ′1, I ′2, F ′,M ′F 〉
= −

√
3

2
g

(1)
N µNBzδJ,J ′(−1)F−MF+F ′+F1+F ′1+J+3

√
(2F + 1)(2F ′ + 1)(2F1 + 1)(2F ′1 + 1)

 F 1 F ′

−MF 0 M ′F

F ′1 F ′ 1
2

F F1 1


 1

2 F ′1 J

F1
1
2 1

 . (2.3.5)
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If we were now working in decoupled basis, we would obtain simpler results. For example,

nuclear spins will not contribute to spin and orbital Zeeman effects:

〈
gSµBBzT

1
0 (S)

〉
=
〈
Ja; J,Ω,MJ ; I1,MI1 ; I2,MI2

∣∣gSµBBzT 1
q (S)

∣∣J ′a; J ′,Ω′,M ′J ; I1,M
′
I1 ; I2,M

′
I2

〉
= gSµBBzδL,L′δS,S′δMI1

,M ′I1
δMI2

,M ′I2
(−1)2J−MJ+2Ja−2Ω+L+S+1

√
(2J + 1)(2J ′ + 1)

√
(2Ja + 1)(2J ′a + 1)S(S + 1)(2S + 1)

 J 1 J ′

−MJ 0 M ′J

S J ′a L

Ja S 1


∑

q=−1,0,1

 J 1 J ′

−Ω q Ω′

 Ja 1 J ′a

−Ω q Ω′

 , (2.3.6)

for the spin contribution and:

〈
gSµBBzT

1
0 (L)

〉
=
〈
Ja; J,Ω,MJ ; I1,MI1 ; I2,MI2

∣∣g′LµBBzT 1
0 (L)

∣∣J ′a; J ′,Ω′,M ′J ; I1,M
′
I1 ; I2,M

′
I2

〉
= gSµBBzδL,L′δS,S′δMI1

,M ′I1
δMI2

,M ′I2
(−1)2J−MJ+2Ja−2Ω+L+S+1

√
(2J + 1)(2J ′ + 1)

√
(2Ja + 1)(2J ′a + 1)L(L+ 1)(2L+ 1)

 J 1 J ′

−MJ 0 M ′J

L J ′a S

Ja L 1


∑

q=−1,0,1

 J 1 J ′

−Ω q Ω′

 Ja 1 J ′a

−Ω q Ω′

 , (2.3.7)

for the orbital angular momentum. Both terms are 0 for the 1Σ state. The rotational magnetic

moment contribution in the decoupled basis becomes much simpler:

〈
−grµBBzT 1

0 (J)
〉

= −grµBBzδJ,J ′δI1,I′1δI2,I′2δMI1
,M ′I1

δMI2
,M ′I2

(−1)J−MJ
√
J(J + 1)(2J + 1)

 J 1 J ′

−MJ 0 M ′J


= −grµBBzMJ δJ,J ′δMI1

,M ′I1
δMI2

,M ′I2
. (2.3.8)
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The nuclear spin contributions have the same form in the decoupled basis:〈
−g(1)

N µNBzT
1
0 (I1)

〉
= −g(1)

N µBBzMI1 δJ,J ′δMI2
,M ′I2

(2.3.9)〈
−g(2)

N µNBzT
1
0 (I2)

〉
= −g(2)

N µBBzMI2 δJ,J ′δMI1
,M ′I1

. (2.3.10)

Finally, we provide mean values [36] for TlF g-factors relevant here and in HZ of Eq. (2.1.3):

µJ ≡ grµB = 35 Hz/G, µ205
1 ≡ g

(1)
N µB = 1.2405 kHz/G and µ2 ≡ g

(2)
N µB = 2.004 kHz/G, where

(1) and (2) correspond to thallium and fluorine respectively. As can be seen, all the factors are

very small, and so we would potentially require fields of couple hundred to a thousand Gauss to

efficiently remix our dark states or to decouple our spins.

2.4 Stark Effect in TlF

The next crucial piece is the Stark hamiltonian HS. In CeNTREX apparatus, TlF molecules

experience a non-zero electric and (nominally) zero magnetic field, and, in general, the contribution

to the hamiltonian is simply equal to −µ ·E, where µ is molecule’s permanent dipole moment equal

to µ0 = 4.2282 Debye [36]. The character of the energy eigenstates changes significantly depending

on the magnitude of the electric field E , which varies extremely between different stages of the

experiment. Therefore, we will describe the energy eigenstates of the molecule’s electronic ground

state in different regimes of E-field strength (with B = 0), as defined by the ratio of Stark shifts,

∆ES = 〈HS〉 ∼ µ2
0E2/Brot, to the strength of hyperfine interactions, Ehf = 〈Hsr +Hss〉 ∼ cj , or

rotational energies, Erot = 〈Hrot〉 ∼ Brot. In all regimes, the total angular momentum projection

MF along the quantization axis (usually defined by the local direction of E) is an exact quantum

number.

In the low-field regime, where ∆ES � Ehf , energy eigenstates can be still approximately de-

scribed by the J , F , and F1 quantum numbers. However, already in the mid-field regime, where

Ehf � ∆ES � Erot, both J and MJ are approximate quantum numbers. We also have two distinct

cases. For MJ = ±1, J is strongly coupled to the molecular axis n̂, and therefore also to E, and

both nuclear spins are coupled to J (and so they are coupled to E as well) by the spin-rotation

interaction. Thus, in this case the approximate nuclear spin quantum numbers are MI1 and MI2

and the fully decoupled basis is the one to use. When MJ = 0 (including the J = 0 case), the

nuclear spins decouple from J and E. Nonetheless, they are still coupled to each other through the
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Regime Definition Field strength Approx. eigenstates

Low ∆ES� Ehf E . 50 V/cm |J, F1, F,MF 〉

Mid Ehf �∆ES� Erot 50 V/cm�E . 5 kV/cm
|J,MJ 6= 0〉 |MI1 ,MI2〉
|J,MJ = 0〉 |It,MIt〉

High Ehf � Erot .∆ES 5 kV/cm�E

∣∣∣J̃ ,MJ 6= 0
〉
|MI1 ,MI2〉∣∣∣J̃ ,MJ = 0
〉
|It,MIt〉

Table 2.4.1: Regimes of electric field strength and associated eigenstates in TlF. Table prepared by the

CeNTREX collaboration.

spin-spin interaction, and so the state can be described by It = I1 + I2 (the total nuclear spin) and

MIt (its projection) in addition to J and MJ = 0.

In the high-field regime where Ehf � Erot . ∆ES, the rotational states J are significantly

mixed, and separations between MJ states are on the order of Erot. Here, just like in the mid-

field regime, the decoupled basis represents the approximate quantum numbers - the eigenstates

are defined by the same quantum numbers, aside from J . For these strongly mixed states we

usually use a notation J̃ . This quantum number corresponds to the value of J that any given state

connects to adiabatically, if the E-field is reduced. Table 2.4.1 summarizes the different regimes

and associated eigenstates.

We will now evaluate the Stark effect for any electric field direction and start with the low-field

coupled basis. We have:

〈−µ · E〉 = −
∑
p

〈
J,Ω, F1, F,MF

∣∣(−1)p T 1
p (µ)T 1

−p(E)
∣∣J ′,Ω′, F ′1, F ′,M ′F 〉

(A.1)
= −

∑
p

(−1)p(−1)F−MF E−p

 F 1 F ′

−MF p M ′F

〈J,Ω, F1, F
∣∣∣∣T 1(µ)

∣∣∣∣J ′,Ω′, F ′1, F ′〉 .
Next, to evaluate the reduced matrix element of the tensor related to the permanent dipole we use

29



CHAPTER 2. THALLIUM FLUORIDE STRUCTURE

Eq. (A.7) and obtain:

〈
J,Ω, F1, F

∣∣∣∣T 1(µ)
∣∣∣∣J ′,Ω′, F ′1, F ′〉 = (−1)F

′+F1+F ′1+J+3
√

(2F + 1)(2F ′ + 1)(2F1 + 1)(2F ′1 + 1)

F ′1 F ′ 1
2

F F1 1


J ′ F ′1

1
2

F1 J 1

〈J,Ω∣∣∣∣T 1(µ)
∣∣∣∣J ′,Ω′〉 .

The next step requires us to move from the space-fixed coordinate system to the molecule-fixed

coordinate system. We do that using Wigner D-function remembering that the permanent dipole

has the component along the internuclear axis only (q = 0) and that for the 1Σ state Ω = 0:

〈
J,Ω

∣∣∣∣T 1(µ)
∣∣∣∣J ′,Ω′〉 =

∑
q

〈
J,Ω

∣∣∣∣∣∣D (k)
.q (ω)∗T 1

q (µ)
∣∣∣∣∣∣J ′,Ω′〉

= µ0

〈
J,Ω

∣∣∣∣∣∣D (k)
.0 (ω)∗

∣∣∣∣∣∣J ′,Ω′〉
(A.9)
= (−1)J

√
(2J ′ + 1)(2J + 1)

J 1 J ′

0 0 0

 .

Finally, combining all the terms gives us:

〈−µ · E〉 = −µ0

∑
p

(−1)p(−1)F−MF+F ′+F1+F ′1+2J+3E−p
√

(2F + 1)(2F ′ + 1)(2F1 + 1)(2F ′1 + 1)

√
(2J + 1)(2J ′ + 1)

 F 1 F ′

−MF p M ′F

F ′1 F ′ 1
2

F F1 1


J ′ F ′1

1
2

F1 J 1


J 1 J ′

0 0 0

 .

(2.4.1)

The term above is also a term used to evaluate the off-diagonal contributions to the hamiltonian for

microwave transitions between states within the X1Σ+ electronic state. This comes from the fact

that the rotational transitions are induced by interaction of electric dipole moment of the whole

molecule with the electric field of microwaves. For the purpose of modeling the rotational cooling

and optical cycling this term will be used extensively. Finally, in the uncoupled basis the Stark
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effect term is:

〈−µ · E〉 = −µ0δMI1
,M ′I1

δMI2
,M ′I2

∑
p

(−1)p(−1)2J−MJE−p
√

(2J + 1)(2J ′ + 1)

 J 1 J ′

−MJ p M ′J

J 1 J ′

0 0 0

 . (2.4.2)

It is worth noting that the last term in the formulas for Stark effect in 1Σ state of TlF are non-zero

for J ′ = J ± 1. There is no first-order Stark effect in TlF, but mixing of adjacent rotational level

due to the existence of an electric field will lead to quadratic Stark shift, which we use to our

advantage in the experiment. If we assume that the field defines the quantization axis (p = 0),

after diagonalization of a 3-by-3 matrix (including |J − 1〉, |J〉 and |J + 1〉 states) one obtains an

expression for the second-order Stark energy in the decoupled basis (strong field regime):

∆E
(2)
S = − µ

2
0E2
z

2Brot

J(J + 1)− 3M2
J

J(J + 1)(2J − 1)(2J + 3)
, (2.4.3)

with Brot being the effective rotational constant. In figures below we show TlF energy eigenstates

with changing electric field magnitudes, which are of huge importance in CeNTREX. Not only we

need to understand how the energy eigenstates behave in large electric fields to model the behavior

of a focusing component (quadrupole lens discussed later in Chapter 3) that operates in fields of

up to 50 kV/cm, but also to analyze the evolution of our J̃ = 1, MJ = ±1 science states in the

205Tl NSM measurement that is carried out at E = 30 kV/cm. Moreover, the state manipulation

in CeNTREX is performed mostly in the low- and mid-field environments and Fig. 2.4.1 shows how

the relevant energies and eigenstates evolve in those regimes for J = 1 and J = 2 states. Bold

curves are states directly relevant to CeNTREX. Fig. 2.4.2 shows behavior of states up to J = 2

from low to high fields.
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Figure 2.4.1: Overview of the energy eigenstates for changing E-field magnitudes. The low-field regime,

where ∆ES � Ehf , where energy eigenstates retain J , F , and F1 as approximate quantum numbers is shown

in a) for J = 1 and c) for J = 2. The mid-field regime, where Ehf � ∆ES � Erot, where both J and MJ

are approximate quantum numbers is shown in b) for J = 1 and d) for J = 2. States used in CeNTREX

are shown in bold.

2.5 Dipole Transitions

In CeNTREX, lasers will be tuned to X1Σ+(ν = 0) → B3Π1(ν = 0) transitions in order to

manipulate and read out ground state hyperfine and rotational sublevels. Details of the B3Π1

state structure are given in [39, 43]. Here, only a few main features of this state’s substructure

are important. First, the B state hyperfine splittings are very large (& 100 MHz) compared to

the natural linewidth of the transition (γ ≈ 1.6 MHz), which is in turn much larger than the

hyperfine splittings in the ground X state (cj . 100 kHz). This means that hyperfine structure is

fully resolved in the excited state, but completely unresolved in the ground state. Thus, optical
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Figure 2.4.2: Evolution of the energy eigenstates of the TlF Hamiltonian (Eq. (2.1.3)) for E ranging from

0 V/cm to 50 kV/cm, for J = 0, 1, 2. States used in CeNTREX are shown in bold. Hyperfine structure is

unresolved in this plot.

transitions in TlF couple a large number of hyperfine levels (with a given value of J) in the ground

state to a single hyperfine state with quantum numbers J̃ , F̃1 and exact quantum number F in

the excited state. Another important feature of the B state is that its matrix of Franck-Condon

factors (FCFs) for decay to the X state is extremely diagonal [44], such that ∼ 99% of the time the

B(ν = 0) vibrational state decays back to the vibrational ground state X(ν = 0), which enables

optical pumping and optical cycling processes to take place with almost no loss. However, the

mixing of J and F1 due to B-state hyperfine interaction substantially modifies rotational selection

rules in B − X decays. It must be taken into account when describing optical excitation and

emission in TlF, and it will be addressed here.

In simulations and modeling of both rotational cooling and optical cycling it is important to

understand the dipole transitions between the ground and excited electronic states. In order to

find correct off-diagonal terms in the hamiltonian, we need to find the Rabi frequencies. Such an

off-diagonal element will then be proportional to ΩR, where for a dipole transition from state |i〉
to |f〉 it is given as:

ΩR =
E
~
〈f |~ε · d|i〉 =

eE
~
〈f |~ε · r|i〉 (2.5.1)

where ~ε is light polarization vector, E is electric field’s amplitude and d is the effective transition

dipole, which is not the same as the molecule’s permanent dipole moment µ0. We will evaluate this
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matrix element assuming that we are given polarization εp (p = ±1 corresponds to two circular

polarizations, and p = 0 corresponds to linear polarization along the quantization axis), and using

a rank 1 spherical tensor T 1
p (d). We can then re-write the expression for the Rabi rate:

ΩR =
∑

p=−1,0,1

(−1)p
E−p
~
〈f |T 1

p (d)|i〉. (2.5.2)

We have:

〈f |T 1
p (d)|i〉 =

〈
J,Ω, F1, F,MF ,P

∣∣T 1
p (d)

∣∣J ′,Ω′, F ′1, F ′,M ′F ,P ′〉 ,
where P is a number identifying state’s parity type - 0 for e-parity states and 1 for f -parity states.

We then use Eq. (A.1) to obtain:

〈
J,Ω, F1, F,MF ,P

∣∣T 1
p (d)

∣∣J ′,Ω′, F ′1, F ′,M ′F ,P ′〉 =(−1)F−MF

 F 1 F ′

−MF p M ′F


〈
J,Ω, F1, F,P

∣∣∣∣T 1(d)
∣∣∣∣J ′,Ω′, F ′1, F ′,P ′〉 .

Because the spherical tensor being evaluated acts on angular momentum J, in order to simplify the

equation above we need to take into account the couplings between J and nuclear spins.

〈f |T 1
p (d)|i〉 = (−1)F−MF

 F 1 F ′

−MF p M ′F

〈J,Ω, F1, F,P
∣∣∣∣T 1(d)

∣∣∣∣J ′,Ω′, F ′1, F ′,P ′〉

= (−1)F−MF+F ′+F1+F ′1+J+3
√

(2F + 1)(2F ′ + 1)(2F1 + 1)(2F ′1 + 1)

 F 1 F ′

−MF p M ′F

F ′1 F ′ 1
2

F F1 1


J ′ F ′1

1
2

F1 J 1

〈J,Ω,P∣∣∣∣T 1(d)
∣∣∣∣J ′,Ω′,P ′〉

Finally, to correctly evaluate the remaining reduced matrix element, we need to move the dipole

from the lab frame to the molecule-fixed frame. We do that, like before, using reduced Wigner-D

functions:

T 1(d) =
∑

q=−1,0,1

D1
·,qT

1
q (d).

Then, by explicitly introducing electronic states η we get:〈
η, J,Ω,P

∣∣∣∣T 1(d)
∣∣∣∣η′, J ′,Ω′,P ′〉 =

∑
q=−1,0,1

〈
η, J,Ω,P

∣∣∣∣(D1
·,q)
∗T 1

q (d)
∣∣∣∣η′, J ′,Ω′,P ′〉

=
∑

q=−1,0,1

〈
J,Ω,P

∣∣∣∣(D1
·,q)
∗∣∣∣∣J ′,Ω′,P ′〉 e 〈η∣∣r∣∣η′〉.
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Now, to evaluate the last (angular) part of the matrix element, we have to consider Ω-doubling,

which occurs in the excited B3Π1 state. Using our convention for P for states of e-parity and

f -parity, the positive and negative parity superposition states can be written as:

|+〉 =
1√
2

(
|Ω〉+ (−1)J |−Ω〉

)
|−〉 =

1√
2

(
|Ω〉 − (−1)J |−Ω〉

)
,

where parity of the state (|+〉 or |−〉) is determined by the type of the parity and the angular

momentum J , namely parity is equal to (−1)J+P . We can then write that in general:

|J, |Ω|,P,±〉 =
1√
2

(
|Ω〉+ (−1)J+P(−1)J |−Ω〉

)
=

1√
2

(
|Ω〉+ (−1)P |−Ω〉

)
. (2.5.3)

We can look at the formula above in the following way: given a parity type, the superposition

is well defined (sum for e-parity states and difference for f-parity). Such state will then have

parity dependent on J . For example, the f-parity state is (|Ω〉 − |−Ω〉)/
√

2, and for J = 1 such

state will have positive parity ((−1)1+1 = 1). If we compare this with the standard definition

|+〉 = (|Ω〉 + (−1)1 |−Ω〉)/
√

2 we get the same superposition state. Therefore, in this scheme we

will be using states written as in Eq. (2.5.3). Then, the dipole transition matrix element’s last term

can be written as:

〈
J,Ω,P

∣∣∣∣(D1
·,q)
∗∣∣∣∣J ′,Ω′,P ′〉 =

∑
q=−1,0,1

1

2

√
(2J + 1)(2J ′ + 1)

(−1)J−Ω

 J 1 J ′

−Ω q Ω′

+

+ (−1)J+Ω(−1)P

J 1 J ′

Ω q Ω′

+ (−1)J−Ω(−1)P
′

 J 1 J ′

−Ω q −Ω′

+

+(−1)J+Ω(−1)P+P ′

J 1 J ′

Ω q −Ω′

 .
Therefore, the dipole transition matrix element for a transition from initial state i (here, primed

quantum numbers, even though throughout the thesis primes will mark the excited state) to state
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f is given by:

〈f |T 1
p (d)|i〉 =

1

2
e 〈r〉 (−1)F−MF+F ′+F1+F ′1+2J−Ω+3

√
(2F + 1)(2F ′ + 1)(2F1 + 1)(2F ′1 + 1)

√
(2J + 1)(2J ′ + 1)

 F 1 F ′

−MF p M ′F

F ′1 F ′ 1
2

F F1 1


J ′ F ′1

1
2

F1 J 1


∑

q=−1,0,1

 J 1 J ′

−Ω q Ω′

+ (−1)P

J 1 J ′

Ω q Ω′

+ (−1)P
′

 J 1 J ′

−Ω q −Ω′

+

+(−1)P+P ′

J 1 J ′

Ω q −Ω′

 (2.5.4)

For our specific electronic states, assuming the ground state is the initial state, this reduces to:

〈f |T 1
p (d)|i〉 =

1√
2
e 〈r〉 (−1)F−MF+F ′+F1+F ′1+2J−1+3

√
(2F + 1)(2F ′ + 1)(2F1 + 1)(2F ′1 + 1)

√
(2J + 1)(2J ′ + 1)

 F 1 F ′

−MF p M ′F

F ′1 F ′ 1
2

F F1 1


J ′ F ′1

1
2

F1 J 1


∑

q=−1,0,1

 J 1 J ′

−1 q 0

+ (−1)P

J 1 J ′

1 q 0

 . (2.5.5)

We can evaluate most of Eq. (2.5.4) for our states - all quantum numbers are given. The exception

is the electronic part
〈
B3Π1

∣∣r∣∣X1Σ+
〉

(we’re assuming the that the vibrational part, the Franck-

Condon, factor is equal to 1, while its real value, as mentioned, is approximately 0.99), which

should be on the order of Bohr’s radius a0. It can also be evaluated using known decay rate from

the excited electronic states. Finally, it is also worth noting that, because of mixing in the excited

state, in order to evaluate these dipole transition matrix elements for a state J̃ , we need to use

formula Eq. (2.5.4) for all states that contribute to the state being evaluated.

2.5.1 Decay Rates and Branching Ratios

Using the dipole transition matrix element, we are now able to find the decay rates for different

decay paths, as well as various rotational branching ratios, all of which will be needed in modeling
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and simulations. A decay rate from state i to state f is defined as:

Γi→f =
ω3
if

3πε0~c3
| 〈f |d|i〉|2.

Firstly, we see that decay rates between rotational states in the same electronic state will be totally

negligible comparing to decay rates from the excited electronic state to ground state. Secondly,

we see that we could use Eq. (2.5.4) to find those rates, if we sum over all possible polarizations.

Then, branching ratio will be given as (assuming that frequencies for all the decays are equal, which

for our system is close to truth; differences are on the order of 10 GHz comparing to transition

frequency of ∼ 106 GHz):

bfi =
Γi→f∑
f Γi→f

=

∑
p=−1,0,1 | 〈f |dp|i〉|2∑

f

(∑
p=−1,0,1 | 〈f |dp|i〉|2

) .
Because we know value of Γi for the B3Π1 state (Γ = 1/τ ≈ 2π × 1.6 MHz), we can also find the

electronic part of transition dipole moment 〈r〉 assuming that all the decays emit photons of the

same energy and decays go only to the vibrational level ν = 0 (which is approximately true). Then:

Γi =
∑
f

Γi→f =
ω3

3πε0~c3

∑
f

 ∑
p=−1,0,1

| 〈f |dp|i〉|2
 ∝ 〈r〉2

For pure states the sum is equal to 1, and we obtain:∣∣ 〈B3Π1

∣∣r∣∣X1Σ+
〉∣∣2 =

1

e2

3πε0~c3

(2πν)3
Γ, (2.5.6)

with ν ≈ 1103.4 THz being the transition frequency (not the vibrational state). We can calculate

that
〈
B3Π1

∣∣r∣∣X1Σ+
〉
≈ 0.32 a0, which translated into value of induced electric dipole moment µ

for this transition is equal to about 0.81 Debye (as mentioned before, for microwave transitions

between rotational states in the ground electronic state we will use µ0 = 4.2282 Debye, which is

the permanent electric dipole moment of TlF).

Using the formulas above we can evaluate branching ratios for pure states in B3Π1 of both e-

and f -type parity (while for rotational cooling we will be using the mentioned e-parity states, when

looking at the optical cycling, we will concentrate on transitions from J = 1− in the electronic

ground state to J̃ = 1+ in the excited electronic state; such state is a state of f -type parity with

P = 1). Tables of branching ratios are provided in the appendix - table B.1 presents them for

e-parity states, while table B.2 for f -parity states for J̃ = 1.
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Unfortunately, the pure states do not represent the reality and their rotational branching ratios

are of limited use. In the excited electronic state rotational states are experiencing hyperfine mixing.

For the states that we are interested in, we are getting a following mixing matrix [39] for e-parity

states:



|1, 1/2, 0〉 |1, 1/2, 1〉 |1, 3/2, 1〉 |1, 3/2, 2〉 |2, 3/2, 1〉 |2, 3/2, 2〉 |2, 5/2, 2〉 |3, 5/2, 2〉

|1, 1/2, 0〉 1 0 0 0 0 0 0 0

|1, 1/2, 1〉 0 0.9996 0.0203 0 0.018 0 0 0

|1, 3/2, 1〉 0 −0.0267 0.8518 0 0.5232 0 0 0

|1, 3/2, 2〉 0 0 0 0.8482 0 0.5294 0.0138 0.0064


,

where rows represent the mixed eigenstates, while columns correspond to pure states.Including the

mixing, changes branching ratios slightly. Finally, from Eq. (2.5.4) we can obtain two selection

rules that are true for all polarizations and are dictating the decay paths: ∆J = ±1 (for e-type

parity) ∆F1 = 0,±1 and ∆F = 0,±1. However, the real states J̃ = 1 have a small admixture of

the |J = 3, F1 = 5/2, F = 2〉 state, which allows them to decay into |J = 4, F1 = 7/2, F = 3〉 in the

electronic ground state. Note, that even though there also is an admixture of J = 2 states in B3Π1,

molecules will not decay into J = 1 or J = 3 states in X1Σ+, because the overall state J̃ = 1 has

the same parity as the mentioned J = 1 and J = 3 states. Table B.3 in the appendix presents

these modified branching ratios for e-type parity states and table B.4 for f -type parity states.
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Chapter 3

Overview of Full Experimental Setup

3.1 Overview

Our experiment is divided into interconnected modules which we will describe in this chapter in

order that a TlF molecule would encounter on its path. First, a cryogenic buffer gas beam source

(BS) creates a slow, cold and bright molecular beam, which then passes through a rotational cooling

region (RC) where molecules are transferred from their initial thermal distribution in rotational

states into a single hyperfine state in J = 0. Afterwards, in the state preparation region A (SPA)

the molecules are coherently moved into the |J = 2,MJ = 0〉 state that allows us to focus the beam

into the final detection region downstream with the electrostatic quadrupole lens (EQL). After the

lens, TlF molecules are transferred into the Schiff moment measurement |J = 1,MJ = ±1〉 “science

state” in the state preparation region B (SPB). The Schiff moment measurement is performed in

the main interaction region (MI), where a nuclear magnetic resonance (NMR) process is performed

using a separated oscillatory fields (SOF) technique [45, 46] with a strong polarizing E-field present.

There, first a superposition of thallium nuclear spin states is created by a short RF magnetic field

subregion, then molecules undergo a period of free precession in electric field E, and finally another

RF field subregion maps the accumulated phase into a population difference between two spin

states. It is the energy difference between the spin states, including a Schiff moment contribution,

that leads to this phase accumulation. After the main interaction region, the state preparation

region C (SPC) is where each spin state is transferred to a different rotational state. These final

rotational populations are then read out using a laser-induced fluorescence (LIF) technique through
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Figure 3.1.1: Overview of the planned CeNTREX beamline. Distance in meters is shown on the bottom.

Modules following the electrostatic quadrupole lens are currently being designed, so few details are given.

optical quasi-cycling transitions in the fluorescence detection region (FD). We present overview of

the beamline design in Fig. 3.1.1 and Fig. 3.1.2.

Because the quantizing fields in CeNTREX change direction throughout the apparatus, we

find it useful to use two different coordinate systems. We use (X,Y,Z) to denote “beamline”

coordinates, where Z points in the average direction of the molecular beam and Y is vertical.

Similarly, we use (x,y, z) to denote “interaction region” coordinates, where z lies along the average

E-field in the interaction region, and x is the vector closest to the average beam velocity that is

also perpendicular to z.

3.2 Beam Source

The thallium fluoride molecular beam is obtained from a cryogenic neon buffer gas beam source

[47]. There, a solid TlF target cooled to 16-20 K is kept within a copper cell, and is ablated with

a pulsed Nd:YAG laser operating at up to 50 Hz. The ablation occurs with a continuous Ne flow

through the cell with a typical rate of 25-40 sccm (standard cubic centimeters per minute). The

cell is surrounded by a shield kept at 4 K that cryopumps the neon. The Ne buffer gas and ablated

TlF reach thermal equilibrium before the cell exit, where the beam cools even further by expanding

into vacuum. The cell has an exit aperture with a diameter of 6.35 mm (it defines the zero position

along the beamline axis Z), and the beam source itself has two more apertures (one in a 4 K layer,

and one in a blackbody shield), both with a 1” diameter, that collimate the molecular beam.

Properties of TlF beam’s velocity distributions were already measured. We placed an additional
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Figure 3.1.2: Overview of the regions the TlF molecules traverse as they move through the CeNTREX

beamline. After emerging from the beam source (not shown), the molecules enter the rotational cooling

region, where the population in the rotational levels J = 1, 2, and 3 is optically pumped to |J = 0, F = 0〉.
(Chapter 7 and Fig. 3.3.1 provide more detail). From there, they move into state preparation region A,

where they are coherently transferred into a |J = 2,MJ = 0〉 state, which is focused by the electrostatic lens.

In state preparation region B, the molecular state is transferred into one of the |J = 1,MJ = ±1〉 states

before proceeding to the interaction region. Here, using NMR with the SOF technique, we transform the

frequency shift between Tl spin-up and spin-down states into a population difference between these states.

Subsequently, in state preparation region C, one of the Tl spin state populations is transferred to a J = 2

state. Finally, in the detection region, optical cycling and fluorescence collection are used for efficient, quasi-

simultaneous detection of the two populations. The red, grey, and black curves in the figure indicate the

magnitude of the electric field along, respectively, the beam direction Z, the interaction region field direction

z, and the transverse electric quadrupole field directions X,Y.
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Figure 3.2.1: Schematic of an experimental setup that was used to measure properties of the molecular

beam.

collimator downstream and allowed a laser beam to cross the molecular beam. It was tuned to a

Q1 line (J̃ ′ = J = 1) of the X−B transition (detailed in Chapter 6). Using a photomultiplier tube

(PMT) we collected laser-induced fluorescence and analyzed the LIF signal as a function of laser

detuning with the laser beam perpendicular or at 45◦ with respect to the TlF beam (Fig. 3.2.1).

This allowed us to deduce properties of the velocity distributions. The longitudinal distribution

was very nearly Gaussian, with mean v̄Z = 184±17 m/s and Gaussian width σvZ = 16.1±0.8 m/s.

The latter corresponds to translational temperature Ttr = 7.0± 0.7 K.

The TlF beam divergence was determined from the shape of an isolated Q-branch absorption

line, probed upstream of any collimation. The FWHM (full width at half-maximum) spread in

transverse velocity here was 93±3 m/s, corresponding to a divergence cone half-angle of 14.0±1.5◦.

To determine the rotational temperature of TlF we measured the population in different rota-

tional states by looking at LIF signal sizes with lasers tuned to R-branch transitions (J̃ ′ = J + 1).

Because the laser can resolve hyperfine structure in the excited but not in the ground state, by tar-

geting the excited-state sublevel with the largest possible angular momentum, F̃ ′ = J̃ ′+ 1 = J + 2,

we could ensure that only a single ground state hyperfine level, with F = J + 1, was excited. Such
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Figure 3.2.2: Relative rotational state populations of TlF in the CeNTREX beam source with typical

conditions as described in the text, overlaid with a fit to a Boltzmann distribution. From the fit, we find the

rotational temperature Trot = 6.3± 0.2 K.

an approach greatly simplified the extraction of rotational level populations from LIF signals. The

relative populations were then fit to a Boltzmann distribution,

P (J) = g(J) exp

(
−BJ(J + 1)

kBTrot

)
, (3.2.1)

where g(J) = 4(2J + 1) is the degeneracy of each rotational level, as shown in Fig. 3.2.2. From the

fit we obtained Trot = 6.3± 0.2 K.

From known line strengths [39, 43, 48], calculated solid angle of fluorescence detection, and cal-

ibrated PMT sensitivity, we found a time-averaged beam intensity of 5×1012 molecules/state/sr/s.

Here, each MF sublevel is considered a one state, and the time average is taken over 1 second when

operating at 50 Hz pulse repetition rate. This is comparable to intensities found in other cryogenic

buffer gas beam sources [47].

3.3 Rotational Cooling

In a Boltzmann distribution at Trot = 6.3 K, about 50% of the TlF population is in states with

J = 0 through J = 3. To maximize the Schiff moment measurement sensitivity in CeNTREX, this

population can be dissipatively pumped to the |J = 0, F1 = 1/2, F = 0〉 level, which can become

the initial state for all further steps in the experiment. This rotational cooling can be accomplished
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using a single optical pumping laser and two microwave driving fields. The laser can couple the

J = 2 state to an excited state with J̃ ′ = 1−. We calculate that about half of the decays from the

excited J̃ ′ = 1− state end in the J = 0 state; nearly all of the remainder returns to the J = 2 state,

and branching to other vibrational states is .1% [38, 44], as was mentioned in the previous chapter.

The microwaves could then resonantly couple J = 1 ↔ J = 2 and J = 2 ↔ J = 3. Repeated

excitation-decay cycles should then lead to accumulation of population from J = 1, 2, and 3 into

the J = 0 state, as shown in Fig. 3.3.1.

The presence of hyperfine structure adds considerable complexity to rotational cooling in TlF.

While the ground-state hyperfine splitting is smaller than the laser linewidth, the excited-state

hyperfine levels are well separated. We tune the J = 2 optical pumping laser to resonance with the∣∣∣J̃ ′ = 1−, F̃1
′
= 3/2, F ′ = 1

〉
level and refer to this line as the P2F1 transition (P -branch transitions

have J̃ ′ = J − 1). Without a considerable effort, this level structure will only support an extremely

low excitation and pumping rate due to the formation of long-lived coherent dark states [49] within

the manifold of unresolved ground-state hyperfine and Zeeman sublevels. It is this problem that

is a major part of this thesis. In Chapter 5 we look at dark state creation and methods of their

destabilization, and then in Chapter 7 we analyze and simulate different approaches towards the

rotational cooling. Finally, in Chapter 10 we present results of experimental realization of this

process.

3.4 State Preparation Region A

In CeNTREX, the electrostatic quadrupole lens is designed to selectively focus molecules in the

|J = 2,MJ = 0〉 state. As we just mentioned, rotational cooling should bring majority of the

population into the |J = 0, F1 = 1/2, F = 0〉 state, which is a pure It = 0 (singlet) state of the

nuclear spins. A coherent transfer of this state’s population into the |J = 2,MJ = 0〉 state will be

achieved in the state preparation region A, where a two-stage adiabatic passage (AP) protocol will

be utilized. In both stages, the population is moved to the next rotational state (J increases by

one), while its projection MJ remains unchanged, with (nominally) It = 0 throughout.

The driving field will be provided by two CW, single-frequency free-space microwave beams,

tuned to near-resonance with the J = 0 ↔ J = 1 and J = 1 ↔ J = 2 transitions. The beams
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Figure 3.3.1: Rotational cooling scheme. a) The thick solid arrow marks a UV laser driving the P2F1

transition; bent arrows represent microwaves, and wavy arrows indicate spontaneous emission. The odd-

parity J̃ ′ = 1− excited state can only decay to states with J = 0+, 2+. Percentages under the ground-state

kets are the thermal population at temperature Trot = 6.3 K, prior to rotational cooling. b) Hyperfine

structure relevant to optical pumping. Decays back to J = 2+ are not shown. The P2F1 transition does

not excite |J = 2+, F = 3〉. The nearest optical transition that couples to the J = 2+ hyperfine manifold is

separated from this line by about 550 MHz.

can be produced by spot-focusing horns, spatially offset so the beam profiles have no significant

overlap. We plan to provide the time-varying detuning of each beam from its respective resonance

by the quadratic Stark shift due to a spatially varying DC electric field as the molecules fly through

the region. The desired ∆MJ = ∆It = 0 transitions will be then selectively driven by π-polarized

microwaves. Due to geometric constraints, this will require the DC electric field, E, to lie along the

molecular beamline, Z (Fig. 3.1.2 provides an overview of this region).

For adiabatic passasge to provide an efficient population transfer, the adiabaticity condition has

to be fulfilled [50]:
d∆

dt
� ∆2 + Ω2

µ, (3.4.1)

where ∆ is the detuning and Ωµ the Rabi rate of the microwave drive. Furthermore, the detuning

at large times before and after the AP interaction must be larger than the microwave Rabi rate.

This will be accomplished with fields as shown in Fig. 3.4.1.

Our collaboration simulated the TlF state evolution in the SPA region with peak Rabi rates

Ωµ = 70 kHz, perfectly pure π-polarization, microwave intensity profile as measured from the

focusing horns, EZ field from finite element calculations, and including the effect of the Earth’s
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Figure 3.4.1: Rabi rates, detunings, state populations and field amplitudes versus position in state prepa-

ration region A, where Z is the molecular beam direction. a) Calculated Rabi rates Ω(Z), based on the

measured intensity profile from the spot-focusing horns. b) Stark-shifted detunings ∆01 and ∆12 of the

transitions J = 0↔ J = 1 and J = 1↔ J = 2, respectively. c) Calculated populations of relevant states as

the molecules travel through the SPA region, showing a simulated transfer efficiency from J = 0 to J = 2 of

99%. d) Electric field EZ, based on finite element simulations.

magnetic field. With these assumptions, it was found that the state transfer efficiency is close to

99%. We are confident that high transfer efficiency can also be reached in the real experiment - as

long as the adiabaticity condition is fulfilled, the state transfer occurs with an efficiency close to

100% [50]. By making sure it is satisfied within a safe margin, the effects of various factors that

might lower the efficiency can be mitigated.

3.5 Electrostatic Quadrupole Lens

The molecular beam exiting the source is spread over a wide solid angle, and the beam intensity

decreases as the square of the distance from the source. The total distance from beam source to

final detection in CeNTREX is about 6.4 m, so beam focusing can substantially improve the signal

46



CHAPTER 3. OVERVIEW OF FULL EXPERIMENTAL SETUP

Figure 3.5.1: a) Stark shift of the |J = 2,MJ = 0〉 hyperfine manifold of states. b) Front view of the

electrostatic quadrupole lens. Colored curves are equipotential surfaces. The electrodes have length l = 60

cm, and applied potentials ±V up to ±30 kV. The electrode support structure is mounted on translation

stages (not shown) that allow for alignment of the lens under vacuum.

strength. To accomplish this, an electrostatic quadrupole lens (EQL) will be employed.

An EQL with four equidistant cylindrical electrode rods, held at alternating positive and neg-

ative potentials of the same magnitude V , generates an electric quadrupole field of magnitude

|Equad(r)| = 2V r

R2
, (3.5.1)

where 2R is both the bore diameter of the lens and the electrode diameter, and r is the distance

from the central axis of the quadrupole. A front view of the lens is shown in Fig. 3.5.1b. The

|J = 2,MJ = 0〉 states in TlF have a quadratic Stark shift in fields up to Equad ≈ 20 kV/cm as

shown in Eq. (2.4.3), and slightly slower than quadratic to ∼ 30 kV/cm (Fig. 3.5.1a). For electrode

potentials of ±V = ±30 kV, the fields inside the lens do not exceed 30 kV/cm, and so most

molecules in the lens remain in the quadratic Stark shift regime.

A quadrupole field acting on molecules with a quadratic Stark shift produces a harmonic po-
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tential along the radial direction within the lens. Under these conditions, the electrostatic lens acts

as an analogue to a thick optical lens [51]: the lens can be thought of as imaging the molecular

beam from the source to the detection region. The trajectories of the molecules can be described

by the ray transfer matrices of a thick optical lens [52, 53]. To understand it better we can begin

by re-writing the Stark shift term using Eq. (3.5.1):

∆E
(2)
S =

C(∆V )2

2R4
r2 (3.5.2)

where the J , MJ dependence of Eq. (2.4.3) is included in the constant C and ∆V is the potential

difference between two electrodes. Now, let’s suppose a molecule of mass m is emitted from a

source with initial distance r0 from the axis with longitudinal speed vZ and transverse speed ṙ0.

After traveling for a distance z0, it enters the EQL of length l and radius R. After it leaves the

lens, it travels for a distance zf and finally enters the detection region at a distance rf from axis

with transverse speed ṙf . By solving the equations of motion a relationship between the initial and

final distance from the axis and transverse velocities can be put into a matrix form: rf

ṙf/vZ

 =

1 zf

0 1

 cos pl p−1 sin pl

−p sin pl cos pl

1 z0

0 1

 r0

ṙ0/vZ

 , (3.5.3)

where

p =

(
C(∆V )2

R4mv2
Z

) 1
2

Setting the upper-right element of the transformation matrix in Eq. (3.5.3) to zero, we obtain the

focusing condition:

z0 cos pl +
sin pl

p
− pz0zf sin pl + zf cos pl = 0. (3.5.4)

This sets the condition for a molecule emitted from a given initial off-axis distance r0 to be focused

at the final off-axis distance rf = Mr0, regardless of its initial transverse speed ṙ0. Here M is

understood as “magnification” defined as:

M = cos pl − pzf sin pl,

and it determines the degree to which the beam diverges after traveling through the lens. Finally,

once the focusing condition is applied to Eq. (3.5.3), a mentioned thick optical lens equation is

obtained:  ri

ṙi/vZ

 =

1 z′i

0 1

 1 0

−f−1 1

1 z′o

0 1

 ro

ṙo/vZ

 , (3.5.5)
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where ro/i is the radial position of the molecule in the object/image plane (in our case beam

source/detection region) corresponding to r0,f notation used before and changed here for emphasis,

z′o,i is the distance from the object/image plane to the entrance/exit principal plane of the lens,

and f is the effective focal length given by

f =
1

p sin (pl)
. (3.5.6)

As shown in Eq. (3.5.6), the focal length depends on velocity of the molecules. The spread of

longitudinal velocities in the molecular pulse thus gives a range of focal lengths. This chromatic

aberration increases the focal spot size. Aberrations due to deviation of the Stark shift from a

purely quadratic spatial dependence have a similar effect.

Due to the complexity added by the aberrations, the length and diameter of the lens were

optimized with Monte Carlo simulations of molecular trajectories through the entire apparatus.

These simulations were done before much of the beamline was designed and prior to measurements

of the molecular beam properties, and thus educated guesses had to be made for the parameters.

For the molecular beam we assumed a Gaussian distribution with v̄Z = 200 m/s and σvZ = 13 m/s

for the longitudinal velocities. The beamline was taken to have a distance of 0.81 m from the

molecular source to the start of the lens, and 3.63 m from the end of the lens to detection. The

detection region was taken to have an acceptance area of 10 mm × 30 mm. The source was taken to

have a diameter of 20 mm, and was located 0.25” downstream from the cold cell exit aperture. This

was based on an estimate of the molecular cloud size at the “zone of freezing” where interactions

between molecules are assumed to have ceased [47]. The length and diameter of the lens were then

optimized by maximizing the expected number of detected molecules when the electrodes were at

±30 kV. The optimal combination was found to be a diameter 2R = 1.75”, and a l = 60 cm length.

The simulated gain in the number of molecules making it to detection was a factor of 24.

Some of the beamline and molecular beam properties are now known better than when the lens

was designed. The measured molecular beam velocity is slightly lower, at v̄Z = 184 m/s, than

previously assumed. To compensate for the lower velocity, the electrode voltages will be lowered

to ±27 kV. The source-to-lens-distance will be 1.01 m, and the lens-to-detection-distance 4.45 m.

With these parameters, the simulated gain in the number of molecules reaching the detection region

is a factor of 23.2± 0.9 where the uncertainty is based on Poisson statistics in the simulation.
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From the simulations, we have also estimated TlF accumulation on the MI region electrodes

- knowing it is crucial for proper maintenance of the apparatus. The simulations show that if

additional beam-collimating apertures are not installed, a monolayer of TlF can form in under a

month of continuous operation assuming measured beam’s brightness. Installing an aperture just

before the EQL, and just before the MI region, might help us mitigate this problem. To understand

how small an aperture can be without being detrimental we can first estimate acceptance distance

from the axis for the EQL. We do that by putting a limit on distance r0 from the center of the

lens at lens’ entrance, for given distance z0 and parameters R, p and l, for which no molecules will

reach amplitude of oscillation inside the lens large enough to hit or escape the lens.

Inside the lens, molecules travel according to the equation of motion:

r = r0 cos pz +
ṙ0

pvZ
sin pz. (3.5.7)

At the same time, assuming that a molecule leaves the source at r = 0 (a point source), the distance

r0 is related to z0 and angle θ between the Z-axis along the setup and molecule’s trajectory through

r0 = z0 tan θ. Tangent of angle θ is also related to transverse velocity ṙ0 at the lens’ entrance and

molecule’s longitudinal velocity vZ . Namely, ṙ0 = vZ tan θ. Knowing that, we can re-write equation

Eq. (3.5.7) as:

r = r0 cos pz +
tan θ

p
sin pz = r0 cos pz +

r0

z0p
sin pz =

√
r2

0 +
r2

0

z2
0p

2
cos (pz + φ), (3.5.8)

where the last form of the equation allows us to clearly see what the amplitude of the movement is

(as well as its phase φ, which is not relevant to our discussion). We do not want this amplitude to

reach a value larger than radius of the lens R. Therefore:

r0 ≤
pz0√

1 + p2z2
0

R (3.5.9)

which provides a rough estimate for size of a proper aperture before the EQL. Adding a 4 mm wide

slit before the MI region is projected to help as well without substantially decreasing the number

of molecules reaching the detection region. Including the apertures in the simulation shows that a

monolayer of TlF should form after 4 months of continuous beam operation.
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3.6 State Preparation Region B

In order to perform the nuclear Schiff moment measurement we need the molecules to be in the

J = 1 state with MJ = ±1 [36, 38]. However, after the EQL TlF is in the |J = 2,MJ = 0〉 state.

We plan to perform the state transfer in the state preparation region B and will do that by using

resonant microwaves with x-polarization (perpendicular to the quantization axis). The microwave

fields will be applied in the presence of a magnetic field BSPB ≈ 10 G, as well as a quantization-

axis-defining electric field ESPB ≈ 50 V/cm. Both fields will be parallel to one another and pointing

along the z-axis (in the “interaction region” coordinates), and will allow to distinguish between two

±MJ states. Unlike in SPA, adiabatic passage here could potentially drive transitions to undesired

states that might be nearby in energy. Therefore, here we plan to use a microwave π-pulse. We

estimate that with a peak Rabi rate Ωµ = 1.5 kHz, the transfer efficiency should approach ∼96%,

although imperfections of electric and magnetic fields causing the transition frequencies to shift

away from the microwave frequency, are likely to reduce it. To achieve high efficiency, B needs to

be uniform to within δB/B < 10−3 and E to within δE/E < 10−4.

3.7 Main Interaction Region

The Schiff moment measurement requires a large and uniform external electric field, which in our

case will be EMI = 30 kV/cm, along z, and it will polarize the molecules. Such large field causes the

energies of the J̃ = 1, MJ = ±1 manifold of hyperfine states to be well-described by the effective

Hamiltonian [34]:

Heff =(−µJJz − µ1I1 − µ2I2)Bz − µ1I1zJzB
int
1 − µ2I2zJzB

int
2 + CSI1zI2z

+ CT (J2
+I−,1I−,2 + h.c.) +WS S

I1

I1
· n̂,

(3.7.1)

where Bint is the effective intra-molecular magnetic field along 〈J〉 that arises from the spin-rotation

terms in Eq. (2.1.1), while CS and CT are effective scalar and tensor spin-spin interactions, respec-

tively, that arise from the spin-spin terms in Eq. (2.1.2). The subscripts z,+,− on operators refer

to the angular momentum projection, raising, and lowering operators, respectively.

As was shown in the introduction, the electric polarization, P, can be described by:

P =
〈
n̂ · Ê

〉
= 〈cos θ〉 ,
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with Ê ≡ E/E . Here, θ is the angle between n̂ and the z-axis defined by EMI. For our science state

in the J = 1, MJ = ±1 manifold P = 0.547 in EMI = 30 kV/cm. By measuring changes in energy

splittings of two states with identical values of MJ and opposite Tl spin projections M1 = ±1/2,

we should be able to determine thallium’s nuclear Schiff moment S. These changes will occur when

we reverse the direction of the electric field in the MI region EMI with respect to the magnetic field

BSPB in the SPB region. If the Schiff moment S 6= 0, then, as was mentioned in Chapter 1, the

energy splitting will shift by ±2∆CPV = ±2WS S P. In Fig. 3.7.1 we show the science states in the

J̃ = 1, MJ = ±1 manifold for electric field EMI = 30 kV/cm. We can see that pairs of states that

only flip thallium’s spin (I1) are the j/e and k/h pairs. Because of the effective internal magnetic

field and the scalar spin-spin interaction, both are separated by 119.517 kHz.

Figure 3.7.1: Hyperfine level structure of TlF
∣∣∣J̃ = 1,MJ = ±1

〉
states in E = 30 kV/cm and B = 0 that

are present in the Main Interaction Region. Only the sign of the quantum numbers is shown - the full values

are MJ = ±1, M1 = ±1/2, M2 = ±1/2, where M1 and M2 correspond to thallium’s and fluorine’s nuclear

spin respectively. The zero of energy is arbitrary.

Using a SOF method for nuclear magnetic resonance [45, 46], but with no external magnetic

field, one can measure this energy splitting. First, we will need to set the RF drive frequency to
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the j↔e or k↔h transition resonance ~ωRF ≈ µ1Bint − Cs/2, which will cause the first RF pulse

in the sequence to create a superposition of thallium’s spin-up and spin-down states. For example,

if we start in state e, a π/2-pulse would create a superposition of e and j states. This state would

then undergo a free precession for time T , which would lead to phase accumulation between the

spin-up and spin-down states:

φ ≈ 1

~
[−µ1Bintsgn(MJ) + CsMI2 + 2WS S P sgn(EMI)]T. (3.7.2)

After the free precession, the relative populations in spin-up and spin-down states can be ob-

tained through a second RF pulse, which can map this accumulated phase. Transition from the

spin-up to the spin-down state has probability [46]:

P↑→↓ = sin2 (2ΩRFτ) cos2

[
1

2
(φCPV + φSOF)

]
.

In the equation above ΩRF is the Rabi frequency of the RF pulse, τ is time a molecule spends in

the RF field, and the phase offset between the first and second RF pulses is given by φSOF. The

CPV phase is defined as:

φCPV = 2WS S P sgn(EMI)
T

~
=

2∆CPVT

~
,

and it is the quantity that we would like to determine. Having its value, and knowing the value of

T , the energy shift ∆CPV can be obtained. To reach maximum sensitivity to the measured shift, we

plan to set the SOF phase difference to π/2 magnitude and to alternate its sign, i.e. φSOF = ±π/2.

Ideally, the free precession would occur with no magnetic field present and its accumulation

would be attributed only to nuclear Schiff moment’s precession in the electric field EMI. Unfortu-

nately, the reality is often disappointing and magnetic fields cannot be completely eliminated from

the interaction region thus generating spurious energy shifts. In CeNTREX we plan to minimize

these magnetic fields by adding several layers of magnetic shielding in the shape of concentric cylin-

ders. With a 4-cylinder shield and 12 layers of Metglas (a high-permeability material [54]) on each

cylinder we aim to achieve residual fields of at most 10 µG.

It is also very crucial to generate the interaction region’s electric field with high uniformity. To

do that we have started constructing two quartz electrodes 3 m in length, which in CeNTREX will

be separated by 2 cm. Both of these electrodes will have the so-called Rogowski profile [55, 56]
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that should prevent formation of large edge fields. They will also have a conductive water-based

colloidal graphite coating. We decided to use coated quartz electrodes to minimize electrodes’

electrical conductance that could lead to magnetic Johnson noise [57, 58, 59]. To reduce it even

further, the electrodes will be placed in a quartz vacuum chamber - a 3.5 m quartz tube with 26

cm outer diameter and 2 cm wall thickness. Its inner surface will be then grounded by adding a

conductive coating or placing a thin conducting sheet.

Finally, the oscillatory RF fields required for the measurement will be placed outside the vacuum

chamber. They will be position symmetrically away from the center of the electrodes, and will be

separated by about 2.5 m. We plan to add a few additional coils that would be able to generate

small magnetic field and its gradients, and help us with diagnostic and search for systematic effects.

3.8 State Preparation Region C

Once the molecules leave the interaction region, they will be in |J = 1,MJ ,MI1 = +1/2,MI2〉 and

|J = 1,MJ ,MI1 = −1/2,MI2〉 states. These, due to their proximity in energy, cannot be resolved

optically. Therefore, we plan to move population from one of these states into the J = 2 rotational

manifold, which is separated from the J = 1 level by about 26.6 GHz and is optically resolvable.

An efficient way to perform such population is transfer is currently being investigated and will

probably involve a microwave π-pulse similarly to what we plan to do in SPB region.

3.9 Fluorescence Detection Region

The information about the accumulated phase is imprinted onto populations in J = 1, 2 rotational

states after the SPC region. To retrieve it, we plan to perform a laser-induced fluorescence measure-

ment on two optical quasi-cycling transitions in order to maximize the number of emitted photons

from each molecule. We plan to use Q-line transition (J̃ ′ = J) which, in the case of J = 1, has been

demonstrated experimentally to provide a near-unity detection efficiency, albeit with scattering

rates lower than expected. The problems with scattering rates occur due to creation of coherent

dark states in ground state manifolds, and are identical in nature to problems we expect to see

in the rotational cooling process, which is the main topic of this thesis. In Chapter 5 we will

thoroughly investigate mechanisms of dark state creation and their destabilization, remixing, and
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in Chapter 6 we will try to understand both cycling transitions (for J = 1 and J = 2) and propose

the most efficient methods for their realization.

CeNTREX is a molecular beam experiment with a shot-to-shot variation in signal. Hence, we

will address both cycling transition quasi-simultaneously by rapidly switching between two UV

detection lasers. This will allow us to readout both the spin-up and the spin-down populations in

a single molecular beam pulse, and will in effect mitigate the influence of fluctuations within and

between these pulses [60]. We are confident we will be able to accomplish this using acousto-optic

modulators. We will allow for enough dead time between switches for the decay from the excited

state to happen, but also switch quickly enough for a single molecule to interact with both lasers

multiple times. This scheme has already been used in the ACME experiment [61].

Currently, we are designing the LIF collection apparatus. The design includes a combination of

lenses with high numerical apertures and mirrors that will cover a total solid angle of approximately

0.3 × 4π sr. The photomultiplier tube (described later in Chapter 10) with quantum efficiency of

25% will allow to detect every emitted photon with about 7.5% efficiency. Therefore, scattering

& 30 photons per molecule should be sufficient for every molecule to be detected with & 90%

probability.

The actual quantity that we will calculate using the obtained S↑ and S↓ fluorescence signals,

will be the asymmetry parameter A defined as:

A ≡ S↑ − S↓
S↑ + S↓

,

which for the on-resonance SOF drive frequency is:

A ≈ 1− 2 sin2 (2ΩRFτ) cos2

[
1

2
(φCPV + φSOF)

]
. (3.9.1)

Finally, in our experiment we will use φSOF = ±π/2 and 2ΩRFτ = π/2, which will simplify

Eq. (3.9.1) to A ≈ ± sinφCPV ≈ ±φCPV.

3.10 State Evolution Between Regions

At the end of this chapter it is worth mentioning that spaces between different regions of CeNTREX

will be filled by spatially-varying fields due to different regions requiring E- and B-fields of varying

magnitude and orientation. These fields can lead to a reduction of statistical sensitivity of our
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experiment and can potentially produce additional systematic errors - in molecules’ rest frame they

will appear as time-varying fields that could move the populations to undesired states. Therefore,

we have been trying to understand how the relevant quantum states evolve when molecules travel

between experiment’s regions, and to that extent we have performed extensive numerical simulations

to identify optimized schemes for transfer between regions in CeNTREX, and to understand how

undesired states can be populated here. Fortunately, it was found that it should be possible to

achieve near 100% efficiency in all cases.
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Chapter 4

Lindblad Master Equation

4.1 The Master Equation

In order to understand and simulate the light-matter interaction in TlF, we need to use an appro-

priate mathematical framework. While the hamiltonian of the interaction can be obtained from

Eq. (2.5.4), simply solving Schrödinger’s equations will not provide a full picture - it does not take

into account any dissipative and decohering effects. For that, we need to look at time evolution of

the density matrix that can be found using the Liouville - von Neumann master equation in the

Lindblad form. In this chapter, we will briefly discuss this mathematical framework.

For a closed quantum mechanical system, if we consider pure states |ψ(t)〉, their time evolution

can be described by a unitary transformation |ψ(tf )〉 ≡ U(tf , ti) |ψ(ti)〉. If one substitutes that

transformation into Schrodinger’s equation, an equation for the operator U is obtained:

i
dU(t, t0)

dt
= H(t)U(t, t0).

For a system that is isolated a time-independent hamiltonian gives us a simple form for the operator

(assuming ~ = 1):

U(t, t0) = e−iH(t−t0)

For a density matrix ρ, which is a proper way of describing quantum statistical ensembles, and

defined as ρ(t) =
∑

k ck |ψk(t)〉 〈ψk(t)|, the time evolution can be obtained from the time evolution
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of a state. We then have:

ρ(tf ) =
∑
k

ckU(tf , ti) |ψk(ti)〉 〈ψk(ti)|U †(tf , ti) = U(tf , ti)ρ(ti)U
†(tf , ti).

Differentiating both sides with respect to time leads to Liouville - von Neumann equation:

dρ(t)

dt
=
dU(t, ti)

dt
ρ(ti)U

†(t, ti) + U(t, ti)ρ(ti)
dU †(t, ti)

dt

= −iH(t)U(t, ti)ρ(ti)U
†(t, ti) + iU(t, ti)ρ(ti)U

†(t, ti)H(t)

= −i[H(t), ρ(t)].

Deriving master equation for time evolution of density matrix in an open quantum system is

a non-trivial problem. The equation is obtained by considering one-parameter dynamical maps Vt

acting on algebras of bounded operators on Hilbert space. These dynamical maps are defined as

transformations such that:

ρ(t) = Vtρ(0).

For example, for a closed system described before

Vtρ(0) = U(t, 0)ρ(0)U(t, 0)†.

These maps are also defined to be trace-preserving, complete positive and satisfy Markov property

(Vt1Vt2 = Vt1+t2 for t1, t2 ≥ 0). These maps create a Markov semigroup that preserves positivity

and normalization of density matrix [62].

We can then write the map in terms of its generators: Vt = exp(Lt). For the Liouville -

von Neumann equation we simply obtain Lρ = −i[H, ρ]. This can be seen by looking at ρ(t) =

exp(Lt)ρ(0) for infinitesimal time steps s→ 0. We have ρ(t+ s) ≈ (1 +Ls)ρ(t), which leads to the

quantum master equation:
dρ(t)

dt
= Lρ(t).

The most general form of these generators was first determined in the seventies [63, 64]. In

those seminal papers, a completely orthonormal operator basis Fi was defined and equipped with

a trace norm, i.e. 〈Fi, Fj〉 ≡ Tr
(
F †i Fj

)
= δij , and consisted of N2 operators for a Hilbert space of

dimension N . Authors eventually determined that the operator L can be written as:

Lρ = −i[H, ρ] +
1

2

N2−1∑
i,j=1

αij

(
[Fi, ρF

†
j ] + [Fi, ρF

†
j ]
)
.
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Because the matrix of coefficients αij is positive and hermitian, it can be diagonalized. We obtain

eigenvalues γi and a different complete set of orthonormal operators Ci, which are linear combina-

tions of operators Fi. We can then write the quantum master equation in the so-called Lindblad

form:

Lρ = −i[H, ρ] +
N2−1∑
i=1

γi

(
CiρC

†
i −

1

2

{
C†iCi, ρ

})
. (4.1.1)

4.2 Unitary Transformation

The non-hermitian part of Eq. (4.1.1) is sometimes referred to as dissipator, and from now on we

will use L to refer to it. The equation with re-defined L can be then written as:

dρ

dt
= −i~[H, ρ] + L, (4.2.1)

which for a 2-level system can be shown to have the same form as optical Bloch equations. Quite

often it is easier to work in a rotating basis, where hamiltonian has a much simpler form. Such a

transformation can be described using a unitary matrix T and it leads to:

ρ̃ = T †ρT

H ′ = T †HT

L̃ = T †LT.

The whole equation will then transform accordingly (setting ~ = 1):

T †
dρ

dt
T = −i(T †HρT − T †ρHT ) + T †LT,

which after inserting an identity matrix TT † and some algebra gives us:

T †
dρ

dt
T = −i[H ′, ρ̃] + L̃. (4.2.2)

Next, we can look at how ρ and its derivative transforms:

dρ

dt
=

d

dt
(T ρ̃T †) =

dT

dt
ρ̃T † + T ρ̃

dT †

dt
+ T

dρ̃

dt
T †.

After performing a unitary transformation this gives us:

T †
dρ

dt
T = T †

dT

dt
ρ̃+ ρ̃

dT †

dt
T +

dρ̃

dt
. (4.2.3)
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We also know that for unitary matrices

dT †

dt
T = −T †dT

dt
,

which together with Eq. (4.2.3) allows us to write

T †
dρ

dt
T =

dρ̃

dt
+

[
T †
dT

dt
, ρ̃

]
.

We can then substitute the above formula into Eq. (4.2.2) and find

dρ̃

dt
= −i[H ′, ρ̃]−

[
T †
dT

dt
, ρ̃

]
+ L̃.

Finally, we can define H̃ = H ′ − iT †dT/dt, which after substituting into the equation above, gives

us an equation in the same form as Eq. (4.2.1):

dρ̃

dt
= −i[H̃, ρ̃] + L̃. (4.2.4)

When solving the master equation we will in fact be solving Eq. (4.2.4) in a basis where H̃

has a simple form. Basis that we will be using is a kind of rotating basis, where the unitary

transformation for a system with n states can be written as:

T =



eiα1t

. . . 0
. . .

0 . . .

eiαnt


for some real parameters αi. It can be easily found that:

−iT †dT
dt

=



α1

. . . 0
. . .

0 . . .

αn


.

To obtain H̃, we just need to look at H ′. First,

(HT )il =
n∑
j=1

HijTjl = HilTll = Hile
iαlt,

60



CHAPTER 4. LINDBLAD MASTER EQUATION

and then

H ′kl = (T †(HT ))kl =
n∑
i=1

T †ki(HT )il = T †kk(HT )kl = Hkle
i(αl−αk)t.

Finally, combining found expressions, we see that for our choice of unitary transformation the

hamiltonian is given by:

H̃kl = Hkle
i(αl−αk)t + αkδkl. (4.2.5)

We will always try to find such unitary transformation that eliminates all the oscillatory time

dependence from the hamiltonian.

4.3 Dissipator

One of the valid choices of Lindblad operators in Eq. (4.1.1) are the projection operators Pi having

properties P 2
i = Pi and P †i = Pi, used for example in [65]. Authors there divide the dissipator

into two parts. The first one contains dephasing effects, which include influence of finite laser

linewidths and various broadening effects such as transit time broadening and collision-induced

broadening, and is evaluated using the mentioned projection operators. The second one is related

to spontaneous decay processes where the diagonal terms describe transfer between populations,

and the off-diagonal terms are related to decoherence effects. Here, only that second part of the

dissipator will be included, and it will be evaluated using quantum jump operators [65].

For states i and j we define quantum jump operators as Ci→f = |f〉 〈i|. For spontaneous decays

from i to f with rate Γi→f we will be using operators Gi→f =
√

Γi→fCi→f =
√

Γi→f |f〉 〈i|. In

matrix form these will look like:

Gi→f =



i

0 · · · 0

f
√

Γi→f

...
...

0 · · · 0


.
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Because Gi→f is real, G†i→f = GT
i→f , and (dropping lower indices)

G†G =



i

0 · · · 0

...
...

i Γi→f

0 · · · 0


.

With these, we can easily evaluate the part of L related to spontaneous decay, which will include

both decoherence and population transfer. First, let’s look at the anticommutator part {G†G, ρ}
knowing that the only non-zero element of G†G is (G†G)ii. The first term is:

(G†Gρ)kl =
∑
j

(G†G)kjρjl = δki(G
†G)kiρil,

so the non-zero elements have indices {i, l} for 1 ≤ l ≤ n equivalent to a non-zero row:

G†Gρ =



0 · · · 0

...
...

i Γi→fρi1 · · · Γi→fρin

...
...

0 · · · 0


.

Analogically, the second term is:

(ρG†G)kl =
∑
j

ρkj(G
†G)jl = ρki(G

†G)ilδli,

giving us a non-zero column:

ρG†G =



i

0 · · · Γi→fρ1i · · · 0

...
...

...

0 · · · Γi→fρni · · · 0

.
62



CHAPTER 4. LINDBLAD MASTER EQUATION

Now we just need to evaluate the second term in L knowing that the only non-zero element of

G is Gfi and the only non-zero element of G† is G†if :

(GρG†)rs =
∑
j

Grj(ρG
†)js = δrfGri(ρG

†)is

= δrfGri

(∑
m

ρim(G†)ms

)
= δrfGriρii(G

†)ifδsf

= δrfδsfΓi→fρii,

which gives a matrix with only one non-zero element:

GρG† =



f

0 · · · 0

f Γi→fρii

...
...

0 · · · 0


.

This finally allows us to obtain a matrix that represents contribution to L from a spontaneous

decay from state i to f :

Li→f = −1

2
{G†i→fGi→f , ρ}+Gi→fρG

†
i→f =



f i

0 −Γi→f
2 ρ1i 0

f Γi→fρii
...

0
...

i −Γi→f
2 ρi1 · · · · · · −Γi→fρii · · · −Γi→f

2 ρin

...

0 −Γi→f
2 ρni 0



.

We see that we properly obtain a decrease of population ρii with rate Γi→f with simultaneous

increase of population ρff equal to that loss, which results in the matrix having a zero trace. That

is equivalent to a closed system, where the trace of density matrix ρ is preserved. The off-diagonal

terms correspond to evolving coherence between two states. Despite the fact that this method gives
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us a correct result, computationally it can be quite challenging. For large systems the initial state

i can have multiple decay paths. For a single initial state, we’d have to calculate matrices above

for every final state separately. However, the calculation can simplified.

A single initial state decaying into multiple different states will have a total decay rate Γi =∑
f Γi→f , so for a single final state, the corresponding decay rate is Γi→f = bfiΓi, where bfi is the

branching ratio. We also note that all the coherence (off-diagonal) terms were generated by the

anticommutator, which is a bilinear operator. So:

∑
f

{G†i→fGi→f , ρ} =

∑
f

G†i→fGi→f , ρ

 ≡ {M †iMi, ρ},

where we have defined a operator Mi

(Mi)kl =


√

Γi if k = l = i

0 otherwise

for which M †i = Mi. We can do that, because every matrix G†i→fGi→f will have bfiΓi→f in its

{i, i}-th cell, so after the summation the term in that cell will be
∑

f bfiΓi→f = Γi. Using matrix

M instead of G will, however, not give us the same result in the second term of Li ≡
∑

f Li→f .

Instead, we will obtain:

MiρM
†
i =



i

0 · · · 0

...
...

i Γiρii

0 · · · 0


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so, in the end:

Li = −1

2
{M †iMi, ρ}+MiρM

†
i =



i

0 −Γi
2 ρ1i 0

...

i −Γi
2 ρi1 · · · 0 · · · −Γi

2 ρin

...

0 −Γi
2 ρni 0


.

We, therefore, obtain correct decoherence terms, but no population transfer terms. However,

having branching ratios we can quite easily fill in the diagonal terms without performing any

matrix operations. Finally, if we have several initial states we can create operator M =
∑

iMi,

for which M2 =
∑

iM
2
i , because MiMj is zero for i 6= j. Again, the off-diagonal terms will be

determined correctly, because of the linearity of anticommutator. The other term, however, has

to be determined separately for every initial state. Hence, the fastest way to calculate all the

off-diagonal contributions to L from spontaneous decays is:

LΓ =
∑
i

Li = −1

2

{∑
i

M2
i , ρ

}
+
∑
i

MiρMi = −1

2
{M2, ρ}+

∑
i

MiρMi (4.3.1)

4.4 Example - EIA in a Four-level System

Modeling and simulations of toy models and experimental procedures required solving the equations

multiple times. To streamline the process, we wrote a package in MATLAB that allows for a

quick setup of a quantum system and appropriate equations, and fast solutions to the master

equation.1 As a benchmark test and an example of setting up the master equation using the

described method we chose a four-level system in N -configuration, which in weak probe limit

should exhibit electromagnetically induced absorption (EIA). In that system we have two lower

lying states |A〉 and |B〉 with energies ωA and ωB that are connected to a common excited state

|E1〉 with energy ωE1 . The laser connecting state |B〉 with |E1〉 is the probe laser with frequency

ωp and Rabi frequency Ωp. In a general case it is assumed to be detuned from the transition by

1Code is available at: https://github.com/kwenz/OBE-solver.
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∆p. The transition from |A〉 to |E1〉 is due to the control laser 1, and transition from |B〉 to |E2〉
is due the control laser 2. Both of them are in general case detuned by ∆c1 and ∆c2 respectively.

The state |E1〉 has a total decay rate ΓA + ΓB1 and the state |E2〉 decays into state |B〉 with rate

ΓB2 . The system is shown in the Fig. 4.4.1.

|A〉

|E1〉

|B〉

|E2〉

∆c1

∆c2

∆p

Ωc1

Ωc2

Ωp
ΓA

ΓB1
ΓB2

Figure 4.4.1: Diagram of a four-level system in N configuration.

For such system we obtain hamiltonian of the form:

H =



|A〉 |B〉 |E1〉 |E2〉

ωA 0
Ωc1

2 eiωc1 t 0

0 ωB
Ωp
2 e

iωpt Ωc2
2 eiωc2 t

Ωc1
2 e−iωc1 t

Ωp
2 e
−iωpt ωE1 0

0
Ωc2

2 e−iωc2 t 0 ωE2


,

where we have already used rotating wave approximation (Ω = Ω0 cosωt ≈ Ω0e
iωt/2). We then

perform unitary transformation, where we find coefficients αi in Eq. (4.2.5) by trying to remove

oscillating terms from off-diagonal elements of the hamiltonian. We get a set of linear equations:
α3 − α1 = −ωc1

α3 − α2 = −ωp

α4 − α2 = −ωc2

,
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which is solved for 

α1 = ωc1 − ωp

α2 = 1

α3 = −ωp

α4 = −ωc2

.

This allows us to use unitary transformation with matrix

T =


ei(ωc1−ωp)t 0 0 0

0 1 0 0

0 0 e−iωpt 0

0 0 0 e−iωc2 t

 ,

giving us

H̃ =



∆p −∆c1 + ωB 0 Ωc1/2 0

0 ωB Ωp/2 Ωc2/2

Ωc1/2 Ωp/2 ∆p + ωB 0

0 Ωc2/2 0 ∆c2 + ωB


.

The diagonal terms of hamiltonian H̃ show us that the natural choice for the energy scale is ωB = 0.

To find matrix L we first define two matrices ME1 and ME2 , where:

ME1 =


0 0 0 0

0 0 0 0

0 0
√

ΓA + ΓB1 0

0 0 0 0

 , ME2 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0
√

ΓB2

 .

We can then also find

M2 = M2
E1

+M2
E2

=


0 0 0 0

0 0 0 0

0 0 ΓA + ΓB1 0

0 0 0 ΓB2


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and plug those three matrices into Eq. (4.3.1) to obtain decoherence terms. Population transfer

(diagonal) terms can be easily added by hand. Eventually, we obtain:

L =



ΓAρe1e1 0 −ΓA+Γb1
2 ρae1 −ΓB2

2 ρae2

0 ΓB1ρe1e1 + ΓB2ρe2e2 −ΓA+ΓB1
2 ρbe1 −ΓB2

2 ρbe2

−ΓA+ΓB1
2 ρe1a −ΓA+ΓB1

2 ρe1b −(ΓA + ΓB1)ρe1e1 −ΓA+ΓB1
+ΓB2

2 ρe1e2

−ΓB2
2 ρe2a −ΓB2

2 ρe2b −ΓA+ΓB1
+ΓB2

2 ρe2e1 −ΓB2ρe2e2


.

To look at the accuracy of numerical solutions, we solved the equations in the weak probe

limit for which analytical solutions exist. In such limit the system should exhibit the mentioned

EIA effect. First, however, we looked at the evolution of populations. Even for zero probe laser

detuning ∆p, we expect that the population in the steady state will consist of only states |B〉 and

|E2〉. Indeed, that is the case as shown in Fig. 4.4.2 depicting populations as function of time.

Figure 4.4.2: Populations as function of time for a four-level system in weak probe limit. Solution was

obtained for 2ΓA = 2ΓB1
= ΓB2

≡ Γ, Ωc1 = Ωc2 = 2Γ and Ωp = 0.00025 Γ with ∆c1 = ∆c2 = ∆p = 0.
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Finally, we were able to check for the existence of EIA. This effect is visible once we inspect

imaginary part of ρbe1 . In general, the analytical solution is given by [66]:

ρbe1 = − iΩpρbb
2βbe1α2

+
iΩpΩ

2
c2(ρbb − ρe2e2)

8βe2e1βbe1βe2bα2
− iΩpΩ

2
c1Ω2

c2(ρbb − ρe2e2)

32βe2e1βbe1βe2aβe2bα1α2

(
1

βba
+

1

βe2e1

)
,

where

ρe2e2 =
Ω2
c2

Γ2 + 2Ω2
c2

ρbb = 1− ρe2e2
βba = −i∆p

βbe1 = −Γ

2
− i∆p

βe2a = −Γ

2
− i∆p

βe2e1 = −Γ− i∆p

βe2b = −Γ

2

α1 = 1 +
Ω2
c1

4βe2aβe2e1
+

Ω2
c2

4βe2aβba

α2 = 1 +
Ω2
c1

4βbaβbe1
+

Ω2
c2

4βe2e1βbe1
− Ω2

c1Ω2
c2

16βbe1βe2aα1

(
1

βba
+

1

βe2e1

)2

.

We can now compare this ungainly analytical solution with the numerical solution. The comparison

is shown in Fig. 4.4.3, where we can see that the two results are identical.

69



CHAPTER 4. LINDBLAD MASTER EQUATION

Figure 4.4.3: Numerical (left) and analytical (right) results showing electromagnetically induced absorption

by plotting Γρbe1/Ωp as a function of probe detuning ∆p. Solution was obtained for 2ΓA = 2ΓB1
= ΓB2

≡ Γ,

Ωc1 = Ωc2 = 2 Γ and Ωp = 0.00025 Γ with ∆c1 = ∆c2 = 0.
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Chapter 5

Dark States

5.1 Problems with Dark States in TlF

In molecular systems a new problem arises that is usually ignored in atoms. Due to higher number

of degrees of freedom, the system is described by more quantum numbers, and the number of

distinct states is much larger. In TlF in a single rotational manifold there are already 4(2J + 1)

levels. If these levels are close to degenerate, dark states can appear. In atoms such problems are

usually ameliorated by using a so-called type I transition - coupling states with a quantum number

F in the ground state to states with F ′ = F + 1 in the excited state. Given there is a higher

multiplicity of states in the excited state manifold, no dark states are created.

In molecules it is usually impossible to use type I transitions - they are not closed with respect

to the quantum number considered. Therefore, type II transitions are utilized with F ′ = F − 1.

Usually, such transitions do not immediately create dark states, because states in the ground state

manifold are not close-to-degenerate (with respect to the decay rate Γ, which is a natural energy

unit in the system, or the natural linewidth γ = Γ/2π). Known rule of a thumb is that the number

of dark states is equal to ng − ne, where ne and ng are number of close-to-degenerate excited and

ground states respectively that are coupled to each other. Because of energy differences in the

ground state manifold, ng quite often is just the number of states in a coupled sub-manifold and

can be made larger or equal to ne.

Sometimes, however, we do have multiple dark states in the system. These can then be remixed

using various methods. One of the most commonly used ones is lifting the degeneracy by inducing
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Zeeman splitting. This leads to magnetic field effectively remixing dark and bright states. It

requires the g-factor to be substantial in order to be able to use this method with just modest

magnetic fields. States with S > 0 or L > 0 should be good candidates for this remixing method.

Thallium fluoride is unfortunately a pretty nasty molecule and we do not have its toxicity in

mind. In its ground electronic state, states within every rotational manifold have energy differences

couple of orders of magnitude smaller than the natural linewidth, which makes them close to

degenerate. On the other hand, the hyperfine manifolds in the excited electronic state are split by

several orders of magnitude more than the natural linewidth (Fig. 2.2.1). Therefore, a laser could

couple a whole rotational state manifold to only one hyperfine manifold in the excited state. For

example, in rotational cooling we need to couple J = 2 states in the ground state with F ′ = 1

states in the excited electronic state, which will create 20− 3 = 17 dark states!

TlF in its ground state is also a 1Σ state with S and L both equal to 0, so its effective g-factor is

quite small as was shown in Chapter 2. We need to find other methods of dark state destabilization.

In this chapter we will investigate the dark states - understand how they are created and behave,

and then look at the best ways of remixing them with the bright states.

5.2 A Simplified 3-level System

We begin with analysis of two 3-state systems - a standard Λ-type system, and its simpler version

with only one coupling light field. We will begin with the latter. We chose such system to represent

a simple situation where two possibly unresolved states are coupled by one light field to an excited

state (Fig. 5.2.1 depicts the level structure).

In the context of optical cycling and rotational cooling, we have two problems that already

appear in this very simple system and we would like to solve - how to avoid creating the dark state

and how to reach optimal scattering rate, which is also crucial in CeNTREX in the context of the

detection transitions. We start with the former. To begin the analysis we analytically solve the

master equation described in the previous chapter and, for simplicity, assume real Rabi rates. We

begin by writing a hamiltonian in a frame where the time dependence has been eliminated and
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|G1〉

|E〉

|G2〉

δ

Ω
Γ
2

Γ
2

∆

Figure 5.2.1: Diagram of a simplified three-level system.

energy of the excited state set to zero:

H̃ =


−δ 0 −Ω

2

0 ∆− δ −Ω
2

−Ω
2 −Ω

2 0

 .

Solving the equations to obtain the steady state solution of the population of state |E〉 gives us:

ρee =
Ω2

4

1(
δ − ∆

2

)2
+
(

Γ′

2

)2 , (5.2.1)

with

Γ′ =

√
Γ2 + ∆2 + Ω2

(
1 +

Ω2

∆2

)
. (5.2.2)

We would expect that the existence of a dark state would cause the excited state population (and

hence the scattering rate Rscatt ≡ Γρee) in the steady state to reach 0 (the population would end

up accumulating in the dark state). Indeed, when states are almost degenerate (∆→ 0):

ρee =
Ω2/4(

δ − ∆
2

)2
+ Γ2 + ∆2 + Ω2

(
1 + Ω2

∆2

) ∆→0−→ ∆2

4
,

the scattering rate drops to 0. From Eq. (5.2.2) we can also see that the lineshape is power-

broadened, although that power broadening has an unusual term that is inversely proportional

to the ground state splitting. That term is also responsible for decreasing scattering rate with

increasing power and it is the term that survives when splitting becomes small.
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To better understand how bright and dark states are connected with each other, we move the

hamiltonian to a different basis with:

|B〉 =
|G1〉+ |G2〉√

2

|D〉 =
|G1〉 − |G2〉√

2
,

which leads to:

H̃ = −


δ − ∆

2
∆
2

Ω√
2

∆
2 δ − ∆

2 0

Ω√
2

0 0

 .

We first notice the bright state |B〉 (column and row 1) has a direct coupling to the excited state

|E〉 (column and row 3), while the dark state |D〉 (column and row 2) does not. However, the

dark state has an indirect coupling to the excited state - it is coupled to the bright state with

coupling strength ∆. The smaller that splitting is, the weaker the coupling and at ∆ = 0 the

dark state becomes completely decoupled. In a more realistic situation, both ground states are still

coupled by the same light field, but their matrix elements for the dipole transition to the excited

state are different, and hence their Rabi rates are. Assuming Ωg1 = aΩ and Ωg2 = bΩ, we obtain

hamiltonian:

H̃ = −


δ − b2

a2+b2
∆ ab

a2+b2
∆ Ω

√
a2+b2√

2

ab
a2+b2

∆ δ − a2

a2+b2
∆ 0

Ω
√
a2+b2√

2
0 0

 .

The dark state appearing at ∆ = 0 is still there, though we see that the strength of the coupling

enters in a non-trivial way. If we were perhaps able to shift one of the states by a different amount

than the other, for example by coupling another state to these ground states with different strengths,

we could be able to change the way the dark state evolves. Here, it evolves (remixes) with rate

proportional to the splitting ∆, but shifting one state with respect to the other would create a

slightly different superposition and, therefore, affect the state’s evolution. We will explore that

idea later, once we include microwaves. In general, as was mentioned and as we can see from the

example above, lifting the degeneracy allows for better dark state remixing.
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To find the maximum scattering rate in such simple system, we note that Eq. (5.2.1) will reach

maximum at δ = ∆/2. Then, as it happens, the peak occurs at:

Ωopt =
4
√

∆4 + ∆2Γ2 ∆�Γ−→ ∆,

for which (at high splittings ∆) the excited state population ρee reaches value of 1/3. Fig. 5.2.2

shows the behavior of ρee as a function of the Rabi rate with splitting ∆ = 2 Γ. The result shown

here is pretty interesting - it shows that the scattering rate is highest, when the Rabi rate is

comparable to the remixing rate. Note, that unlike in a 2-level system, the scattering rate does not

saturate at high Rabi rates.

Figure 5.2.2: Excited state population as a function of Rabi rate for ∆ = 2 Γ.

Indeed, such result has already been shown in [49]. In a system, where we explicitly have bright

and dark states (Fig. 5.2.3) remixed with rate R and the excited state decaying to the dark state

with rate αΓ (decay rate to the bright state is then (1− α)Γ), we obtain an optimal Rabi rate:

Ω2
opt =

√
8 Γ2R2 + 32R4

α

R�Γ−→ 2
√

2√
α

ΓR,

where we assumed remixing rate smaller than the natural linewidth, which is quite often the case

in the experiments that try to remix the dark states. Alternatively, the remixing rate should be on

the order of αΩ2/Γ in order to obtain high scattering rate. To put it in words, the rate with which
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we are remixing dark and bright states (the rate of moving the population from a dark to a bright

state) has to be on the order of the rate with which the dark states are re-populated through the

spontaneous decay. It is an important result, which should hold for larger systems as well.

|B〉

|E〉

|D〉

Ω

R

(1− α)Γ
αΓ

Figure 5.2.3: Diagram of a three-level system in Λ configuration with explicit dark and bright states actively

remixed with rate R. Here, the decay to dark state happens with rate αΓ.

5.3 Λ-system

A standard Λ-type system is quite often described in textbooks to present the effects of electro-

magnetically induced transparency (EIT). There, one of the lasers is much weaker than the other.

In our situation, however, we will assume that both lasers have comparable Rabi rates, and no

approximations can be made. We also assume a general case, where energies of the low-lying levels

are ~ωG1 and ~ωG2 , and a substitution ωG2 = ωG1 + ∆ can be made if necessary. The excited state

is again assumed to have 0 energy. The decays are assumed to have equal rates to both ground

states.
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|G1〉

|E〉

|G2〉

δa
δb

Ωa
Ωb

Γ
2

Γ
2

Figure 5.3.1: Diagram of a three-level system in Λ configuration.

After eliminating time dependence from the hamiltonian, it takes form of:

H̃ =


−δa 0 −Ωa

2

0 −δb −Ωb
2

−Ωa
2 −Ωb

2 0

 .

The solution for the excited state population in the steady state in this case is very inelegant, but

the important part, its numerator, is small enough to include here.

ρee ∝ Ω2
aΩ

2
b(δa − δb)2 (5.3.1)

We see that the scattering rate goes to zero, if both lasers are detuned the same from their respective

resonances, regardless of what the energies of the ground states |G1〉 and |G2〉 are. In the previous

system, where the energies of these states were split by ∆ and coupled to the excited state using

one laser, detunings for the states were δ and δ −∆. These are equal only when splitting ∆ = 0,

and that is exactly when scattering rate given by Eq. (5.2.1) goes to zero.

However, as we see in Eq. (5.3.1), if those states were coupled by separate light fields, the

scattering rate could be non-zero. In other words, if the levels are degenerate (∆ = 0), we can

avoid zero scattering rate in the steady state, if we use two different lasers detuned differently from

their respective resonances. What we are doing is effectively lifting the degeneracy - now state |G1〉
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has energy δa and state |G2〉 energy δb. By keeping these different, we are avoiding a dark state by

making the remixing rate equal to the difference in energies.

Like before, we can look at the hamiltonian in a different basis. We first define Ω =
√

Ω2
a + Ω2

b

and transform states to a different basis using transformation:

U =


Ωa
Ω

Ωb
Ω 0

Ωb
Ω −Ωa

Ω 0

0 0 1

 ,

which can be interpreted as rotation of states |G1〉 and |G2〉 about the state |E〉 by an angle

θ = arcsin (Ωa/Ω). As a result we will obtain following states:

|B〉 =
Ωa |G1〉+ Ωb |G2〉

Ω

|D〉 =
Ωb |G1〉 − Ωa |G2〉

Ω
.

The Hamiltonian after the transformation takes form of:

H̃ = −


Ω2
aδa+Ω2

bδb
Ω2

ΩaΩb
Ω2 (δa − δb) Ω

2

ΩaΩb
Ω2 (δa − δb) Ω2

aδb+Ω2
bδa

Ω2 0

Ω
2 0 0

 . (5.3.2)

State |B〉 is coupled to the excited state by light field with Rabi rate Ω. The dark state |D〉
has no direct coupling to the excited state, although it is coupled to the state |B〉 as long as the

detunings are different. If δa = δb the state becomes completely decoupled and the system is

pumped from the coupled state to the dark state, which results in zero scattering rate in the steady

state. So, just like before, the remixing rate is proportional to the energy splitting between the

states.

5.3.1 Effects of Phase Modulation

There is one other detail that we have not mentioned yet. Both lasers considered here are assumed

to be phase coherent, but in reality that does not need to be the case. We consider the phase

difference between the lasers to be any time-dependent function, i.e. we will assume that one of
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the light coupling is described by Ω exp(iϕ(t)). The hamiltonian after unitary transformation takes

form:

H̃ =


−δa 0 −Ωa

2 e
iϕ(t)

0 −δb −Ωb
2

−Ωa
2 e
−iϕ(t) −Ωb

2 0

 .

If the phase difference changes with time, we expect that the steady state will never be reached.

Even if the phase difference is simply attributed to the phase noise, it influences the results - when

there is no phase noise (so phase difference is constant), then the excited state population for

lasers with equal detunings (δa = δb) quite quickly goes down to zero. However, once the time

dependence of phase is added, the situation changes. Fig. 5.3.2 depicts the new behavior, where

the phase difference was modeled as ϕ(t) = β sin(ωmt) for β = π rad and ωm = Γ corresponding

to sinusoidal phase modulation of one of the laser beams, which can be achieved experimentally

with the help of an electro-optical modulator. Fig. 5.3.2 shows how such modulation influences the

result. If we averaged the excited state population over time, we would obtain a non-zero result.

In general, the time dependence of the phase of one of the laser helps, because the previously-dark

state’s direct coupling to the excited changes with the changing phase. The hamiltonian in the

previously used rotated basis is:

H̃ = −



Ω2
aδa+Ω2

bδb
Ω2

ΩaΩb
Ω2 (δa − δb) Ω2

ae
iϕ(t)+Ω2

b
2Ω

ΩaΩb
Ω2 (δa − δb) Ω2

aδb+Ω2
bδa

Ω2

ΩaΩb(eiϕ(t)−1)
2Ω

Ω2
ae
−iϕ(t)+Ω2

b
2Ω

ΩaΩb(e−iϕ(t)−1)
2Ω 0

 .

If the phase difference between the lasers is constant, it can be assumed that ϕ = 0, so the dark

state loses the direct coupling to the excited state and we obtain situation described previously.

However, if the phase difference changes with time, the dark state remains constantly coupled to

the excited state, albeit with varying strength.

Finally, we can also look at the averaged result for various depths and modulation frequencies

shown in Fig. 5.3.3. It shows that even though the detunings for both transitions are equal, such

that for phase-coherent lasers the excited state population would be identically zero, we get an

average population reaching the limit of 1/3 for quite a wide range of modulation depths and
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frequencies. This was actually shown in [49] for a larger system and was framed as destabilization

of dark states by phase modulation.

Figure 5.3.2: Evolution of excited state population

with phase of one of the lasers modulated. Solution

was obtained for Ωa = Ωb = 10 Γ, δa = δb = 0,

β = π rad and ωm = Γ.

Figure 5.3.3: Averaged excited state population as

a function of modulation depth and frequency of one

of the lasers. Solution was obtained for Ωa = Ωb =

10 Γ and δa = δb = 0.

The method described here can also be investigated from a different point of view. Instead of

using previous definitions of bright and dark states, we define them as:

|B〉 =
Ωae

iϕ(t) |G1〉+ Ωb |G2〉
Ω

|D〉 =
Ωb |G1〉 − Ωae

iϕ(t) |G2〉
Ω

.

Modulating the phase can now be interpreted as simply changing what dark and bright states are.

In a very simple situation when Ωa = Ωb ≡ Ω, for ϕ = 0 we have:

|Bϕ=0〉 =
|G1〉+ |G2〉

2

|Dϕ=0〉 =
|G1〉 − |G2〉

2
,
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while for ϕ = π:

|Bϕ=π〉 =
− |G1〉+ |G2〉

2
= − |Dϕ=0〉

|Dϕ=π〉 =
|G1〉+ |G2〉

2
= |Bϕ=0〉 .

So by simply flipping the phase difference by π, we are completely rotating the basis - bright state

becomes the dark state and vice-versa. Exactly this mechanism is the reason behind another dark

state destabilization method - polarization switching, which will be discussed later.

5.4 Four-state System Based on TlF

In thallium fluoride the optical cycling scheme can be seen as, in a very simplified version, a three-

level system with ground state splitting ∆ that we described at the beginning. The ground states in

this system belong to the J = 1 rotational manifold. In this section, we will generalize some results

regarding the dark states and look at one way of destabilizing the dark states - we will consider

using microwaves to couple the ground rotational state J = 0 with J = 1 states in order to either

lift the degeneracy in J = 1 or to induce an indirect remixing mechanism. Diagram of the system

is depicted in Fig. 5.4.1.

This system is designed in a way to provide an insight into creation and destabilization of dark

states. We will assume that states |G1〉 and |G2〉 are coupled differently both through the laser and

microwaves. Let’s assume that laser couplings are aΩ and bΩ for states |G1〉 and |G2〉 respectively.

For microwaves, we can assume couplings αΩµ and βΩµ (all real). Then, the hamiltonian takes

form1:

H =



|A〉 |G1〉 |G2〉 |E〉

−δL − δµ −αΩµ
2 −βΩµ

2 0

−αΩµ
2 −δL 0 −aΩL

2

−βΩµ
2 0 ∆− δL − bΩL

2

0 −aΩL
2 − bΩL

2 0


.

1For clarity, from now on we will use H instead of H̃ to mark a hamiltonian in a rotating basis and obtained via

a unitary transformation described before.
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J = 0+, F = 1/2

J = 1−, F = 1/2

J = 1−, F = 3/2

J̃ ′ = 1+, F ′ = 1/2

|G1〉

|E〉

|G2〉

|A〉

δL

δµ

ΩL

Ωµ

Γ
2

Γ
2

∆

Figure 5.4.1: Diagram of a simplified four-level system with microwave coupling. Two ground states |G1〉
and |G2〉 are coupled via laser to the excited state, while also being coupled to an auxiliary state |A〉 via

microwaves.

First, we will look at dark and bright states in the system by creating them with respect to the

laser transition (as was easily done in a Λ-type system) and analyzing their couplings to each other

and to state |A〉. Hence, we move to basis:

|BL〉 =
Ωa |G1〉+ Ωb |G2〉

Ω
=
a |G1〉+ b |G2〉√

a2 + b2

|DL〉 =
b |G1〉 − a |G2〉√

a2 + b2
.

and obtain:

H =



|A〉 |BL〉 |DL〉 |E〉

−δL − δµ − Ωµ
2
√
a2+b2

(aα+ bβ)
Ωµ

2
√
a2+b2

(aβ − bα) 0

− Ωµ
2
√
a2+b2

(aα+ bβ) b2

a2+b2
∆− δL − ab

a2+b2
∆ −ΩL

√
a2+b2

2

Ωµ
2
√
a2+b2

(aβ − bα) − ab
a2+b2

∆ a2

a2+b2
∆− δL 0

0 −ΩL
√
a2+b2

2 0 0


.
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When the splitting ∆ = 0 and both states become degenerate, the dark state becomes decoupled

from the bright state; for a non-zero splitting there is no dark state - state |DL〉 evolves with rate

∆ into bright state |BL〉, although for small splittings this evolution can be very slow making state

|DL〉 effectively dark. This dark state, however, is coupled to the state |A〉 through microwaves as

long as aβ − bα 6= 0. State |A〉, on the other hand, is coupled to the bright state |BL〉 as long as

aα + bβ 6= 0. Therefore, as long as a/b 6= α/β and a/b 6= −β/α, the state |DL〉 never becomes

decoupled from the excited state |E〉. Fig. 5.4.2 shows the results for a = b = 1, α = 1/3, β = 2/3,

and δL = δµ = 0. We can clearly see that at both ∆ = 4 Γ and ∆ = 0 the microwaves increase

the scattering rate. At ∆ = 0 the rate is visibly 0 if the microwaves are off, but increasing their

intensity quickly fixes the problem.

(a) Excited state population as a function of laser

and microwave Rabi rates with different strengths

of microwave couplings. Splitting ∆ = 4 Γ.

(b) Excited state population as a function of laser

and microwave Rabi rates with different strengths

of microwave couplings. Splitting ∆ = 0.

Figure 5.4.2: Results for a 4-state system with microwaves coupled with different strengths. Existence of

the dark states a) limits the scattering rate or b) brings it completely to zero. This can be alleviated if

microwave couplings to an auxiliary state are added.

To better understand behavior and creation of the dark states, we can first look at the geometry

of spaces spanned by bright and dark states created from states |G1〉 and |G2〉. As shown before,

we can create bright and dark states with respect to the optical transition. We can do the same

with respect to transitions to state |A〉, which we can treat as an excited state with no decays.
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Then:

|Bµ〉 =
α |G1〉+ β |G2〉√

α2 + β2

|Dµ〉 =
β |G1〉 − α |G2〉√

α2 + β2
.

Spaces spanned by |BL〉 or |Bµ〉 and, similarly, |DL〉 or |Dµ〉 are one-dimensional. Depending on

their orientation with respect to one another, the population might be trapped in a dark state

or not. In this simple system we can draw both spaces as shown in Fig. 5.4.3. In our case two

situations will lead to trapping of population in dark states: states |BL〉 and |Bµ〉 belong to the

same subspace; or states |BL〉 and |Dµ〉 belong to the same subspace, which is equivalent to saying

that space spanned by |BL〉 is perpendicular to the space spanned by |Bµ〉. In the first case the

dark states with respect to both transitions form the same space, i.e. system’s dark state is not

coupled to either |E〉 or |A〉, which means that neither of the transitions can remove its population

accumulated due to the decay from excited state |E〉. The second case is where laser and microwave

transitions address completely different states - our 4 state system can then be divided into two

2-state systems that do not talk to each other.

|G1〉

|G2〉

|BL〉

|DL〉

|Bµ〉

|Dµ〉

Figure 5.4.3: Dark and bright state spaces.

Because |BL〉 can be neither parallel nor perpendicular to |Bµ〉, we can write both discussed

conditions as:

〈BL|Bµ〉 6= 0

| 〈BL|Bµ〉 |
| 〈BL|BL〉 || 〈Bµ|Bµ〉 |

6= 1,
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which for our system is equivalent to aα+ bβ 6= 0 and aβ − bα 6= 0 just as was found before. Next,

we can re-write the hamiltonian as:

H =



|G1〉 |G2〉 |A〉 |E〉

−δL 0 −αΩµ
2 −aΩL

2

0 ∆− δL −βΩµ
2 − bΩL

2

−αΩµ
2 −βΩµ

2 −δL − δµ 0

−aΩL
2 − bΩL

2 0 0


.

In a system with equal number of ground (|G1〉 and |G2〉) and excited (|A〉 and |E〉) states, to

obtain a dark state we have to have degeneracy in the ground state (states can create a dark

superposition, if they have the same eigenvalues), which happens for ∆ = 0, and det Ω = 0 (that

condition is universal and is mathematically derived in [67]), where we defined:

Ω =

−
αΩµ

2 −βΩµ
2

−aΩL
2 − bΩL

2

 .

which corresponds to the ground-excited state “interaction” part of the matrix. A zero value of

the determinant is equivalent to saying that the matrix does not have a full rank, or that both

bright states that are represented as rows in this matrix are co-linear. Now, that condition will

lead to aβ − bα 6= 0 found before. If the |A〉 state was a “real” excited state with non-zero decays

to ground states that couple to the other excited state |E〉, such condition would be sufficient

to avoid creation of dark states. In that case even if both bright states were perpendicular to

one another, decays from |A〉 would populate state |BL〉 and vice-versa - decays from |E〉 would

populate |Bµ〉. Here, however, we find that the second condition, aα + bβ 6= 0, is equivalent to

saying that det(Ω/|Ω|) 6= 1, where by Ω/|Ω| we understand the interaction matrix where rows

represent bright states normalized to 1.

Finally, one can look at this system as a system with three ground non-decaying states and one

excited state. The ground states would be dressed states in space spanned by |A〉, |G1〉 and |G2〉
obtained by diagonalizing:
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Hg =



|A〉 |G1〉 |G2〉

−δL − δµ −αΩµ
2 −βΩµ

2

−αΩµ
2 −δL 0

−βΩµ
2 0 ∆− δL

.

In such case, interaction part Ω would be a 1-by-3 matrix which can result in 1 bright state and

2 dark states (dim(ker Ω) = 2) if the condition of degeneracy is met, which is equivalent to saying

that a pair of eigenvalues of Hg is equal to each other. After diagonalization, one can see that

the eigenvalues cannot be equal to each other and all the eigenstates have direct couplings to the

excited state (the eigenvalues and eigenvectors have forms too ungainly to provide here). The only

way to have dark states created is to bring those couplings to 0. One of the states is coupled as

long as ΩL and Ωµ are non-zero, the second one becomes dark when aα+ bβ = 0 and the third one

when aβ − bα = 0. In this picture it also becomes clear that the states |G1〉 and |G2〉 effectively

acquire an uneven AC Stark shift due to their coupling to state |A〉, which leads to faster dark

state’s evolution. We also notice that the eigenstates become completely dark, if they are fully

withing the ground state manifold and do not posses a component in the excited state manifold

[67], i.e. if an eigenstate, represented by the corresponding eigenvector, is a superposition of |G1〉
and |G2〉 states only.

Even though before we looked at increasing the scattering rate in the steady state, we could

also try a scheme where microwaves are turned on once the optical fields are turned off. Then, the

microwaves would remove population from |DL〉 and put it into |BL〉 allowing the optical field to

yield a non-zero scattering rate. To avoid population transfer between state |A〉 and states |G1〉 and

|G2〉, and to ensure high AC Stark shift of those states, we need to choose detuning δµ and Rabi

rate Ωµ correctly. Given that population transfer is proportional to Ω2
µ/δ

2
µ and the AC Stark shift

∝ Ω2
µ/δµ, choosing very large detunings and somewhat large Rabi rates should allow us to reach

the desired effect. Indeed, Fig. 5.4.4 shows results for a = b = 1, α = 1/3, β = 2/3, ∆ = Γ/1000,

δL = 0, ΩL = 1 Γ, δµ = 120 Γ and Ωµ = 15 Γ. We see that indeed the population can be moved this

way from dark to bright state.

86



CHAPTER 5. DARK STATES

(a) Evolution of all states in dark and bright state

basis (with respect to optical transition).

(b) Pulse timing.

Figure 5.4.4: Results for an arbitrary set of parameters: a = b = 1, α = 1/3, β = 2/3, ∆ = Γ/1000,

δL = 0, ΩL = 1 Γ, δµ = 120 Γ and Ωµ = 15 Γ. Strong off-resonance pulses of microwaves are able to move

the population from the dark state and into the bright state without an intermediate population transfer to

the auxiliary state |A〉.

This system is also small enough to allow us to understand the mixing between bright and dark

states quantitatively. Here, when we think about coupling the bright state with the dark state

through state |A〉 by off-resonance microwaves, we have a Λ-type system that effectively behaves

like a two state system and can be analyzed via a procedure called adiabatic state elimination

[68, 69]. Fig. 5.4.5 presents how the system can be viewed first in terms of dark and bright states

and then after the adiabatic elimination. In general, a three-state hamiltonian:

H =



|G1〉 |G2〉 |A〉

0 0 AΩ
2

0 0 BΩ
2

AΩ
2

BΩ
2 δ


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becomes effectively:

Heff =


|G1〉 |G2〉

A2 Ω2

4δ ABΩ2

4δ

ABΩ2

4δ B2 Ω2

4δ


In other words, we obtain two states with energies equal to their respective AC Stark shifts

(Ω2/4δ) that are coupled with an effective light field equal to a combined AC Stark shift. Such a

system yields simply Rabi oscillations between two states. We can solve the time evolution of the

density matrix driven by this hamiltonian (there is no dissipation in this system). Assuming that

we have generic initial conditions:

ρ(0) =


|G1〉 |G2〉

C 0

0 1− C

,
we find that (assuming δ > 0):

ρ|G1〉(t) = C +
4A2B2

(A2 +B2)2
(1− 2C) sin2

(
A2 +B2

8δ
Ω2t

)
(5.4.1)

= C
(A2 −B2)2

(A2 +B2)2
+

4A2B2

(A2 +B2)2

[
C cos2

(
A2 +B2

8δ
Ω2t

)
+ (1− C) sin2

(
A2 +B2

8δ
Ω2t

)]
,

where we can identify the angular frequency of the time evolution and show that it is equal to sum

of AC Stark shifts:

ω = ∆+
AC ≡ ∆G1

AC + ∆G2
AC =

(A2 +B2)Ω2

4δ
,

which in fact appears there via combination of the remixing rate RAC ≡ AB Ω2/2δ2 and the

difference in energy levels (splitting) induced by the AC Stark shifts. Namely:

R2
AC +

(
∆G1

AC −∆G2
AC

)2
=
(
4A2B2 +A4 − 2A2B2 +B4

) Ω2

4δ
=

(A2 +B2)Ω2

4δ
= ∆+

AC.

For the simplest initial conditions of C = 0 we can simplify Eq. (5.4.1) to obtain:

ρ|G1〉(t) =
4A2B2

(A2 +B2)2
sin2

(
∆+

ACt

2

)
,
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which shows that amplitude of the oscillation does not depend on the initial conditions. We can

also rewrite the equation using the rate RAC, AC Stark shifts and induced splitting, which we define

as ∆−AC ≡ |∆G1
AC −∆G2

AC|:

ρ|G1〉(t) =
R2

AC

(∆+
AC)2

sin2

(
∆+

ACt

2

)
=

R2
AC

R2
AC + (∆−AC)2

sin2


√
R2

AC + (∆−AC)2t

2

,
where at the end we obtain form we are all familiar with - Rabi oscillations between two states

coupled with rate RAC with detuning ∆−AC.

|E〉

|G1〉 |G2〉

|A〉

δL

δµ

aΩL bΩL

αΩµ βΩµ

|E〉

|BL〉 |DL〉

|A〉

δL

δµ

√
a2 + b2ΩL

aα+bβ√
a2+b2

Ωµ
aβ−bα√
a2+b2

Ωµ

δ µ
�

Γ

A
d
ia

b
at

ic
E
li
m

in
at

io
n

|E〉

|BL〉
|DL〉

δL√
a2 + b2ΩL

RµAC

Figure 5.4.5: Diagram of the four-level system with microwave coupling with ∆ = 0 shown in basic basis,

the basis with dark and bright states with respect to the laser transition, and its approximation as a 3-level

system after adiabatic elimination process for large detunings δµ.

In our toy model A = (aβ − bα)/
√
a2 + b2 and B = −(aα+ bβ)/

√
a2 + b2, so assuming that at

the beginning of the microwave pulse population of the bright state is equal to 0, we can induce

oscillations:

ρ|B〉(t) =
4(aα+ bβ)2(aβ − bα)2

(a2 + b2)2(α2 + β2)2
sin2

(
∆+

AC

2
t

)
,

with ∆+
AC = (α2 + β2)Ω2

µ/4δµ. Before, we used a = b = 1 and α = 1/3 and β = 2/3, which gives

amplitude of oscillations equal to 9/25 and their angular frequency of 5/9 Ω2
µ/4δµ ≈ 0.26 Γ, which
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shows that in order to obtain a π pulse (maximum population transfer between the bright and dark

state) we need tp = π/ω ≈ 12.06 Γ−1. Indeed, when we look at the graph in figure 5.4.4 we see

populations of bright and dark states oscillating with exactly these parameters.

It is also worth noting that we can write the formula above as:

ρ|B〉(t) ∝ (aα+ bβ)2(aβ − bα)2 = | 〈BL|Bµ〉 |2| 〈BL|Dµ〉 |2,

which can be intuitively understood - the strength (amplitude) of the remixing between dark and

bright state depends on orientation of two bases with respect to each other. If ϑ is the angle

between |BL〉 and |Bµ〉, then ρ|B〉(t) ∝ cosϑ sinϑ = 1/2 sin 2ϑ, which is maximized for ϑ = π/4.

However, if we look at the steady-state scattering rate in the system, the situation seems to

be slightly more complicated. To obtain analytical results, we assume that |BL〉 = |G1〉, which

is equivalent to a = 1 and b = 0. Then, using the previously defined angle ϑ, we get α = cosϑ

and β = sinϑ. First, in the high microwave detuning regime (and δL = 0), where we apply the

adiabatic approximation, the excited state population is:

ρ|E〉(t) =
2κ2 sin2 ϑ cos2 ϑ

4κ4 sin2 ϑ+ κ2
(

4 sin2 ϑ− 6 sin4 ϑ+ Γ2

Ω2
L

)
+ 1

4

, (5.4.2)

where κ ≡ ∆µ
AC/ΩL = Ω2

µ/4δµΩL. In the limit of ΩL � Γ with κ ≈ 1, we can drop one of the

terms and obtain:

ρ|E〉(t) =
2κ2 sin2 ϑ cos2 ϑ

4κ4 sin2 ϑ+ 4κ2
(
sin2 ϑ− 3

2 sin4 ϑ
)

+ 1
4

.

The term above is maximal at κ ≈ 0.5 and can reach values higher than 0.25 obtained from a naive

limit for a 4-level system. In the case of on-resonance microwaves (δµ = 0), we obtain:

ρ|E〉(t) =
2ξ2 sin2 ϑ cos2 ϑ

2ξ4 sin2 ϑ+ 4ξ2
[
sin2 ϑ− 2 sin4 ϑ+ 1

4
Γ2

Ω2
L

(
1 + sin2 ϑ

)]
+ 2 sin2 ϑ

, (5.4.3)

where now ξ ≡ Ωµ/ΩL. In the limit of ΩL � Γ with ξ ≈ 1, this simplifies to:

ρ|E〉(t) =
ξ2 cos2 ϑ

1 + 2ξ2
(
1− 2 sin2 ϑ

)
+ ξ4

,

which is equal to exactly 0.25 for any angle ϑ at ξ = 1. We can see that while in both Eq. (5.4.2)

and Eq. (5.4.3) the numerator is proportional to sin 2ϑ, the optimal angle is not π/4, due to the

fact that the denominators in both formulas are functions of sinϑ as well. In the end, the optimal
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angle depends on the parameters κ and ξ, and the optimal scattering rate has to be obtained by

looking at the whole parameter space. It is not surprising - as was shown before, the optimal

scattering rate is obtained when remixing rate is comparable to the dark state re-population rate

via the spontaneous decay; the latter is proportional to ΩL, while the former depends on both Ωµ

and angle ϑ. We should also note that the analytical formulas found here are applicable for the

chosen coupling parameters, but would be different for the ones we used before that, i.e. a = b = 1

and α = 1/3, β = 2/3.

Finally, we solve the four level system with strong off-resonance microwaves continuously in

the background and plot dependence of the excited state population on the Rabi rate, and the AC

Stark shift for a = 1, b = 0 and α = β = 1/
√

2. For such choice of parameters and κ = 1/2,

RµAC = 2αβ∆µ
AC/4δµ = 2αβκΩL = ΩL/2, which, as can be seen in Fig. 5.4.6, provides the highest

excited state population, larger than the 1/4 limit.

Figure 5.4.6: Excited state population in a 4-level system as a function of laser Rabi rate and induced AC

Stark shift. Solution provided for a = 1, b = 0 and α = β = 1/
√

2 with completely degenerate levels. The

highest scattering rates are achieved at κ ≈ 1/2.

In conclusion, we see that the highest scattering rate can be achieved when we can adiabatically

eliminate the auxiliary states, which is possible when we couple them with strong off-resonance

microwaves. Such coupling should be acting continuously on the system together with the main

(laser) coupling. What is problematic is matching the remixing and excitation rates, which for such
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a small system like the one discussed can already be a challenge. We might also run into problem

with feasibility - while high power microwaves can be obtained, there are still some reasonable

limits on what we can actually use.

5.5 A Five-state System

Next, we will quickly look at a system where adding one microwave coupling will not allow us to

completely get rid of the dark states. Fig. 5.5.1 shows the system considered - we just added an

additional ground state |G3〉 to the previously solved system.

|G1〉

|E〉

|G2〉
|G3〉

|A〉

δL

δµ

ΩL

Ωµ

Γ
3

Γ
3

Γ
3

∆12

∆23

Figure 5.5.1: Diagram of a simplified five-level system with microwave coupling.
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Now, the hamiltonian takes form:

H =



|A〉 |G1〉 |G2〉 |G3〉 |E〉

−δL − δµ −αΩµ
2 −βΩµ

2 −γΩµ
2 0

−αΩµ
2 −δL 0 0 −aΩL

2

−βΩµ
2 0 ∆12 − δL 0 − bΩL

2

−γΩµ
2 0 0 ∆23 + ∆12 − δL − cΩL

2

0 −aΩL
2 − bΩL

2 − cΩL
2 0


.

From the perspective of only the optical transition, the bright state will be given as BL = (a, b, c)

(in space spanned states |G1〉, |G2〉 and |G3〉), and the dark state space can be defined as kernel of

the bright state space, DL = ker BL. In other words, if VG ≡ span{|G1〉 , |G2〉 , |G3〉} then VG =

BL⊕DL. Similarly, for the microwave transition Bµ = (α, β, γ), Dµ = ker Bµ and VG = Bµ⊕Dµ.

Because we know that dim BL = dim Bµ = 1, we have dim DL = dim Dµ = 2. To avoid creation

of dark states, we definitely need BL 6= Bµ (they cannot be co-linear), and BL 6⊂ Dµ (because |A〉
state does not decay to VG). However, it is always true that dim DL ∩Dµ = 1 (in our situation

both are planes in a 3-dimensional space that go through the origin, i.e. they are vector, not affine

planes). No matter how we set our system, it will always evolve into state that is an intersection

of both dark state spaces. We can find that dark state by treating state |A〉 as an excited state.

Then:

DL+µ = DL ∩Dµ = ker ΩT = ker

−
αΩµ

2 −βΩµ
2 −γΩµ

2

−aΩL
2 − bΩL

2 − cΩL
2

 .

Eventually we find that:

|DL+µ〉 =

∣∣∣∣∣∣∣∣∣
α β γ

a b c

|G1〉 |G2〉 |G3〉

∣∣∣∣∣∣∣∣∣ = (βc− bγ) |G1〉+ (γa− cα) |G2〉+ (αb− aβ) |G3〉 .
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To show this explicitly, we will transform the hamiltonian to basis:

|DL+µ〉 =
1

D
[(βc− bγ) |G1〉+ (γa− cα) |G2〉+ (αb− aβ) |G3〉]

|BL〉 =
1

BL
(a |G1〉+ b |G2〉+ c |G3〉)

|Bµ〉 =
1

Bµ
(α |G1〉+ β |G2〉+ γ |G3〉)

which yields:

H =



|A〉 |Bµ〉 |BL〉 |DL+µ〉 |E〉

−δL − δµ −Ωµ
Bµ
2 −Ωµ

aα+bβ+cγ
2BL

0 0

−Ωµ
Bµ
2

β2∆12+γ2(∆12+∆23)
B2
µ

− δL ∆12(bβ+cγ)+∆23cγ
BLBµ

∆12α(bγ−cβ)+∆23γ(bα−aβ)
DBµ

−ΩL
aα+bβ+cγ

2Bµ

−Ωµ
aα+bβ+cγ

2BL

∆12(bβ+cγ)+∆23cγ
BLBµ

b2∆12+c2(∆12+∆23)
B2
L

− δL ∆12a(bγ−cβ)+∆23c(bα−aβ)
DBL

−ΩL
BL
2

0 ∆12α(bγ−cβ)+∆23γ(bα−aβ)
DBµ

∆12a(bγ−cβ)+∆23c(bα−aβ)
DBL

(aγ−cα)2∆12+(aβ−bα)2(∆12+∆23)
D2 − δL 0

0 −ΩL
aα+bβ+cγ

2Bµ
−ΩL

BL
2 0 0


,

where D = | 〈DL+µ|DL+µ〉 | =
√

(βc− bγ)2 + (γa− cα)2 + (αb− aβ)2 is dark state’s norm, BL =

| 〈BL|BL〉 | =
√
a2 + b2 + c2 and Bµ = | 〈Bµ|Bµ〉 | =

√
α2 + β2 + γ2. We can clearly see that the

dark state has no direct coupling to either |A〉 or |E〉 states and it evolves to other bright states

with rate proportional to splittings. If both of them are zero, the state loses all of its couplings no

matter what parameters we choose.

5.6 A Six-state System

An easy way to get rid of that one-dimensional dark state space in our toy models is to add an

additional lower-lying auxiliary ground state |A2〉 coupled to states |G1〉, |G2〉 and |G3〉 as shown

in diagram presented in Fig. 5.6.1.
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|G1〉

|E〉

|G2〉
|G3〉

|A2〉
|A1〉

δL

δµ

ΩL

Ωµ

Γ
3

Γ
3

Γ
3

∆12

∆23

∆A

Figure 5.6.1: Diagram of a simplified six-level system with microwave coupling.

The hamiltonian looks very much the same as the previous one:

H =



|A1〉 |A2〉 |G1〉 |G2〉 |G3〉 |E〉

−δL − δµ 0 −α1Ωµ
2 −β1Ωµ

2 −γ1Ωµ
2 0

0 ∆A − δL − δµ −α2Ωµ
2 −β2Ωµ

2 −γ2Ωµ
2 0

−α1Ωµ
2 −α2Ωµ

2 −δL 0 0 −aΩL
2

−β1Ωµ
2 −β2Ωµ

2 0 ∆12 − δL 0 − bΩL
2

−γ1Ωµ
2 −γ2Ωµ

2 0 0 ∆23 + ∆12 − δL − cΩL
2

0 0 −aΩL
2 − bΩL

2 − cΩL
2 0



.

We now have to ensure that matrix Ω is full rank, that is (with normalized rows):

det Ω = det



α1
Bµ1

β1

Bµ1

γ1

Bµ1

α2
Bµ2

β2

Bµ2

γ2

Bµ2

a
BL

b
BL

c
BL

 6= 0,

where BL = | 〈BL|BL〉 | =
√
a2 + b2 + c2 and Bµi = | 〈Bµi |Bµi〉 | =

√
α2
i + β2

i + γ2
i . Otherwise

there exists a dark state. If we were using proper excited states, i.e. with non-zero decay rates,
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this would be a sufficient condition. Given that auxiliary states |A1〉 and |A2〉 do not decay to

ground states |Gi〉 in this toy model, just like in the 4-level system, there are some additional

conditions on orthogonality of the bright states that have to be met. We definitely have to ensure

that Bµ1 6⊂ ker BL or Bµ2 6⊂ ker BL, that is bright states for either of microwave transitions

cannot completely lie in the optical transition’s dark state space, which is to say they cannot

both be simultaneously perpendicular to |BL〉. However, this condition is not sufficient. If both

〈BL|Bµ1〉 6= 0 and 〈BL|Bµ2〉 6= 0, then there is no further condition on both microwave transition’s

bright state spaces other than the condition stating that |Bµ1〉 6∝ |Bµ2〉 (they cannot be co-linear).

But, if one of them is actually orthogonal to |BL〉, then they cannot be orthogonal with respect to

each other.

If we construct a matrix O = Ω†Ω (which is essentially a matrix of dot products between all

bright states), that statement is equivalent to saying that at least two off-diagonal elements have

to be non-zero (though such statement would not hold for larger systems) or, more generally, every

bright state associated with transition to a non-decaying excited state has to have a connection

to a bright state associated with transition to a proper decaying excited state. By connection we

mean at least one non-zero dot product with a state that already is connected, where a bright state

with respect to transition to a decaying excited state is already trivially connected to itself. In our

system:

O =


1 α1α2+β1β2+γ1γ2

Bµ1Bµ2

α1a+β1b+γ1c
Bµ1BL

α1α2+β1β2+γ1γ2

Bµ1Bµ2
1 α2a+β2b+γ2c

Bµ2BL

α1a+β1b+γ1c
Bµ1BL

α2a+β2b+γ2c
Bµ2BL

1


so the additional conditions we obtain are: α2a+ β2b+ γ2c 6= 0

α1a+ β1b+ γ1c 6= 0
or

 α1α2 + β1β2 + γ1γ2 6= 0

α1a+ β1b+ γ1c 6= 0
or

 α1α2 + β1β2 + γ1γ2 6= 0

α2a+ β2b+ γ2c 6= 0

One of them has to be true. Additionally, as mentioned before, bright states have to span the

whole ground state space. This condition, in terms of this newly defined matrix, is equivalent to

det O = (det Ω)2 6= 0. Here, we first show results for a = b = c = 1, β1 = 2α1 = 2γ1 = 1,

α2 = 4β2 = 4γ2 = 2, ∆12 = ∆23 = ∆G = 0 and δL = δµ = 0. For such choice of parameters we
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have det Ω = 1/6 and

O =


1 7

6
√

3
2
√

2
3

7
6
√

3
1

√
2√
3

2
√

2
3

√
2√
3

1

 ,

so we expect that there will be no dark states. Indeed, the steady state reached for high Rabi rates

for both laser and microwave fields leads to scattering rate close to the maximum scattering rate

of ne/(ne + ng) Γ = 1/(1 + 5) Γ ≈ 0.167 Γ. Fig. 5.6.2 depicts that behavior.

Figure 5.6.2: Steady state excited state population as a function of Rabi rates ΩL and Ωµ in a six-state

toy model. For chosen parameters no dark states are created.

5.7 Polarization Switching

Now, using introduced mathematical methodology, we will look at polarization switching as a way

to remix the dark states or, equivalently, effectively decrease the number of the dark states. For that

purpose we will work with unknown dipole transition elements, just like in previous toy models.

We will also begin with a simple Λ-type system to show how populations can be juggled between

dark states following the diagram presented in Fig. 5.7.1.
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|A〉

|E〉

|B〉

1)

|A〉

|E〉

|B〉

Ωa

|A〉

|E〉

|B〉

2)

|A〉

|E〉

|B〉

Ωb

Figure 5.7.1: Juggling population in a three-level system in Λ configuration. In 1) state |A〉 is bright and

|B〉 is trivially dark. In 2) both states change places.

In such scheme, we begin with population in state |A〉 and start with it being bright. Then, state

|B〉 is trivially dark and population accumulates in it. Next, we flip the states, i.e. by coupling

states |B〉 and |E〉 we make |B〉 a bright state and |A〉 becomes a dark state. After population

finishes accumulating in current dark state |A〉, we restart the cycle. Thus, having only one excited

state and two ground states that, in principle, can be degenerate, we avoid trapping population in

dark states by juggling it between all of them.

If we define VG ≡ span{|A〉 , |B〉}, we can write that in situation 1) the bright state is a (1, 0)

vector in this space, while in situation 2) it is a vector that is perpendicular to the previous bright

state - a (0, 1) vector. One way to obtain these results in a framework consistent with the one we

used when describing our toy models is to artificially add an additional excited state. Then, we

can draw an “effective” diagram shown in Fig. 5.7.2. For such a system we could write down the

hamiltonian, followed by the matrix representing the couplings (Ω), which would be diagonal and,

therefore, have a non-zero determinant. We would find that the bright states for both transitions

span full space of the ground states. In fact, any schemes with switching the couplings would

work as long as det Ω 6= 0, i.e. bright states during different pulses constituting a scheme are not

co-linear. For example, having both lasers on at the beginning and then switching one of them off

would not yield a dark state, even though dark and bright states do not fully swap places.
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|A〉

|E1〉 |E2〉

|B〉

Ωa
ΩbΓ

2

Γ
2Γ

2

Γ
2

Figure 5.7.2: Diagram of an effective three-level system in Λ configuration with coupling switching.

It is also worth noting that dark state destabilization method based on phase modulation is

nothing more then performing the above-described procedure in a continuous way. By suddenly

changing phase of one of the lasers with respect to the other, we would simply obtain a discrete

scheme we are showing here - bright and dark states spanning the space would shift, so that the two

bright states (before and after phase difference change) would span the whole ground state space.

In the continuous case, we constantly change the linear superposition of the instantaneous bright

and dark states. As long as the changes are fast, i.e. non-adiabatic, population in the dark state

will be continuously moved into a bright state (if we think of this process in terms of couplings of a

well-defined linear dark state superposition, this process corresponds to continuously changing the

coupling between bright and dark states with rate proportional to exp(iϕ(t)) as was shown before).

We can also generalize what we found here. For example, in a system with 1 excited state and

3 degenerate ground state, for a single pulse, that is for a single combination of light fields, the

bright state space will be one-dimensional, while the dark state space will be two-dimensional. If

we used a scheme with three different pulses, we would obtain three different bright states that

could allow us to span the whole ground state space. By creating an “effective” diagram we can

quickly find conditions that have to be imposed on the light fields at every pulse. In the end we

want three different dark state spaces to have a zero intersection.

Now, let’s assume we have Ne excited states and Ng degenerate ground states (Ng > Ne),

where every ground state has a possibility to be coupled to any excited state, and it has at least

99



CHAPTER 5. DARK STATES

one excited state partially decaying to it (Fig. 5.7.3).

Ne

Ng

Figure 5.7.3: Diagram of a system with Ne excited and Ng ground states.

Now, for a single pulse i we can write a general hamiltonian:

Hi =



Ng︷ ︸︸ ︷ Ne︷︸︸︷
G Ωi

Ω†i E


,

where Ωi is an Ng-by-Ne matrix representing coupling between ground and excited states. Let’s

assume that this matrix has rank ΩT
i = Ne, that is none of its rows representing bright states is

co-linear, i.e. given:

ΩT
i =


|Bi,1〉 bi11 · · · · · · bi1,Ng

...
...

. . .
...

|Bi,Ne〉 biNe,1 · · · · · · biNe,Ng

,

none of the states |Bi,j〉 are co-linear, which is to say that 〈Bi,j |Bi,k〉 6= 0 for all 1 ≤ j, k ≤ Ne .

This is equivalent to saying that the bright state space Bi ≡ span{|Bi,1〉 , . . . , |Bi,Ne〉} is exactly

Ne-dimensional. Because the ground state space VG ≡ span{|G1〉 , . . . ,
∣∣GNg〉} is Ng-dimensional,

we can write that for every pulse i:

dim Bi = rank Ωi = Ne

dim Di = dim(ker Ωi) = Ng −Ne,
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where Di is the dark state space for pulse i. To cover the whole ground state space VG with bright

states, we need to ensure that the dimension of sum of all the bright state spaces is equal to the

dimension of VG. If we assume that we have m pulses, then we can eliminate all the dark states,

if:

dim

(
m⋃
i=1

Bi

)
= dim VG = Ng (5.7.1)

or, equivalently:

dim

[
ker

(
m⋃
i=1

Bi

)]
= dim

(
m⋂
i=1

Di

)
= 0. (5.7.2)

In other words, we want the dark state space, understood as an intersection of all dark state spaces

Di with respect to pulses i, to be 0-dimensional. The best case scenario happens when all the

bright state spaces for all-but-one of the pulses are disjoint, that is:

∀i,j≤m−1 dim(Bi ∩Bj) = 0,

with the last bright state space having only to span the remaining dimensions of the ground state

space. Then, if we follow the previously given assumption that for every pulse the dimension is

maximal, i.e. dimBi = Ng −Ne, we can obtain a lower bound on the number of pulses required to

eliminate all dark states:

mmin =

⌈
dim VG

dim Bi

⌉
=

⌈
Ng

Ng −Ne

⌉
.

The upper bound is simplyNg - if quantum system allows, we can couple all the states independently

and cover the whole ground state space. Of course that may not be possible in a real system. Even

in a simple TlF toy model discussed in the next chapter we cannot address all the states separately.

In general, it might not be possible to find enough independent pulses to eliminate all dark states.

To see how well we can do, we need to calculate dimensions of either the resulting bright state

space or dark state space using Eq. (5.7.1) or Eq. (5.7.2). The easiest way to do that is to create a

matrix with all the bright state vectors as rows and calculate either its rank or dimension of the

kernel of such matrix. By keeping only the independent bright states and assuming pulse i has a
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bright state space of dimension Ni we can write:

B ≡
m⋃
i=1

Bi =



b11,1 · · · · · · b11,Ng
...

...

b1N1,1
· · · · · · b1N1,Ng

b21,1 · · · · · · b21,Ng
...

...

b2N2,1
· · · · · · b2N2,Ng

...
...

bm1,1 · · · · · · bm1,Ng

...
...

bmNm,1 · · · · · · bmNm,Ng




B1


B2

...
Bm

(5.7.3)

This matrix can be substituted if we create an “effective” system with m copies of Ne excited states,

just like in the Λ-system that we showed. We then obtain hamiltonian:

Heff =



Ng︷ ︸︸ ︷ mNe︷︸︸︷
G Ωeff

Ω†eff mE


,

where Ω†eff is the same as matrix representation of B in Eq. (5.7.3), if for every pulse i the number

of bright states Ni is equal to Ne. Regardless, the dimension of the resulting dark state space D

can be calculated from:

dim D = dim(ker B) = dim Vg − rank B = Ng − rank Ωeff , (5.7.4)

where the last equality is true, because while Ωeff contains mNe superpositions, only rank Ωeff are

independent and they are exactly the bright state vectors spanning B space. However, we cannot

simply use ker Ωeff , unless for every pulse i, matrix Ωi consists of Ne independent bright state
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vectors (then Ωeff = B). Finally, from the above, for full elimination of dark states we require

rank Ωeff = rank B = Ng, and if matrix representation of B ends up being an Ng × Ng matrix,

this is equivalent to condition det B 6= 0. In a general case when matrix Ωeff has multiple co-linear

components, obtaining its rank is most easily done by using Singular Value Decomposition (SVD)

algorithm.

5.8 Summary

At the end of such chapter it is prudent to provide a short summary of the analysis. First, it

is important to once again emphasize when the dark states are created. As has been mentioned,

perfect dark states are created when interaction part of the hamiltonian (following [67]) Ω ≡ QHP
has a zero determinant for a group of degenerate ground states, where P is a projection operator

onto the excited state space, while Q is a projection operator onto a chosen subspace of the ground

state space. In such case, system’s eigenvectors (creating a dressed state picture) corresponding to

the dark states will have no contribution from the excited state levels.

It has also been shown that when the states in the discussed ground state subspace are not

fully degenerate, the resulting dark states are remixed into bright states with rates equal to the

energy splittings between the states. This leads us to the first and most widely used method

of remixing - lifting the degeneracy. By inducing a high energy difference, the remixing rate is

increased. If remixing rate is then matched with rate with which dark states are re-populated via

the spontaneous decay, the scattering rate reaches its maximum value.

Most common way of lifting degeneracy is based on the Zeeman effect. However, in TlF we will

utilize a different method - we can split states’ energies by creating an AC Stark shift by coupling

the dark and bright states to an auxiliary state space via microwaves. The microwaves can also

be used on resonance and induce remixing by moving the population from the dark to bright state

by first moving the population to an intermediate state. Both of these methods can potentially

remix all the dark states; eliminate them. Conditions imposed on light fields’ parameters (like

polarization or amplitudes) can obtained from matrices Ω and O.

Other method of destabilizing dark states is based on re-defining the bright and dark states, on

changing the linear superpositions. Here, either discretely or continuously, we couple different part
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of the ground state subspace to the excited state - if we pump population from bright to a dark

state, we then make the dark state a new bright state. This can be achieved with multiple light

fields and clever manipulation of their phases, by switching light fields on and off, by switching

light fields’ polarizations, etc.. The execution depends on the real physical constraints and the

equipment at hand. In our experiment we will use this method by switching polarizations of both

laser and microwaves.

104



CHAPTER 6. OPTICAL CYCLING TOY MODELS

Chapter 6

Optical Cycling Toy Models

6.1 Motivation and Potential Problems

Having understood how one can find dark states in a system, we would like to first apply this

knowledge to a problem of optimizing the average scattering rate. High scattering rate is especially

crucial in optical laser cooling. As shown in [38], in principle TlF has favorable Franck-Condon

factors and one should be able to scatter approximately 10,000 photons per molecule with three

additional vibrational repump lasers. However, for this to work we have to make sure that for

single optical cycling transition the scattering rate can be close to its maximum value, which can

be estimated to be Γ̃ = ne/(ne + ng) Γ, where ne and ng are number of excited and ground states

respectively [70]. High scattering rate is also important for our nuclear Schiff moment experiment -

the final state will be projected onto different rotational levels, and population in those projections

will be detected via laser-induced fluorescence.

Given the rotational branching ratios (table B.4) the best candidate for a cycling transition is

transition from the J = 1 manifold in the ground X1Σ+ state to the f -parity J̃ ′ = 1+ state in the

excited electronic state B3Π1 - a so-called Q1 line already mentioned in the experimental overview.

Such cycling transition should be limited only by the vibrational branching ratio bν=0→ν=1 = 0.01

(FCF00=0.99) allowing to scatter ∼ 100 photons per molecule. However, there is a problem.

The hyperfine splittings in the excited state disallow simultaneous coupling of multiple hyperfine

manifolds with one light field - the smallest splitting is ∼ 300 MHz, which is more than enough to

suppress coupling to neighboring hyperfine states. We are left with one hyperfine manifold of our
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choice. Given the rotational branching ratios, the best candidate is the
∣∣∣J̃ ′ = 1+, F̃ ′1 = 1/2, F ′ = 1

〉
manifold with 3 sublevels. On the other hand, energy splittings in the ground state are order of

magnitude smaller than the natural linewidth γ, so all the levels will be coupled simultaneously.

With 3 excited states and 12 ground states, dark states are easily created.

The experiments trying to reach the highest possible average scattering rate have been per-

formed in group of Larry Hunter at Amherst College. They estimate that despite all the measures

undertaken to destabilize the dark states (polarization switching of the laser, microwaves coupling

J = 0 to J = 1 levels and their polarization switching), the number of photons per molecule from

the cycling transition is somewhere between 50 and 60, while their observed average scattering rate

is approximately order of magnitude smaller than the estimated Γ/5 scattering rate. One then

needs ask: why is the scattering rate and the number of photons per molecule so small?

In this chapter we will investigate what the best methods of maximizing scattering rate are.

Various approaches will be looked at and their average scattering rate estimated from numerical

simulations of the process. We will mostly concentrate on a simplified version of the real TlF

molecule - we will only include thallium’s nuclear spin.

6.2 Rabi Rates and Electric Field

Before we begin discussion of optical cycling we look at the relationship between Rabi rates and the

electric field. The off-diagonal terms in the hamiltonian responsible for interaction with the electric

field can be written using Eq. (2.5.1). For polarization p dipole matrix element in the Rabi rate

〈f |T 1
p (d)|i〉 is calculated using Eq. (2.5.4) with appropriate transition dipole depending on type of

the transition: for optical transitions µeff = 0.81 Debye = 0.4095 MHz/ V/cm and the permanent

dipole moment µ0 = 4.2282 Debye = 2.1285 MHz/ V/cm for microwave transitions. The electric

field amplitude E , no matter what polarization (denoted by a vector ~ε), will be assumed to have

no spatial dependence. We will also use the rotating wave approximation, just like in the simple

toy models, and consider only dipole transitions. Then, we can write that:

E = Eeik·r cosωt ≈ E
2
eiωt~ε.

We will also assume that the field’s intensity is uniform. We will consider a beam with power P
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with cross-sectional diameter d. Then, the intensity is:

I =
4P

πd2
,

which is related to the amplitude of electric field via:

E =

√
2I

cε0
=

√
8P

πcε0d2
. (6.2.1)

Now, the electric field’s amplitude calculated directly from beam’s power can be in general a super-

position of amplitudes of beams of different polarizations. While in this chapter some polarizations

will be chosen arbitrarily, in general we will assume the following geometry1 (Fig. 6.2.1): the molec-

ular beam moves along the y direction; the z direction defines the quantization axis; the laser

propagates along the z direction with one of two circular polarizations (assumed for simplicity;

linear polarizations will be used in more realistic models); microwaves propagate along a direc-

tion k that creates an angle θµ with the z-axis; microwaves are in the xz-plane perpendicular to

the molecular beam; microwaves are also linearly polarized with angle χ with respect to direction

perpendicular to vector k and lying in the xz-plane. In that geometry, we can decompose the

microwave electric field in following way:

Eµ,σ+ = −Ep=1
µ =

Eµ√
2

(sinχ+ i cos θµ cosχ)

Eµ,σ− = Ep=−1
µ =

Eµ√
2

(sinχ− i cos θµ cosχ) (6.2.2)

Eµ,z = Ep=0
µ = Eµ cosχ sin θµ.

To clarify, knowing the geometry, polarization and beam parameters, the off-diagonal element in

the hamiltonian will be then calculated using following steps:

Step 1 - calculate total electric field amplitudes:

Eµ =

√
8Pµ

πcε0d2
µ

EL =

√
8PL

πcε0d2
L

1Note that it slightly differs from the overall geometry assumed for CeNTREX.
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Figure 6.2.1: Geometry assumed in full system models.

Step 2 - obtain amplitudes of light in different polarizations. For microwaves we use

Eq. (6.2.2), while for the optical field EL is often assumed to be the amplitude of electric

field in σ+ or σ− polarization.

Step 3 - calculate Rabi rates using previously calculated dipole transition elements from

Eq. (2.5.2) and Eq. (2.5.4):

Ωif
R,L =

µeffEL
~
〈f |T 1

±1|i〉

Ωif
R,µ =

µ0

~

(
Eµ,z 〈f |T 1

0 |i〉 − (−1)1Eµ,σ+ 〈f |T 1
−1|i〉+ (−1)(−1)Eµ,σ− 〈f |T 1

+1|i〉
)

Step 4 - calculate off-diagonal elements in the hamiltonian using rotating wave approxima-

tion:

Hif = Hfi =
Ωif
R,L

2
eiωLt +

Ωif
R,µ

2
eiωµt

Realistically, the off-diagonal elements will have only contributions from either the laser’s field or

the microwaves. Both fields will not drive the same transitions. Also, in simpler toy models, we
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will not worry about exact dipole transition matrix elements and polarizations.

6.3 Models with Thallium Nuclear Spin

The optical cycling models that we will use closely resemble the system in TlF molecule - we

include thallium’s nuclear spin of I1 = 1/2, which results in creation of hyperfine states. We will

use a simplified version of Eq. (2.5.4) to find transitions and decay rates in our system. Namely, a

transition from state
∣∣X1Σ+; J ′,Ω′, F ′,M ′F ,P ′

〉
to state

∣∣B3Π1; J,Ω, F,MF ,P
〉

2 can be calculated

from:

1

e 〈r〉 〈f |T
1
p (d)|i〉 = (−1)F−MF+F ′+2J−Ω+3/2

√
(2F + 1)(2F ′ + 1)(2J + 1)(2J ′ + 1)

 F 1 F ′

−MF p M ′F

J ′ F ′ 1
2

F J 1

 ∑
q=−1,0,1

 J 1 J ′

−Ω q Ω′

+ (−1)P

J 1 J ′

Ω q Ω′

+

+(−1)P
′

 J 1 J ′

−Ω q −Ω′

+ (−1)P+P ′

J 1 J ′

Ω q −Ω′

 . (6.3.1)

where P is the parity type of the state. Rabi rates will be defined in a similar way as before, although

we will not pay much attention yet to how electric fields are propagating - we will arbitrarily choose

their amplitudes and polarizations.

6.3.1 Model’s Dipole Transitions

We begin with a simple system with two J = 1 states to try to understand any problems that

might arise. The ground state is always of type e (P = 0) and the excited state here is of parity

type f (P = 1). The formula Eq. (6.3.1) allows to evaluate branching ratios, which in this system

are shown in table 6.3.1 (no hyperfine mixing is assumed).

Because hyperfine splitting due to interaction with thallium’s nuclear spin is enormous in the

B3Π1 state (∼ 13.5 GHz), we will just concentrate on the F ′ = 1/2 manifold. For such system,

given that we have 2 excited states and 6 ground states, we expect 4 dark states and 2 bright states.

To confirm that, we can look at the hamiltonian in the same manner as we did in the previous

2Please note that to match the notation used in the formula, in the following line the ground state is primed.
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|J, F,MF 〉
∣∣1+, 1

2
,− 1

2

〉 ∣∣1+, 1
2
, 1

2

〉 ∣∣1+, 3
2
,− 3

2

〉 ∣∣1+, 3
2
,− 1

2

〉 ∣∣1+, 3
2
, 1

2

〉 ∣∣1+, 3
2
, 3

2

〉
∣∣1−, 1

2
,− 1

2

〉
2/9 4/9 1/6 1/9 1/18 0∣∣1−, 1

2
, 1

2

〉
4/9 2/9 0 1/18 1/9 1/6∣∣1−, 3

2
,− 3

2

〉
1/6 0 1/2 1/3 0 0∣∣1−, 3

2
,− 1

2

〉
1/9 1/18 1/3 1/18 4/9 0∣∣1−, 3

2
, 1

2

〉
1/18 1/9 0 4/9 1/18 1/3∣∣1−, 3

2
, 3

2

〉
0 1/6 0 0 1/3 1/2

Table 6.3.1: Branching ratios for decays from pure states |J, F,MF 〉 (columns) in B3Π1 to states in X1Σ+

(rows) in a simplified model of TlF.

chapter. We will assume that the coupling laser light field present is decomposed into following

components: Ωz = 0, Ωσ− = Ωσ+ = Ω/
√

2, where Ω is assumed to be real. Fig. 6.3.1 depicts the

system. In such a simplified situation we obtain:

H =



∣∣1−, 1
2 ,−1

2

〉 ∣∣1−, 1
2 ,

1
2

〉 ∣∣1−, 3
2 ,−3

2

〉 ∣∣1−, 3
2 ,−1

2

〉 ∣∣1−, 3
2 ,

1
2

〉 ∣∣1−, 3
2 ,

3
2

〉 ∣∣1+, 1
2 ,−1

2

〉 ∣∣1+, 1
2 ,

1
2

〉
−δL 0 0 0 0 0 0 Ω

3
√

2

0 −δL 0 0 0 0 − Ω
3
√

2
0

0 0 ∆− δL 0 0 0 Ω
4
√

3
0

0 0 0 ∆− δL 0 0 0 Ω
12

0 0 0 0 ∆− δL 0 Ω
12 0

0 0 0 0 0 ∆− δL 0 Ω
4
√

3

0 − Ω
3
√

2
Ω

4
√

3
0 Ω

12 0 0 0

Ω
3
√

2
0 0 Ω

12 0 Ω
4
√

3
0 0



,
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∆

δL

Ωσ+ Ωσ−

(a) Couplings.
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(b) Decays.

J = 1−, F = 1/2

J = 1−, F = 3/2

J̃ ′ = 1+, F ′ = 1/2

|M = −1/2〉 |M = 1/2〉

|M = 3/2〉|M = 1/2〉|M = −1/2〉|M = −3/2〉

|M = 1/2〉|M = −1/2〉

∆

(c) Energy structure.

Figure 6.3.1: Structure for J = 1− ↔ J̃ ′ = 1+ transition in a simplified TlF system with coupling to

thallium’s nuclear spin only.

We can easily find that (after normalization):

ΩT =

 0 −
√

2√
3

1
2 0 1

2
√

3
0

√
2√
3

0 0 1
2
√

3
0 1

2

 ,

and clearly see that dim(ker ΩT) = 4. Bright state space will be spanned by vectors given in the

matrix above, that is (where states are defined as |J, F,MF 〉 and from now on we drop the parity

of the state):

|B1〉 = −
√

2√
3

∣∣∣∣1, 1

2
,
1

2

〉
+

1

2

∣∣∣∣1, 3

2
,−3

2

〉
+

1

2
√

3

∣∣∣∣1, 3

2
,
1

2

〉

|B2〉 =

√
2√
3

∣∣∣∣1, 1

2
,−1

2

〉
+

1

2
√

3

∣∣∣∣1, 3

2
,−1

2

〉
+

1

2

∣∣∣∣1, 3

2
,
3

2

〉
Equally easily we could find the dark states. It is worth noting that the exact form of these

bright and dark states depends on Rabi rates of transitions (just like in toy models from previous
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chapter), and the most trivial cases are when we only have light of one polarization. For example, if

we only had right-circularly polarized light, states |1, 1/2, 1/2〉, |1, 3/2, 1/2〉 and |1, 3/2, 3/2〉 would

be trivially dark - they would not be coupled to any excited state whatsoever. The fourth dark state

would be created from |1, 1/2,−1/2〉 and |1, 3/2,−1/2〉 states. In the specific system we chose, the

dark states are less trivial superpositions of our states. We should also emphasize, just like in the

previous chapter, that these states become dark once splitting ∆ is equal to 0, though when the

splitting is very small the dark states evolve with timescale much longer than interaction timescales

of molecular beam experiments.

In order to couple the dark states to the excited states, we could lift the degeneracy by using

different lasers for σ+, σ− and π transitions - energy of levels in the hamiltonian will be given by

detunings, so a careful adjustment could lead to removal of most, if not all, dark states. Same

could also be achieved with selective phase modulation of lasers associated with only certain type

of transitions as was shown before. These methods also work on a model with J = 1 ↔ J = 0

transition [49].

However, in our system we will not use those tricks. The initial design shown here, i.e. with one

light field coupling to all states and their complete degeneracy, is the most appropriate represen-

tation of our experimental reality. Therefore, to avoid population accumulation in the dark states,

we will use other approaches shown in previous toy models. Given that we have 4 dark states, we

need to find at least 4 non-decaying (or decaying) auxiliary “excited” states that we could couple

to our ground state. The ground rotational state will not do - it only has 2 Zeeman sublevels. But

coupling our ground state to the J = 2+ rotational state, which has 10 Zeeman sublevels, should

easily destabilize our dark states. Separately, we will also present a different method - by simply

switching polarization of the laser we can effectively double the number of the excited states. In

our case that will reduce the number of dark states to 2, which should allow us to destabilize them

with coupling to J = 0+ manifold.

To compare how effective various methods are in our system, we will find an average scattering

rate Γ̃, which we will calculate over the approximate interaction time for a cold molecular beam.

We will use interaction time of T ≈ 70µs and evaluate the scattering rate using:

Γ̃ =

∫ T
0

(
ρ|1,1/2,−1/2〉(t) + ρ|1,1/2,1/2〉(t)

)
Γdt

T
, (6.3.2)
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where both density matrix elements are taken from the diagonal and represent populations of the

excited states.

6.3.2 Destabilization Using J = 2+ Manifold

The J = 2+ rotational level has 10 Zeeman sublevels: 6 with F = 5/2 and 4 with F = 3/2 (as

shown in Fig. 6.3.2 depicting level structure in the ground electronic state). Given that we have

4 dark states in J = 1− rotational state we should easily destabilize them. There are several

methods, as seen in toy models of the previous chapter, which can be used to achieve our goal:

we can couple both rotational levels using on-resonance microwaves and cause population transfer

from dark states to bright states via auxiliary states or we can couple both rotational levels with

strong off-resonance microwaves causing AC Stark shift and hastening evolution of bright and dark

states. Both of these methods can also be achieved utilizing light field pulses, where microwaves

and laser are not simultaneously on (method was presented in the 4-level toy model), or by having

microwaves and laser interacting with the system at the same time.

We start with the simplest case - coupling both rotational levels using on-resonance microwaves

simultaneously with the laser. As was seen before, for high Rabi rates of both laser and microwaves

such method should allow us to reach steady state with maximum allowed scattering rate. There

are a few problems with this approach however. Firstly, just by counting multiplicities of our states,

we have an upper limit on the scattering rate of 2/(2 + 6 + 10) Γ = Γ/9. Secondly, this limit can

only be reached if other parameters are chosen well. For instance, it can be seen in J = 1↔ J = 0

toy model [49], the maximum scattering rate occurs only if Rabi rates of Ωz, Ωσ+ and Ωσ− are

the same (which occurs for polarization angle θ = arccos 1/
√

3). The same goes for detunings -

they have to be chosen well. In an 18-state system accurately choosing the optimal parameters will

not be easy. Finally, reaching the maximum scattering rate requires Rabi rates of couple Γ for the

optical transition. Given that our optical transition is in the UV, we are limited by the available

power - assuming, optimistically, 100 mW available power, we can get to Rabi rates . 10 Γ.

Fig. 6.3.3a, depicting results of numerical simulations of discussed system, shows that we indeed

can achieve non-zero scattering rates with the help of on-resonance microwaves, though slightly

below the Γ/9 upper limit. We used splittings in J = 1− and J = 2+ as in real TlF system, i.e.
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∆1 = 176 kHz and ∆2 = 278 kHz3, δL = δµ = 0. For the microwave Rabi rates we assumed

Ωµ,z = Ωµ/
√

2, Ωµ,σ+ = Ωµ,σ− = Ωµ/4 and ΩL,z = ΩL, ΩL,σ+ = ΩL,σ− = 0 for the laser, which

were found to yield high scattering rates, although were chosen arbitrarily. For such parameters

and ΩL = 2.5 Γ, we obtain Γ̃ ≈ Γ/15.4. Fig. 6.3.3b depicts evolution of bright and dark states (with

respect to the optical transition) in J = 1− state, population in J = 2+ state and population in

both excited states.

J = 2+, F = 5/2

J = 2+, F = 3/2

J = 1−, F = 3/2

J = 1−, F = 1/2

J = 0+, F = 1/2

|M = 5/2〉|M = 3/2〉|M = 1/2〉|M = −1/2〉|M = −3/2〉|M = −5/2〉

|M = 3/2〉|M = 1/2〉|M = −1/2〉|M = −3/2〉

|M = 3/2〉|M = 1/2〉|M = −1/2〉|M = −3/2〉

|M = 1/2〉|M = −1/2〉

|M = 1/2〉|M = −1/2〉

∆1

∆2

Figure 6.3.2: Level structure of the first three rotational states in TlF.

The results look quite promising - even for a more realistic UV power of 40 mW we can obtain

average scattering rates Γ̃ ≈ Γ/17.5. However, in this scheme with microwaves and laser being

continuously on, the average scattering rate is quite sensitive to values of various couplings in the

system. These depend on polarization of light and microwaves. For almost any combination we

could achieve a non-zero steady-state scattering rate, but to reach high values the polarizations

have to be correctly chosen, which experimentally is not always easy to achieve.

The second approach, with a strong off-resonance pulse of microwaves to induce a strong AC

Stark shift in J = 1− states to quicken the dark state evolution, might bring better results. In

this scheme, first we assume a tL = 1.6µs long pulse of laser light with Rabi rate of ΩL = 1.58 Γ

(Rabi rate obtained for laser power of 40 mW focused to a 1 cm diameter beam), where we choose

to use an equal superposition of right- and left-circular polarization (either way we will create 4

dark states), which is equivalent to a laser with polarization perpendicular to the quantization axis.

3In simulations we used angular frequency units, so the actual values were 2π × 176 kHz and 2π × 278 kHz.
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(a) Steady state excited state population as a func-

tion of Rabi rates ΩL and Ωµ.

(b) Time evolution of populations for ΩL = 2.5 Γ

and Ωµ = 2.5 Γ.

Figure 6.3.3: Results for dark state destabilization utilizing continuous on-resonance microwave coupling

to J = 2+ rotational level. Parameters used: ∆1 = 176 kHz and ∆2 = 278 kHz, δL = δµ = 0, as well as

Ωµ,z = Ωµ/
√

2, Ωµ,σ+ = Ωµ,σ− = Ωµ/2 and ΩL,z = ΩL, ΩL,σ+ = ΩL,σ− = 0 for the laser. Je in the figure

marks excited state’s total angular momentum quantum number.

For microwaves, like before, we assumed Ωµ,z = Ωµ/
√

2, Ωµ,σ+ = Ωµ,σ− = Ωµ/2. All the states in

J = 1− will be coupled to J = 2+ regardless of the polarization, because of state multiplicity of

both manifolds. For this particular choice of polarizations, microwave power does not have to be

enormous to yield desired results. Here, we used Pµ = 2 W focused to 3 cm, which is equivalent

to Ωµ ≈ 19.4 Γ, and δµ = 180 Γ. Fig. 6.3.4 shows results obtained for this scheme. We clearly see

that just like in simple toy models, the strong off-resonance microwave pulse neatly mixes bright

and dark state populations while not causing any population transfer to and from the J = 2+

rotational state. This method results in average scattering rate Γ̃ ≈ Γ/36 for mentioned laser

power, and Γ̃ ≈ Γ/34 for PL = 100 mW.

Performing the same pulsed procedure with on-resonance microwaves is expected to perform

similarly, if not worse, given that the population is moved between dark and bright states through

the auxiliary state. However, we should also look at off-resonance continuous beam of microwaves.

In previous chapter we saw that in the simple 4-level system toy model the off-resonance microwaves

should provide high scattering rate when κ ≡ ∆µ
AC/ΩL = Ω2

µ/4δµΩL ≈ 1. For previously used

ΩL ≈ 1.58 Γ, we should use Ωµ ≈ 57.5 Γ and δµ = 522 Γ in order to keep the population transfer
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ratio as low as before (Ωµ/δµ ratio has to be the same). Indeed, solving the system with such

parameters gives a non-zero average scattering rate of Γ̃ = Γ/31, which is decent, although obtaining

such large Rabi rates with microwaves would pose a significant technical challenge.

Figure 6.3.4: Time evolution of populations for a scheme with switching between optical and microwave

transitions driven by strong off-resonance pulses. Je in the figure marks excited state’s total angular mo-

mentum quantum number.

6.3.3 Effects of Polarization Switching

We would now like to look at our system using the approach to polarization switching described in

the previous chapter. First thing we would like to explore is the effect of simply switching between

two circular polarizations, instead of applying them simultaneously to the system. By doing so,

we can create an “effective” system and diagram shown previously in Fig. 6.3.1 will be changed

into the one of Fig. 6.3.5. In it we not only added those additional effective excited states, but also

transferred to a basis with bright and dark states with respect to either right- or left-circularly
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polarized light. These superpositions are (in |J, F,MF 〉 basis with parity not shown):

|B1+〉 =

∣∣∣∣1, 3

2
,−3

2

〉
|B1−〉 = −2

√
2

3

∣∣∣∣1, 1

2
,
1

2

〉
+

1

3

∣∣∣∣1, 3

2
,
1

2

〉
|B2+〉 =

2
√

2

3

∣∣∣∣1, 1

2
,−1

2

〉
+

1

3

∣∣∣∣1, 3

2
,−1

2

〉
|B2−〉 =

∣∣∣∣1, 3

2
,
3

2

〉
|D+〉 =

1

3

∣∣∣∣1, 1

2
,−1

2

〉
− 2
√

2

3

∣∣∣∣1, 3

2
,−1

2

〉
|D−〉 =

1

3

∣∣∣∣1, 1

2
,
1

2

〉
+

2
√

2

3

∣∣∣∣1, 3

2
,
1

2

〉
.

Ωσ+ Ωσ−

effective system

|B1+〉 |B2+〉 |D+〉 |D−〉 |B1−〉 |B2−〉

|E1+〉 |E2+〉 |E1−〉 |E2−〉

Ωσ+ Ωσ−

Figure 6.3.5: Diagram of an “effective” simplified J = 1− ↔ J̃ ′ = 1+ TlF system with switching between

two circular polarizations.

It is worth noting that the decays behave just like in Fig. 6.3.1, i.e. state |E1+〉 and state |E1−〉
decay exactly like the

∣∣∣J̃ ′ = 1, F ′ = 1/2,M ′F = −1/2
〉

state, while states |E2+〉 and |E2−〉 decay

analogically to the other excited state,
∣∣∣J̃ ′ = 1, F ′ = 1/2,M ′F = 1/2

〉
. In this case, we will juggle

the population between bright states, just like in Λ-type system. Fig. 6.3.6 shows schematically the

process.

Because with only 4 effective excited states we can at most obtain 4 bright states, in the

presented scheme we always end up with population trapped in two dark states. In order to

completely eliminate them, we need to find a light field that would increase dimension of the bright

state space to 6 (dim Vg in this system). We could simply try to add an additional light field

pulse (switch) with π polarization. Of course, while switching between two circular polarization is

possible for one beam only, in order to obtain an additional π polarization pulse we would need an

additional laser, which may not be feasible in our experiment, although in general it does not have

to be a problem. Having 3 pulses (switches) we can write down an effective hamiltonian and from

it obtain the effective coupling matrix (with normalized vectors as rows), which in this case is the
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|B1+〉|B2+〉|D+〉 |D−〉|B1−〉|B2−〉

|E1+〉|E2+〉 |E1−〉|E2−〉

Ωσ+

|B1+〉|B2+〉|D+〉 |D−〉|B1−〉|B2−〉

|E1+〉|E2+〉 |E1−〉|E2−〉

Ωσ−

|B1+〉|B2+〉|D+〉 |D−〉|B1−〉|B2−〉

|E1+〉|E2+〉 |E1−〉|E2−〉

Ωσ+

|B1+〉|B2+〉|D+〉 |D−〉|B1−〉|B2−〉

|E1+〉|E2+〉 |E1−〉|E2−〉

Figure 6.3.6: Juggling population in an “effective” simplified J = 1− ↔ J̃ = 1+ TlF system. When

switching only between two circular polarizations we inevitably end up with population trapped in dark

states.

same as matrix representation of the bright state space:

B = ΩT
eff =



∣∣1, 1
2 ,−1

2

〉 ∣∣1, 1
2 ,

1
2

〉 ∣∣1, 3
2 ,−3

2

〉 ∣∣1, 3
2 ,−1

2

〉 ∣∣1, 3
2 ,

1
2

〉 ∣∣1, 3
2 ,

3
2

〉
|B1+〉 0 0 1 0 0 0

|B2+〉 2
√

2
3 0 0 1

3 0 0

|B1−〉 0 −2
√

2
3 0 0 1

3 0

|B2−〉 0 0 0 0 0 1

|B1,π〉 −
√

2
3 0 0 1√

3
0 0

|B2,π〉 0
√

2
3 0 0 1√

3
0



.

The matrix Ωeff is Ng×Ng in size, so we just need to check its determinant to see if the scheme

will work. As it happens, det Ωeff = −2/3, so the whole ground state space can be covered by
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bright states. To test the result, we once again solve the Liouville - von Neumann equation in

Lindblad form (Chapter 4) for parameters used previously, when we looked at dark destabilization

using the J = 2+ rotational state: PL = 40 mW focused to 1 cm corresponding to ΩL ≈ 1.58 Γ,

detuning δL = 0, there are no microwaves and all three pulses are of equal lengths of tp ≈ 0.7 µs.

As a result we obtain average scattering rate Γ̃ ≈ Γ/11. Time evolution is plotted in Fig. 6.3.7,

where we can nicely see that first 2 pulses (left- and right-circular polarizations) remove population

from respective bright states, while the third removes population from a dark states common to

those transitions and re-populates the bright states through the decay from the excited state. In

the end we obtain a periodic quasi-steady state with a non-zero average excited state population.

Figure 6.3.7: Time evolution of populations for a scheme with switching between three different light

polarizations - σ+, σ− and π. States
∣∣Bσ+

〉
and

∣∣Bσ−〉 are bright states with respect to σ+- and σ−-

polarized laser induced transitions respectively, while
∣∣Dσ+,σ−

〉
represents all dark states with respect to

these transitions. It can be seen that indeed the third pulse, having π polarization, properly remixes the

indicated dark and bright states. Je in the figure marks excited state’s total angular momentum quantum

number.

6.3.4 Destabilization Using J = 0+ Manifold

In reality using a second laser to obtain the third pulse might be challenging. However, microwave

technology allows for easy manipulation of the pulses. That is why instead of using a π-polarized
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pulse, we can instead couple the ground rotational state with π-polarized microwaves. Having

two sublevels in the J = 0+ state (diagram in Fig. 6.3.2), we should be able to address both of

the dark states. In a general system with (normalized) couplings a+/−, b+/− and c+/− for σ+/−

polarizations and couplings αi,π and βi,π for the microwave transition, we will obtain the following

coupling matrix:

ΩT
eff =



∣∣1, 1
2 ,−1

2

〉 ∣∣1, 1
2 ,

1
2

〉 ∣∣1, 3
2 ,−3

2

〉 ∣∣1, 3
2 ,−1

2

〉 ∣∣1, 3
2 ,

1
2

〉 ∣∣1, 3
2 ,

3
2

〉
|B1+〉 0 0 c+ 0 0 0

|B2+〉 a+ 0 0 b+ 0 0

|B1−〉 0 a− 0 0 b− 0

|B2−〉 0 0 0 0 0 c−∣∣∣Bµ
1,π

〉
α1,π 0 0 β1,π 0 0∣∣∣Bµ

2,π

〉
0 α2,π 0 0 β2,π 0



.

For such a matrix one obtains the full-rank condition of:

det ΩT
eff = c+c−(a−β2,π − b−α2,π)(a+β1,π − b+α1,π) 6= 0,

which is true in our system. Because the ground rotational state is treated here as a special

non-decaying excited state, we also have additional orthogonality conditions. We can see that:

O = Ω†effΩeff =



1 0 0 a+α1,π + b+β1,π 0 0

0 1 0 0 a−α2,π + b−β2,π 0

0 0 1 0 0 0

a+α1,π + b+β1,π 0 0 1 0 0

0 a−α2,π + b−β2,π 0 0 1 0

0 0 0 0 0 1



,
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from which we obtain conditions:  a+α1,π + b+β1,π 6= 0

a−α2,π + b−β2,π 6= 0

which hold in our system. Just like before, we test our scheme with the same parameters. Here, like

before, Ωµ = 19.4 Γ, δµ = 180 Γ and ΩL = 2.5 Γ although the microwave pulse time is longer than

the laser pulse time - tµ ≈ 1.6 µs. In the end, for such parameters we obtain Γ̃ ≈ Γ/21. Fig. 6.3.8

depicts time evolution of states in this quantum system.

(a) Time evolution of populations for a scheme with

switching between microwaves and σ+ and σ− po-

larization of light.

(b) Rabi rates of pulses used.

Figure 6.3.8: Results for dark state destabilization utilizing continuous microwave coupling to J = 0+

rotational level. Here Ωµ = 19.4 Γ, δµ = 180 Γ and ΩL = 2.5 Γ and δL = 0. Je in the figure marks excited

state’s total angular momentum quantum number.

The result can be improved upon by noticing that in fact we do not need to switch microwaves

on and off - we can keep them constantly on. Such a change improves our average scattering

rate to Γ̃ ≈ Γ/12.5 for the same parameters. The time evolution is shown in Fig. 6.3.9. We also

tried matching the microwave-induced AC Stark shift with the laser Rabi rate by simply assuming

∆µ
AC/ΩL = Ω2

µ/4δµΩL ≈ 1 for ΩL = 1.58 Γ, which gave us Γ̃ ≈ Γ/14. Presumably, such matching

for ΩL = 2.5 Γ would lead to average scattering rates higher than Γ/12.5.

Finally, in this system as well the microwaves can actually stay on-resonance. Before, we kept

them off-resonance to avoid any population transfer between rotational states. The quasi-steady
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state that is generated with on-resonance microwaves leads to a very comparable scattering rate.

For Ωµ = ΩL = 2.5 Γ we obtain Γ̃ ≈ Γ/9. Time evolution is shown in Fig. 6.3.10.

Figure 6.3.9: Time evolution of populations for a scheme with switching between σ+ and σ− polarization of

light with strong off-resonance coupling to J = 0+ state constantly on. Bright states and dark states drawn

are with respect to both laser transitions. Parameters used were Ωµ = 19.4 Γ, δµ = 180 Γ and ΩL = 2.5 Γ

and δL = 0. Je in the figure marks excited state’s total angular momentum quantum number.

6.3.5 Comparison of Different Methods

We have analyzed several different methods of destabilizing dark states in this toy model. Table

6.3.2 lists methods, parameters and results for all the schemes. The angles are defined in such a

way that:

Ωσ+ =
Ω√
2

sin θ

Ωσ− =
Ω√
2

sin θ

Ωπ = Ω cos θ,

which is to say that θ is polarization angle with respect to the quantization axis for a linearly

polarized light. All the results shown below were chosen to yield decent results, while also keeping

parameters consistent between schemes to allow for a better comparison. These are not, however,
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the global optima. For instance, in schemes with switching, pulse times can be optimized to obtain

better results than the ones shown here.

Figure 6.3.10: Time evolution of populations for a scheme with switching between σ+ and σ− polarization

of light with strong on-resonance coupling to J = 0+ state constantly on. Bright states and dark states

drawn are with respect to both laser transitions. Here Ωµ = 2.5 Γ, δµ = 0, ΩL = 2.5 Γ and δL = 0. Je in the

figure marks excited state’s total angular momentum quantum number.

We wanted to discuss different methods and choose the one that is yields the best results and

is easy to realize experimentally. We started with the simplest scheme with on-resonance laser

and on-resonance microwaves coupling J = 1− state to J = 2+. This method allows to quickly

reach a steady state with quite high scattering rate. It also is insensitive to laser and microwave

powers once a threshold is reached, although that threshold is slightly beyond the maximal UV

power we can obtain. The issues with this scheme are, firstly, that the result depends quite strongly

on the laser-to-microwave ratio of Rabi rates and that it also depends on coupling strengths for

different transitions, and therefore on polarization angles, as is expected from the simple toy models

discussed in the previous chapter. While keeping the ratio of Rabi rates seems straight forward to

achieve, obtaining proper directionality of the electric field interacting with molecules would require

a careful design of the geometry of the setup. Angles chosen here were found to yield good results,

but many different combinations result in scattering rate that is order of magnitude lower.

123



CHAPTER 6. OPTICAL CYCLING TOY MODELS

Additional state Switching type
Parameters

Γ̃

PL[mW ] ΩL[Γ] Pµ[W ] Ωµ[Γ] δL[Γ] δµ[Γ] θL θµ tL[µs] tµ[µs]

J = 2+

None
40 1.58 0.013 1.58

0 0 0 π
4 - -

Γ
18

100 2.5 0.033 2.5 Γ
15

µ-waves ↔ laser
40 1.58

2 19.4 0 180 0 π
4

1.6
2.2

Γ
36

100 2.5 0.9 Γ
34

None 40 1.58 17.6 57.5 0 522 0 π
4 - - Γ

31

J = 0+

µ-waves ↔ σ+ ↔ σ−
40 1.58

2 19.4 0 180 σ+/σ− 0
1/1

1.6

Γ
24

100 2.5 0.7/0.7 Γ
21

σ+ ↔ σ− 40 1.58 17.6 57.5 0 522 σ+/σ− 0 1/1 - Γ
14

σ+ ↔ σ−
40 1.58 0.013 1.58

0 0 σ+/σ− 0
1/1

-

Γ
12

100 2.5 0.033 2.5 0.7/0.7 Γ
9

None σ+ ↔ σ− ↔ π 40 1.58 - - 0 - σ+/σ−/π - 0.6/0.6/0.6 - Γ
10

Table 6.3.2: Comparison of different methods of dark state destabilization in the toy model. All values for

the average scattering rate are approximate and calculate using Eq. (6.3.2) for integration time of T = 70

µs.

Second possibility is to use strong off-resonance microwaves, either with pulses, although this

method yields quite small scattering rates and is limited by quite long required microwave pulse

times, or without. Given large multiplicity of states in J = 2+ manifold, to quickly remix bright

and dark state, we require high microwave Rabi rates and very high detuning. In the table above

we show solutions for the same microwave power and detuning to allow a more direct comparison

of methods, although increasing the microwave power to about 5 W and detuning to 300 Γ would

allow us to reach better results. As proof of principle, we show that keeping such strong off-

resonance microwaves continuously on, therefore matching remixing and excitation rates, can lead

to reasonable results as well. However, changing the polarizations away from these somewhat

optimal values would put even bigger requirements on the microwaves beyond what is perhaps

feasible.

Next, we took a look at schemes utilizing microwaves coupling J = 1− to the ground rotational
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state. As was mentioned before, all the schemes using this coupling require polarization switching

of the laser field in order to effectively eliminate 2 dark states. By using off-resonance strong

microwave pulses we obtain results that are better than the ones obtained when coupling J = 1−

to J = 2+. Additionally, this scheme is not very sensitive to polarization angle of the microwaves

and the required pulse time scale much better with increasing power.

A different, more appealing option that was explored before is to continue remixing dark and

bright states in the background, i.e. we can keep the off-resonance microwaves continuously on.

This method gives even higher average scattering rate, because we do not need to waste time on

microwave pulses, while having all the advantages of the previous scheme. Very similar results are

obtained with on-resonance microwaves, which have an advantage of having smaller requirements

on microwave power, though ratio of laser and microwave Rabi rates must be kept close to 1.

Finally, we also find scheme with short laser pulses of three different polarization yielding quite

high scattering rates. However, even though we do not need any microwaves, we would definitely

need an additional laser. Using two lasers, we would also have to turn both of them on and off.

Given that the microwaves and their manipulation is easier and cheaper, the previous method

seems to be more approachable and, when optimized, should allow us to obtain a similar average

scattering rate.

6.4 A Full Model of Q1 Transition

The natural next step is to extend our discussion to a full model with both nuclear spins. The

relevant structure of this Q1 transition that is used in detection region to measure population in

one of the projections of the final superposition state is shown in Fig. 6.4.1. We see that now

we have three excited state, but as many as 12 ground states! Naturally, we will obtain 9 dark

states that require taking care of. We can quickly get rid off 3 dark states by switching between

two circular polarizations (one can check that easily by looking at kernel of the effective coupling

matrix Ωeff that includes both pulses). In order to get rid of the remaining 6 dark states, we need

to either couple the ground state to the J = 2+ manifold or use a clever scheme utilizing the ground

rotational state, which, as we saw previously, should provide better results. However, we need to

be careful.
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6.4.1 Disjoint Dark States

Coupling the J = 1− state to the ground rotational state with microwaves at any polarization

can help with eliminating at most 4 additional dark states. In fact, coupling with π-polarized

microwaves eliminates only 3 of them and leaves 3. However, we can try switching between two

circular polarization of microwaves as well. We find the coupling matrix to be (in the |F1, F,MF 〉
basis, where J = 1− is implied):

ΩT
eff =



∣∣ 1
2
, 0, 0

〉 ∣∣ 1
2
, 1,−1

〉 ∣∣ 1
2
, 1, 0

〉 ∣∣ 1
2
, 1, 1

〉 ∣∣ 3
2
, 1,−1

〉 ∣∣ 3
2
, 1, 1

〉 ∣∣ 3
2
, 1, 1

〉 ∣∣ 3
2
, 2,−2

〉 ∣∣ 3
2
, 2,−1

〉 ∣∣ 3
2
, 2, 0

〉 ∣∣ 3
2
, 2, 1

〉 ∣∣ 3
2
, 2, 2

〉
|B1+〉 0 0 0 0 0 0 0 1 0 0 0 0

|B2+〉 0
√

2
3

0 0 − 1

2
√

3
0 0 0 1

2
0 0 0

|B3+〉 − 2
3

0 2
3

0 0 − 1

3
√

2
0 0 0 1

3
√

2
0 0

|B1−〉 − 2
3

0 − 2
3

0 0 1

3
√

2
0 0 0 1

3
√

2
0 0

|B2−〉 0 0 0 −
√

2
3

0 0 1

2
√

3
0 0 0 1

2
0

|B3−〉 0 0 0 0 0 0 0 0 0 0 0 1

∣∣Bµ1+

〉
0 0 0 − 1√

3
0 0

√
2
3

0 0 0 0 0

∣∣Bµ2+

〉
1√
3

0 1√
3

0 0 1√
6

0 0 0 1√
6

0 0

∣∣Bµ3+

〉
0 0 0 1√

3
0 0 1√

6
0 0 0 1√

2
0

∣∣Bµ4+

〉
0 0 0 0 0 0 0 0 0 0 0 1

∣∣Bµ1−〉 0 − 1√
3

0 0
√

2
3

0 0 0 0 0 0 0

∣∣Bµ2−〉 0 0 0 0 0 0 0 1 0 0 0 0∣∣Bµ3−〉 0 − 1√
3

0 0 − 1√
6

0 0 0 1√
2

0 0 0

∣∣Bµ4−〉 1√
3

0 − 1√
3

0 0 − 1√
6

0 0 0 − 1√
6

0 0



,

where, as before, rows are the (normalized) bright state superpositions of ground states. Rows 1-3

correspond to laser σ+ transition, rows 4-6 to laser σ− transition, while rows 7-10 show bright state

superposition for microwave σ+ transition, and rows 11-14 represent superpositions for microwave

σ− transition. Having a matrix of dimensions 14 × 12 with only 12 ground states, we expect to

find at least two linearly dependent superpositions. Indeed row 1 and 12 (states |B1+〉 and
∣∣Bµ

2−
〉
),

as well as row 6 and 10 (states |B3−〉 and
∣∣Bµ

4+

〉
) are exactly the same vectors. After eliminating

one copies of each, we are left with a 12 × 12 matrix. As was mentioned previously, a necessary

condition is that the rank of the effective coupling matrix must be equal to dimension of the ground

state space, and in case of a square matrix this boils down to a non-zero determinant. Here, we
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find that det Ωeff = 1/3 (after making it a square matrix) and so rank Ωeff = 12.

Because we’re using non-decaying states, we also need to check non-orthogonality of some of

the bright states by looking at the matrix O = Ω†effΩeff . Unfortunately, we realize that two states,

namely
∣∣Bµ

3+

〉
and

∣∣Bµ
3−
〉
, create their own disjoint subspace, i.e. they are not connected to any

of the bright states with respect to optical transition. In other words, these two state states lie in

dark state space (with respect to optical transition), and even though they are bright states with

respect to the microwave transitions, the population trapped in these states cannot be moved to

any of the other 10 states in the J = 1− manifold.

J = 0+

J = 1−

X1Σ+(ν = 0)

F1 = 1/2

F1 = 1/2

F1 = 3/2

F = 0

F = 1

F = 0

F = 1

F = 1

F = 2

τ = 99 ns

γ = 1.6 MHz

FCF00 = 0.99

J̃ ′ = 1+

B3Π1(ν ′ = 0)
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Figure 6.4.1: Diagram of the Q1 optical cycling transition in a real TlF system. We use it to measure

population of one of the projections of the final superposition state.

To prove that the conclusion is correct, we solve the equations for density matrix time evolution

with all splittings equal to 0 (to avoid any evolution of dark states that could obscure the result)

and in a scheme with 4 distinct pulses: laser with σ+ polarization, laser with σ− polarization,

microwaves with σ+ polarization and finally microwaves with σ− polarization. The solution was

obtained for ΩL = 1.58 Γ, δL = 0, Ωµ = 19.4 Γ and δµ = 200 Γ and pulse times: tL,+ = tL,− = 1 µs
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and tµ,+ = tµ,− = 2 µs. Plot in Fig. 6.4.2 shows time evolution of: bright states with respect to

optical transitions (both polarizations; sum of 6 states), all dark states collectively, the two disjoint

dark states
∣∣Bµ

3+

〉
and

∣∣Bµ
3−
〉
, the ground rotational state and the excited state. It can be seen

quite clearly that even though the main principles of the scheme work as they should, that is that

microwaves remix dark and bright states, through the decay the population slowly accumulates in

the disjoint dark states, which are not remixed, and that eventually causes the scattering rate to

drop to zero.

Figure 6.4.2: Time evolution of populations in a real TlF system for a scheme with switching between σ+

and σ− polarization of light and between strong off-resonance pulses of σ+- and σ−-polarized microwaves

coupling to J = 0+ state. We used ΩL = 1.58 Γ, δL = 0, Ωµ = 19.4 Γ and δµ = 200 Γ while keeping splittings

∆0 = ∆1 = ∆11 = ∆12 = 0. Je in the figure marks excited state’s total angular momentum quantum

number.

This method in our system might be viable to a certain extent. If the splitting-induced evolution

of the disjoint dark states is moderately fast or if we want to maximize scattering rate over a rather

short interaction time, this scheme will not result in a zero scattering rate - there simply will

not be enough time for that to happen. However, in general this method will not destabilize all

the dark states. For that we will have to add a different coupling. One of the options would

be to couple the states with additional laser beam to
∣∣∣J̃ ′ = 1, F̃ ′1 = 3/2, F ′ = 2

〉
excited state and

switch its polarization. Indeed one can check that the resulting effective coupling matrix has a
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non-zero determinant, and these being normal decaying excited states, we can be sure the scheme

would work. However, in a real system this state is problematic and that is why this scheme was

not explored in the previous toy model. Namely, the real
∣∣∣J̃ ′ = 1, F̃ ′1 = 3/2, F ′ = 2

〉
has strong

admixtures of higher rotational states and it causes it to decay to J = 3− rotational state as can

be seen in table B.4. Therefore, we should destabilize the dark state with the help of J = 2+ state

or find different spatial and polarization configurations of laser and microwaves in the described

scheme.

6.4.2 Experimentally Achievable Optical Cycling

As it happens, a slightly different configuration of microwaves and lasers actually allows for a

complete removal of the dark states by using the J = 0+ rotational manifold as the source of

auxiliary states (diagram in Fig. 6.4.1 depicts details of the Q1 transition). This configuration was

used by L. Hunter’s group at Amherst College. There, laser polarization was switched between

two orthogonal linear polarizations: π and x ≡ (σ+ + σ−)/
√

2. Microwaves, being at an angle of

45◦ from the laser in the plane perpendicular to the quantization axis were also switched between

two orthogonal linear polarizations with phase offset of π/2 with respect to laser’s polarization

switching. The real setup is presented in Fig. 6.4.3.

Figure 6.4.3: Experimental setup of TlF optical cycling experiment performed at Amherst College in group

of L. Hunter. Courtesy of Nathan Clayburn.
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In such configuration and for a system with real transition dipoles, i.e. with excited state

mixing of hyperfine states included (for considered
∣∣∣J̃ ′ = 1+, F̃ ′1 = 1/2, F ′ = 1

〉
state the mixing

is almost negligible), all the dark states are expected to be remixed, unlike in the example with

disjoint dark states shown before. The conclusion from the previously described models is also that

the most effective and feasible method for reaching high scattering rates is keeping the microwaves

on-resonance and balancing its Rabi rate with respect to the laser Rabi rate.

Simulating the process gives results shown in Fig. 6.4.4. It can be seen in Fig. 6.4.4a that, as

expected, proper balancing of Rabi rates is crucial in obtaining high scattering rates. In Fig. 6.4.4b

we show time evolution for ΩL = 10 Γ and Ωµ = 9 Γ that gives an average scattering rate of

Γ̃ ≈ Γ/8.3, which already is pretty close to the limit of Γ/6.3 for this system. Such Rabi rates

should also be quite reasonable to obtain in an experimental setting and can be utilized in the

detection region of our experiment, where we will have to scatter as many photons as possible from

the J = 1 manifold.

(a) Total excited state population versus mi-

crowave and laser Rabi rates.

(b) Time evolution of populations for ΩL = 10 Γ

and Ωµ = 9 Γ.

Figure 6.4.4: Results of optical cycling simulation in a real system with J = 0+ and J = 1− rotational

manifolds in the X1Σ+ state and mixed
∣∣∣J̃ ′ = 1+, F̃ ′1 = 1/2, F ′ = 1

〉
excited state. Assumed geometry was

that of Fig. 6.4.3 and both lasers and microwaves had their polarization switched with frequency of 1.67 MHz.
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6.5 Q23 Transition

As was mentioned in Chapter 3, the final post-precession state has to have both of its projections

measured in order to calculate the asymmetry A parameter. While one of the projection’s popula-

tion can be simply measured efficiently by using the Q1 transition (as was just shown), the second

projection is more challenging to measure. This projection has to be in a rotational state J > 1

to allow for a proper detection of the other projection via the Q1 transition. Out of the choices

available, simply projecting onto J = 2 rotational level seems to be our best option. The main

reason behind this, other than potential technical difficulties and inefficiencies of projecting onto

higher rotational states, is the fact that the Q-line transitions for J > 1 begin to overlap due to

similar rotational constants in X1Σ+ and B3Π1 states [39].

A reasonable choice of the detection transition is the Q23 line shown in Fig. 6.5.1. All Q-line

transitions for J = 2 overlap with other Q-lines, but the transition coupling to the excited state∣∣∣J̃ ′ = 2−, F̃ ′1 = 5/2, F ′ = 3
〉

is especially good comparing to other Q2 transitions. The reasons are

following: assuming full dark state remixing, this transition should scatter almost 17 photons before

the population is lost to a different rotational state; most of the hyperfine states in ground J = 2

rotational states are coupled (all except F = 1); and it is overlapped with a Q3 line coupling J = 3

ground state manifold with the
∣∣∣J̃ ′ = 3+, F̃ ′1 = 7/2, F ′ = 3

〉
excited state that by itself can scatter

up to about 30 photons. This overlap with a Q3 line also allows to kill two birds with one stone,

namely remixing of the dark states in both J = 2 and J = 3 rotational manifolds can be done

simultaneously by coupling them with microwaves at ∼ 40 GHz.

Unlike in the case of the Q1 transition, here we are not limited by the vibrational branching

ratios, so in the best case scenario we will be able to scatter between 17 and 30 photons per

molecule. The exact number will depend on laser and microwave powers and behavior of their

polarizations - the number of photons in the end will be decided by the average time a molecule

spends in Q3 versus Q2 transition. In Fig. 6.5.2 we show populations of different rotational states

that take part in the process over the first 50 µs of the interaction. In this calculation, used as an

example to show that a decent number of photons can indeed be scattered through this transition,

we assumed experimentally realistic ΩL ≈ 5.3 Γ and Ωµ ≈ 5.2 Γ, with both laser and microwaves

polarization-switched with pulse time of 500 ns (1 MHz modulation frequency), a π/2 phase shift

between both modulations, and geometry of the previously discussed Q1 transition (Fig. 6.4.3).
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Figure 6.5.1: Diagram of the Q23 transition (overlapped Q2 and Q3 transitions) used to measure population

in the other projection of the final superposition state.

The total number of photons scattered per molecule within the interaction time was calculated

to be nγ = 22, a number higher than the 17 photons we would expect from a pure Q2 transition.

Fig. 6.5.2 also clearly shows that the scattering process cannot be sustained and the population

inevitably accumulates in higher rotational states due to lack of rotational closure in the Q2 and

Q3 lines, and therefore an average scattering rate Γ̃ is not a good unit of measure to describe

efficiency of this process. Nevertheless, this transition should still provide a strong signal that can

be used for final state’s projection detection.
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Figure 6.5.2: Time evolution of populations in different rotational states in an example of an overlapped

Q23 transition. Solution was obtained for ΩL ≈ 5.3 Γ and Ωµ ≈ 5.2 Γ with 1 MHz polarization switching

applied to both the laser and the microwaves. In this simulation 22 photons are scattered per interacting

molecule proving viability of using this transition for final state’s projection detection.
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Chapter 7

Rotational Cooling Models

7.1 Models for Rotational Cooling

One of the major parts of the experiment is rotational cooling, where we want to bring the molecules

to the ground rotational state J = 0. Task seems pretty straight-forward: by coupling rotational

states other than J = 0 to J = 2 rotational state, and by simultaneously coupling the J = 2 state

to the excited electronic state, the spontaneous decay process should eventually bring most of the

molecules to the J = 0 state. Simple models show that this is of course true, such method will

work. However, we require the molecules not only to be in the ground rotational state, but also

to be in the single F = 0 hyperfine state. How can this be achieved most efficiently? Should we

rely only on spontaneous decay or couple other hyperfine states in J = 0 with microwaves? Can

we create a system where the desired final state is completely dark, and so the whole population

ends up in it at the end of the process?

7.1.1 Various Parameters

In this chapter’s simulation we are assuming that the interaction time is limited by the transit

time through the laser beam, for which we will assume d = 1 − 2 cm. Because molecules in the

experiment move with speeds approaching 200 m/s, the assumed interaction time will be 50-100 µs

depending on the analyzed scheme. We will assume that all of the molecules move with the same

speed, so no Doppler broadening will be present and interaction time will be the same for all of

them. Also, as mentioned earlier, Γ ≈ 2π×1.6 MHz, and the spontaneous emission will be the only
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cause of decoherence in the system. All the fields are assumed to be phase-coherent, i.e. phases of

all the fields interacting with molecules stay constant with regards to each other over the course

of interaction. Rabi rates and electric fields will be defined as in Chapter 6. Finally, the energy

splittings between states will be those of diagram shown in Fig. 2.2.1 and no external fields will be

assumed.

7.1.2 Initial Distribution

We will assume that the populations in different rotational states are distributed according to

Boltzmann distribution:

nJ =
gJe
−2π~BrotJ(J+1)/kBT∑

J gJe
−2π~BrotJ(J+1)/kBT

, (7.1.1)

where Brot = 6.668 GHz is the effective rotational constant for X1Σ+, and gJ = 4(2J + 1) are

degeneracy factors in TlF system. At T = 7 K, which is approximately rotational temperature we

measure in our beam (measured distribution is shown in Fig. 3.2.2) and what we used in numerical

simulations, the population is concentrated at low J ’s: nJ=0 = 0.0451, nJ=1 = 0.1235, nJ=2 =

0.1714, nJ=3 = 0.1822, nJ>3 = 0.4778. When used as initial conditions in our equations the

populations will be normalized to 1. In more realistic models, population in given rotational state

will be evenly divided into hyperfine states given that our hyperfine splittings are on the order of

hundreds of kHz (∼ 5µK).

7.2 Optical Pumping and Polarization Switching

The basis of the rotational cooling process is optical pumping. We would like to move popu-

lation from J = 2 rotational manifold to J = 0. First, we need to choose an appropriate ex-

cited state. Unlike in the case of optical cycling, here we will be using excited states of e-parity.

Given the rotational branching ratios (table B.3), the state that would suit our needs the most

is
∣∣∣J̃ ′ = 1−, F̃ ′1 = 3/2, F ′ = 1

〉
, which preferentially decays into |J = 0, F1 = 1/2, F = 0,MF = 0〉

state. Simplified diagram in Fig. 7.2.1 shows these branching ratios together with the transition

used in this optical pumping process. This transition, using spectroscopic terms, is a P2 transition

(P-branch corresponds to transitions for which J ′ = J−1). Because it will be mentioned very often

in this and following chapters, we will abbreviate it by calling it a P2F1 transition (F1 referring to
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the excited hyperfine state).

F = 3

F = 2

F = 2

F = 1

J = 2

F = 0

F = 1 J = 0

F ′ = 1

F ′ = 2

J̃ ′ = 1−, F̃ ′1 = 3/2

Ω
0.516 Γ

0.337 Γ
0.147 Γ

Figure 7.2.1: Diagram of P2F1 transition together with real rotational branching ratios.

This transition couples 20 ground states to 3 excited states creating 17 dark states, from which

the population cannot be removed if dark state destabilization methods are not used. Out of the

dark states involved, the whole hyperfine F = 3 manifold is trivially dark, i.e. the selection rules

∆F = 0,±1 forbid this transition to occur. This already points towards the necessity of utilizing

microwaves for dark state destabilization and population removal that would couple this hyperfine

manifold to an auxiliary set of states. However, first we will simply concentrate on the dark states

in the remaining 15 sublevels of J = 2 rotational manifold, and discuss the role of microwaves in

next sections.

The number of remaining dark states can be reduced from 12 to 9, if we employ laser polarization

switching. Given the limited interaction time, we need to ask what is the most optimal switching

frequency that will allow us to remove most population from the existing bright states given the Rabi

rate of our laser. In the previous section, the pulse times and, equivalently, switching frequencies

were chosen by trial and error which yielded results good enough to act as proof of principle for

our methods. Here, we would like to obtain a more precise numerical value.
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In order to find the switching frequency, we need to look at the population removal time. The

easiest way to do it is to setup a Λ-type system analyzed before and shown here in Fig. 7.2.2. For

such system one can show that the populations in considered states behave like:

ρ|B〉(t) = A|B〉e
−r0t [1 +B|B〉e

−r1t cos (ω|B〉t+ δ|B〉)
]

ρ|E〉(t) = A|E〉e
−r0t [1−B|E〉e−r1t cos (ω|E〉t+ δ|E〉)

]
ρ|D〉(t) = 1−A|D〉(t)e−r0t

[
1−B|D〉e−r1t cos (ω|D〉t+ δ|D〉)

]
,

where all parameters Ai, Bi, r0, r1, ωi, δi are functions of Γ, Ω and α assuming that we are on

resonance. In such situation, all of these parameters are also directly functions of roots of a 3rd

degree polynomial P (x):

P (x) = x3 +
3Γ

2
x2 +

1

2

(
2Ω2 + Γ2

)
x+

1

2
αΩ2Γ = 0.

|B〉

|E〉

|D〉

Ω

(1− α)Γ
αΓ

Figure 7.2.2: Diagram of a three-level system in Λ configuration with explicit dark and bright states. Decay

to the dark state occurs with rate αΓ.

We can see that the population in the bright state decays within an exponential envelope -

any oscillations that appear due to the existence of the cosine term, and that become visible when

Ω� Γ, have exponentially decaying amplitude. We can then use the r0 rate to determine time t0

it takes the initial population to drop to 1/e of its initial value:

t1/e =
1

r0

Ω�Γ−→ 2

αΓ
=

2τ

α
, (7.2.1)
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where τ is excited state’s lifetime.

Similarly, we can look at the total number of photons scattered in the process per molecule in

the initial state (1 in this toy model). We can define it using the excited state population function:

nγ(T ) =
1

ρ|B〉(t = 0)

∫ T

0
Γρ|E〉(t)dt = Γ

∫ T

0
ρ|E〉(t)dt.

As it happens, for Ω� Γ:

nγ(T )
Ω�Γ−→ 1

α
− e−αΓT/2

α
, (7.2.2)

which, as expected, for sufficient long interaction time goes to 1/α. This long interaction time

limit holds for any Rabi rate Ω and is consistent with a result obtained from a discrete model of

optical pumping in system described here, where every time system gets into the excited state, it

has α probability to decay into the dark state and 1− α probability to decay back into the bright

state. Such a process, where we can treat decay into the dark state as “success” is described by

a geometric distribution, which tells us that the expected number of decays to obtain a “success”

event is simply 1/α, which is also the number of scattered photons.

The above can also be easily understood if we simply consider the excited state decaying with

constant rate R. For large Rabi rates we can simply model the process as a typical first-order

decay. Percentage of population that underwent the decay until time t under this model is simply

1 − exp(−Rt), and because for every such decay nγ photons is scattered, the number of photons

scattered until time t is nγ(1− exp(−Rt)). For nγ = 1/α we obtain the result shown in Eq. (7.2.2)

with R = αΓ/2.

From Eq. (7.2.2) we can also obtain the characteristic time t1/e after which we will have already

scattered (1 − 1/e)/α photons. This will lead to the same result as in Eq. (7.2.1). In the real

TlF system in our P2F1 rotational cooling transition α ≈ 0.484 and τ ≈ 99 ns, which gives us

t1/e = 409.1 ns. In case of polarization switching, this should be interpreted as the pulse time at

every polarization. Hence, switching frequency should be fsw = 1/2t1/e ≈ 1.22 MHz. If we used

pure states instead, we would obtain fsw ≈ 1.67 MHz. True experimental optimal value can be

expected to be somewhere around value estimated here. One could also argue that it might be even

more beneficial to not wait for population to drop to 1/e of its initial value, but instead look at its

half-life. Then, t1/2 = t1/e ln 2 ≈ 283 ns and fsw ≈ 1.76 MHz. In numerical simulations we decided

to use switching frequency of 1.67 MHz corresponding to 300 ns pulse times.
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7.3 Selective Hyperfine State Coupling in J = 0+

Before we move to the actual models we eventually considered for rotational cooling, we will quickly

explore a seemingly good idea that in our particular molecular level structure cannot efficiently

work. In principle, we could try to selectively move population from the |J = 0, F = 1〉 state

leaving population in |J = 0, F = 0〉 untouched (effectively the latter would be a dark state). This

could be done by a microwave coupling to J = 1 rotational manifold. However, given the very

small hyperfine splittings in the ground electronic states, this process might be challenging to

realize. Diagram in Fig. 7.3.1 depicts the system that we considered.

We designed the system in such a way that only relevant hyperfine states are included and other

states are represented as one level. Zeeman sublevels were not included, so there is also no polariza-

tion dependence in the system. We decided to assume the following couplings: |J = 2〉 to
∣∣∣J̃ ′ = 1

〉
via laser ΩL representing the P2F1 rotational cooling transition; |J = 1, F = 1, 2〉 to |J = 2〉 via

microwaves Ωµ2 , which in real system not only remixes dark states in J = 2, but also brings popu-

lation from J = 1 to J = 2; |J = 0, F = 0〉 to |J = 1, F1 = 3/2, F = 1〉 via microwaves Ωµ1 (F = 0

to F = 2 dipole transition is forbidden) and |J = 0, F = 1〉 to both |J = 1, F1 = 3/2, F = 1, 2〉 via

the same microwaves. The last transition is the one we investigated. Splitting the J = 0 and J = 1

rotational states into to two hyperfine states allowed us to see how selective this transition can

be, and the states we chose represent the best-case scenario due to one transition being forbidden.

Optical pumping from J = 2 and moving population from J = 1 to J = 2 in this system was not

a cause of any unforeseen problems.

Couplings are determined only by the respective Rabi rates related to driving field strengths.

No additional parameters were added, e.g. coupling between states |J = 1, F = 1, 2〉 and |J = 2〉
is the same and is equal to Ωµ2/2. Laser was assumed to be always on, while both microwaves are

never on simultaneously. The change occurs after tp time has elapsed. This allowed us to observe

more clearly how populations in different states are affected by the light couplings. Finally, decays

from the excited state go to the J = 2 rotational state with rate Γ/2 and to states F = 0, 1 in

J = 0 with rates Γ/4, where Γ ≈ 2π × 1.6 MHz. These branching ratios are not the real ones and

were chosen not to decay preferentially into any of the states.
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Figure 7.3.1: Simplified system of thallium fluoride designed to investigate efficiency of selective coupling

to specific hyperfine levels.

In such a system the hamiltonian after eliminating its time dependence with a unitary transforma-

tion (and assuming real Rabi rates) takes form:

H =



|J = 0, F = 1〉 |J = 0, F = 0〉 |J = 1, F = 1〉 |J = 1, F = 2〉 |J = 2〉 |J̃ ′ = 1〉

0 0 −Ωµ1
2

−Ωµ1
2

0 0

0 ∆0 −Ωµ1
2

0 0 0

−Ωµ1
2

−Ωµ1
2

δµ1 −∆1 0 −Ωµ2
2

0

−Ωµ1
2

0 0 δµ1 −Ωµ2
2

0

0 0 −Ωµ2
2

−Ωµ2
2

δµ1 + δµ2 −ΩL
2

0 0 0 0 −ΩL
2

δL + δµ1 + δµ2



.

For simplicity, we also assumed δµ2 = δL = 0. The goal of this toy model was to find such

combination of Rabi rates and detuning δµ1 for given splittings ∆0 and ∆1 that in t ≈ 100 µs

we obtain maximal population in the |J = 0, F = 0〉 state. In principle, we could expect that the

most sensible solution involves having the microwave transition from J = 0 on resonance with

the |J = 0, F = 1〉 ↔ |J = 1, F = 2〉 transition, so that the molecules in the |J = 0, F = 0〉 are not

strongly affected (they would be detuned by ∆0 + ∆1 for the resonance). At the same time we

140



CHAPTER 7. ROTATIONAL COOLING MODELS

would need Ωµ1 < ∆0 + ∆1 to avoid power broadening, and ΩL and Ωµ2 to be rather larger (on the

order of Γ).

To get a sense of what would be the best pulse time tp, we can think of a situation when both

ground states |J = 0, F = 0, 1〉 are coupled separately to an excited state. Then, over a course of

one pulse we would want to transfer all the population away from |J = 0, F = 1〉, which corresponds

to a (2n+ 1)π pulse, and have the population in state |J = 0, F = 0〉 to go back from the excited

state, corresponding to a 2kπ pulse. Then, we get following conditions:

Ωµ1tp = (2n+ 1)π√
Ω2
µ1

+ (∆0 + ∆1)2tp = 2kπ,

for k, n ∈ N, where ∆0 + ∆1 is the effective detuning from resonance for one of the transitions

(δµ1 = 0 in such case) and should be provided in angular frequency units. Then:

tp =
π

∆0 + ∆1

√
4k2 − (2n+ 1)2

Ωµ1 = (∆0 + ∆1)
2n+ 1√

4k2 − (2n+ 1)2
.

Ideally, we would want the shortest pulse time for given detuning, which one can find for n = 0

and k = 1 (so a π and a 2π pulse). However, for such a choice of n and k the obtained Rabi rate

affects the |J = 0, F = 0〉 quite strongly. Hence, we tried using n = 0 and k = 2 instead in order

to minimize that effect. We should also note that this is of course an approximation that would

require the |J = 0, F = 1〉 state to not “talk” at all to the |J = 1, F = 1〉 state, which is simply not

true. However, the mentioned coupling is weaker due to effective detuning of ∆1, which causes the

population transfer to be suppressed.

To test if the idea can in principle work in our system, we considerws splittings that are 10 times

bigger than in the real molecule, namely (in angular frequency units) ∆0 = 2π×133 kHz and ∆1 =

2π × 145 kHz. For such splittings, n = 0 and k = 2 we calculated tp ≈ 6.96 µs and Ωµ1 = 2π × 72

kHz. We also tried to compare results obtained for these calculated parameters with numerically

found optimal solution with the identical pulse time and number of pulses. Optimization yielded

microwave Rabi rate Ωµ1 = 2π×57 kHz, quite close to the estimated one. We also used ΩL = Ωµ2 =

Γ and δµ2 = δL = 0 for which optical pumping from J = 1 and J = 2 was efficient enough given the
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pulse time. Fig. 7.3.2 depicts evolution of population in states |J = 0, F = 0〉 and |J = 0, F = 1〉
for the optimal set of parameters.

Figure 7.3.2: Evolution of states |J = 0, F = 0〉 and |J = 0, F = 1〉 for TlF hyperfine splittings order of

magnitude larger than in the real system. Shown solution was obtained for 14 pulses of tp ≈ 6.96 µs length,

ΩL = 2π × 1.6 MHz, Ωµ1
= 2π × 57.3 kHz, Ωµ2

= 2π × 1.6 MHz and δµ1
= δµ2

= δL = 0.

We can clearly see that for obtained parameters and chosen interaction time of 100 µs we

obtain more population in the |J = 0, F = 0〉 state. Indeed, within one pulse time population in

|J = 0, F = 1〉 is slowly removed in a π-like transition, while population in |J = 0, F = 0〉 state

moves back and forth eventually stopping at local maximum of oscillations at the end of the pulse

(here, 2 full oscillation occurred, which we can call a 4π-like transition). This simple model shows

us that in 100 µs we can obtain approximately 97% of the molecules in the ground rotational state

and the F = 0 hyperfine state.

The question is if the same approach will work in the real TlF system. The procedure itself

should work, after all in reality simply the hyperfine splittings are smaller. However, tp ∼ (∆0 +∆1)

and Ωµ1 ∼ (∆0 + ∆1)−1, which means that in the real system the Rabi rate would have to be much

smaller if it is to just barely couple to the F = 0 state, and that the pulse time would have to be

order of magnitude higher. Fig. 7.3.3a shows the solution for Ωµ1 = 2π × 5.73 kHz and tp ≈ 69.6

µs and 14 pulses clearly proving that the method works just as well, although now the total

interaction time would have to be increased by the same order of magnitude, which is not possible
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experimentally. Even changing the duty cycle of microwave pulses (the optical pumping process

here is much faster than the Rabi oscillations), which would allow us to cut the total interaction

time almost in half, would not be enough.

Of course, we could try larger Rabi rates giving larger number of oscillations per pulse (larger k

and n), which should provide a similar result. Fig. 7.3.3b shows results for interaction time of 100

µs, 14 pulses and Ωµ1 = 2π × 668 kHz found through numerical optimization. Indeed, correctly

matched oscillations still allow for selective population removal. However, these oscillations have

much larger amplitude than before and, because of their frequency, their result strongly depends

on the exact pulse time. We can imagine that in realistic experimental setting where we interact

with an imperfect molecular beam, such precision and control is not achievable.

(a) Solution for estimated Ωµ1 = 2π×5.73 kHz and

14 pulses with duration of tp ≈ 69.6 µs resulting

in ∼ 1 ms total interaction time.

(b) Solution for Ωµ1 = 2π × 668 kHz obtained

through numerical optimization and 14 pulses with

duration of tp ≈ 7.14 µs resulting in ∼ 100 µs total

interaction time.

Figure 7.3.3: Evolution of states |J = 0, F = 0〉 and |J = 0, F = 1〉 for real TlF hyperfine splittings. Both

solutions used ΩL = 2π × 1.6 MHz, Ωµ2
= 2π × 1.6 MHz and δµ1

= δµ2
= δL = 0.

7.4 Investigated Schemes

Having understood how quickly a process of removing population from the bright states occurs

and having realized that a tempting method of selective population removal would not work for
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states of our choice in TlF molecule, we investigate three different experimentally feasible schemes

by performing numerical simulations on the full quantum system. The first one is a benchmark

scheme where we simply use P2F1 rotational cooling transition and two additional microwaves to

optically pump the desired state. In this scheme it is the rotational branching ratios that do the

work of selectively choosing our final state. The next two schemes use an additional laser beam

that allows us to create one specific dark state of our choice in our TlF system. Naturally, the

population accumulates in that dark state and rotational cooling process becomes very efficient.

The second scheme shows a configuration where the specific dark state superposition depends on

polarization of the auxiliary laser, while the final scheme is thought of in such a way, that the dark

state is polarization-independent. To compare the schemes, we included only the J = 1 ↔ J = 2

microwave coupling, which simplifies the calculations. The chosen scheme was then also evaluated

with the second set of microwaves included.

7.4.1 Benchmark Scheme

We begin with a scheme that is based solely on the P2F1 transition and is depicted in Fig. 7.4.1.

We call this a benchmark scheme, because two other methods that are investigated are built on top

of this one. Here, the chosen excited state preferentially decays into the |J = 0, F = 0〉 hyperfine

state, and for this reason we treat it as our final desired state in this scheme. Population from the

J = 2 rotational manifold is then optically pumped into it. In order to remove the population from

other rotational states, we couple them via microwaves to the J = 2 manifold.

Dark states, just as was mentioned previously, being an ever-present problem, decrease efficiency

of this process as well. To alleviate that we switch laser’s polarization between two orthogonal linear

polarizations - one defining the quantization axis ẑ and one along the x̂ direction. The remaining

dark states in J = 2 are then remixed by the microwave coupling, which, as we saw in the previous

chapter, is quite efficient at this job. Additionally, the microwaves are here also assumed to have

their polarization switched between two orthogonal linear polarizations following the geometry first

shown in Fig. 6.2.1. Rabi rates are then constructed using the equations provided in previous

chapter such as Eq. (6.2.2). Microwave polarization switching is offset in phase from the laser

polarization switching by π/2, and both are switched with frequency of ∼ 1.67 MHz (so closer to

the excited state’s decay half-time described at the beginning of this chapter).
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J = 3−

J = 2+

J = 1−

F = 0

F = 1 J = 0+

F ′ = 1
J̃ ′ = 1−, F̃ ′1 = 3/2

ΩL

Ωµ12

Ωµ23

0.516 Γ

0.337 Γ
0.147 Γ

Figure 7.4.1: Benchmark rotational cooling scheme based on P2F1 transition and utilizing uneven rotational

branching ratios to accumulate population in the |J = 0, F1 = 1/2, F = 0〉 state. Populations in J = 1− and

J = 3− rotational manifolds are coupled to J = 2+ state via microwaves.

In this scheme we used a 50 µs interaction time, the base Rabi rate given by Eq. (6.2.1) for

both the laser and microwaves was assumed to be around 5.8 Γ, which for the laser corresponds to

50 mW of power uniformly distributed in a beam of 3 mm diameter. We should note that such

parameters are what we expect to achieve experimentally and obtaining such interaction time with

such narrow beam can be done using multipassing. In case of microwaves such Rabi rate corresponds

to ∼ 125 mW of power in a beam of ∼ 2.5 cm diameter. Laser is assumed to be on resonance with

the |J = 2, F1 = 3/2, F = 2〉 manifold, although small hyperfine splittings (∆ � Ω ≈ Γ) are not

“visible” from laser’s point of view - the power broadening will be much higher than the splittings.

The microwaves were on resonance with the |J = 1, F = 1/2, F = 0〉 ↔ |J = 2, F1 = 3/2, F = 1〉
transition, but again it is pretty irrelevant - not only the power broadening is higher than any

splitting, the energy differences between hyperfine levels in J = 1 and J = 2 manifold are very

similar. They were also assumed to propagate an angle of 45◦ with respect to the quantization

axis. When J = 2↔ J = 3 microwaves were used, they propagated at an angle of −45◦.

In figure 7.4.2 we present graphs showing time evolution of populations in different states that

were used in the numerical simulation. We notice that, as expected, the population accumulates
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in the F = 0 hyperfine state of the ground rotational state. It reaches value of approximately 0.63,

meaning that 63% of all the molecules that started in J = 0 − 2 rotational states ends up in that

final state. Simultaneously, we obtain about 99% of molecules in the ground rotational state. The

accumulation happens quite quickly for given parameters and then after about 30 µs reaches a

plateau. The population does not linger in any dark state subspace, although we can observe that

population in J = 2 seems to be removed the slowest. However, it is probably not the case - the

rate with which the removal occurs is the same, but given the higher initial population more time is

required to complete the process. If it is the case, it is the population in the F = 3 hyperfine level,

which is not directly coupled to the excited state, that takes the longest to be optically pumped

as it has to first be transferred to the J = 1 rotational state, where it only couples to the F = 2

manifold. We expect that adding J = 2↔ J = 3 microwaves might quicken this process.

(a) Time evolution of populations in J = 0 − 2

rotational manifolds in the X1Σ+ ground elec-

tronic state and
∣∣∣J̃ ′ = 1−, F̃ ′1 = 3/2, F ′ = 1

〉
hy-

perfine state in the B3Π1 excited electronic state.

(b) Time evolution of populations in the J = 0

rotational manifold in the X1Σ+ ground electronic

state.

Figure 7.4.2: Time evolution of states in the benchmark rotational cooling scheme. The population clearly

accumulates in the |J = 0, F1 = 1/2, F = 0〉 state and reaches population of ∼ 0.63 after 50 µs interaction

time.
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7.4.2 Polarization-dependent Engineered Dark State

As was shown in the previous section, selective coupling or selective creation of a dark state in the

J = 0 rotational ground state is not feasible using microwaves. Instead, we can think of solutions

utilizing an additional laser. With its help we can engineer a dark state and make it our final

state into which we accumulate population. The first such idea is depicted in Fig. 7.4.3 showing

couplings in this scheme, and it includes an addition of an auxiliary laser inducing a R0F1 transition

(J ↔ J ′ + 1 transition for J = 0 state and F = 1 hyperfine excited state).

J = 3−

J = 2+

J = 1−

M = 0

M = −1 M = 0 M = 1

J = 0+

F = 1

F = 0

M = −1 M = 0 M = 1
J̃ ′ = 1−, F̃ ′1 = 3/2, F ′ = 1

ΩL

Ωπ
aux Ωπ

aux Ωπ
aux

Ωµ12

Ωµ23

Figure 7.4.3: Rotational cooling scheme based on the P2F1 transition accumulating population in the

hyperfine Zeeman sublevel |J = 0, F1 = 1/2, F = 1,MF = 0〉 by making it a polarization-dependent dark

state with the help of second π-polarized R0F1 laser transition. Populations in J = 1− and J = 3−

rotational manifolds are coupled to J = 2+ state via microwaves. For clarity, decays paths were not shown.

By coupling the J = 0 manifold to the same hyperfine state we are using for the main rota-

tional cooling transition, we are creating a single dark state. This dark state depends on polar-

ization of the additional laser. In the simulations we assumed a π-polarized light which makes

|J = 0, F = 1,MF = 0〉 state dark. However, for other polarizations it would be different, e.g. for

light polarized along the x̂ direction we would obtain a dark state that is a superposition of two

stretched states, namely (|J = 0, F = 1,MF = −1〉−|J = 0, F = 1,MF = 1〉)/
√

2. This dependence
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of the final state on the auxiliary laser’s polarization is the main drawback of this scheme.

It also seems that this accumulation process is slower than in the benchmark case, and so we

used 100 µs interaction time instead of 50 µs like before. Rabi rates of the P2F1 transition laser

and microwaves were identical as in the previously investigated scheme, and so were the switching

frequencies and phases, and detunings. We did not include the J = 3 rotational state either

and potential problems related to that and appearing in the benchmark scheme persisted. The

auxiliary laser had a Rabi rate of 4 Γ, was on resonance with the |J = 0, F = 1〉 manifold and, just

to emphasize, the it had a constant π-polarization (along the chosen quantization axis ẑ).

(a) Time evolution of populations in J = 0 − 2

rotational manifolds in the X1Σ+ ground elec-

tronic state and
∣∣∣J̃ ′ = 1−, F̃ ′1 = 3/2, F ′ = 1

〉
hy-

perfine state in the B3Π1 excited electronic state.

(b) Time evolution of populations in the J = 0

rotational manifold in the X1Σ+ ground electronic

state.

Figure 7.4.4: Time evolution of states in the benchmark rotational cooling scheme with an auxiliary laser

creating a polarization-dependent dark state by coupling J = 0+ ground rotational state to the F ′ = 1 hyper-

fine state (R0F1 transition). The population clearly accumulates in one final state |J = 0, F = 1,MF = 0〉
and reaches population of ∼ 0.63 after 50 µs of interaction time and ∼ 0.85 after 100 µs.

In Fig. 7.4.4 we show results of the numerical calculation. As expected, the chosen engineered

dark state is populated correctly, although, as mentioned, this process is quite slow. After the

interaction time of 100 µs used in this simulation, we obtain as much as 85% of molecules in
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the final state and almost none in the other Zeeman sublevels of the ground rotational manifold.

However, if we consider only the first 50 µs we observe no gain comparing to the benchmark case.

The slowness of this process can be attributed to the fact that we use the same excited state

manifold for both main and auxiliary transitions.

7.4.3 Polarization-independent Engineered Dark State

A natural correction to the previous scheme would be to instead engineer a polarization-independent

dark state and preferably also create it by adding a coupling to a different hyperfine state. We

can achieve this by using a R0F2 transition instead of R0F1. Fig. 7.4.5 depicts this scheme and

emphasizes the large hyperfine splitting in the excited electronic state.

J = 3−

J = 2+

J = 1−

M = 0

M = −1 M = 0 M = 1

J = 0+

F = 1

F = 0

M = −2 M = −1 M = 0 M = 1 M = 2

M = −1 M = 0 M = 1
J̃ ′ = 1−, F̃ ′1 = 3/2, F ′ = 1

J̃ ′ = 1−, F̃ ′1 = 3/2, F ′ = 2

∼ 303 MHz

ΩL

Ωaux Ωaux Ωaux

Ωµ12

Ωµ23

Figure 7.4.5: Rotational cooling scheme based on the P2F1 laser transition accumulating population in

the |J = 0, F = 0〉 state by making it a polarization-independent dark state with the help of the second,

R0F2 laser transition (π polarization shown for simplicity). Populations in J = 1− and J = 3− rotational

manifolds are coupled to the J = 2+ state via microwaves. While for clarity the decays paths were not shown,

we should note that the hyperfine state F ′ = 2 in the excited electronic state decays into |J = 0, F = 1〉
state and all hyperfine states in the J = 2+ rotational manifold.
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Because the F ′ = 2 hyperfine manifold is approximately 300 MHz “away” from the the F ′ = 1

state we are using for rotational cooling, any laser with Rabi rates on the order of ∼ Γ will selectively

couple to it without interfering with other transitions. Coupling the J = 0 rotational state to the

F ′ = 2 hyperfine state with an auxiliary laser brings with itself a huge advantage. Namely, the

F = 0 ↔ F ′ = 2 transition is (dipole) forbidden. Therefore, such coupling will only interact with

the |J = 0, F = 1〉 state and selectively remove that population regardless of laser’s polarization.

The excited F ′ = 2 state has similar decay paths and rotational branching ratios as the F ′ = 1

state we are using for the main rotational cooling transition despite somewhat stronger hyperfine

mixing (see table B.3 for details), and so we still expect to be rotationally closed.

Here, we used interaction time of 50 µs like in the benchmark case. Analogically, the parameters

of the P2F1 and microwave transitions, and lack of the J = 3 state in the numerical simulations were

identical with the benchmark scheme. The auxiliary laser had a Rabi rate of 1 Γ, was on resonance

with the |J = 0, F = 1〉 manifold and, for simplicity, was assumed to be linearly polarized along

the quantization axis.

Fig. 7.4.6 shows time evolution of populations in different states. Population accumulates almost

exclusively in the |J = 0, F = 0〉 state with rate similar to the benchmark case. After 50 µs we

obtain about 98% of molecules in that state and almost none in the other sublevels of the ground

rotational manifold.

7.4.4 Summary

In table 7.4.1 we present comparison of three schemes we investigated. Using simply the benchmark

scheme based on preferential decay to one of the sublevels already leads, for parameters used, to

a 7-fold increase in the population in the ground rotational state and a 19-fold increase in the

population in the |J = 0, F1 = 1/2, F = 0,MF = 0〉 state. For a beam of molecules with rotational

temperature of about 7 K that means that after the rotational cooling process, about 21% of all

the molecules will be in that state.

The scheme with an auxiliary R0F1 transition that creates a polarization-dependent dark state

leads to very similar results for interaction time of 50 µs. However, whereas in the benchmark

scheme population transfer already plateaus after this interaction time, here the population keeps on

increasing leaving the possibility of much higher cooling efficiency for longer interaction times. The
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(a) Time evolution of populations in J = 0− 2 ro-

tational manifolds in the X1Σ+ ground electronic

state and
∣∣∣J̃ ′ = 1−, F̃ ′1 = 3/2, F ′ = 1, 2

〉
hyperfine

states in the B3Π1 excited electronic state.

(b) Time evolution of populations in the J = 0

rotational manifold in the X1Σ+ ground electronic

state.

Figure 7.4.6: Time evolution of states in the benchmark rotational cooling scheme with an auxiliary laser

creating a polarization-independent dark state by coupling J = 0+ ground rotational state to the F ′ = 2

hyperfine state (R0F2 transition). The population clearly accumulates in the |J = 0, F1 = 1/2, F = 0〉 state

and reaches population of ∼ 0.98 after 50 µs of interaction time.

main drawbacks of this scheme are final state’s strong dependence on auxiliary laser’s polarization

and its slow rate of population transfer.

Auxiliary R0F2 transition fixes the problems encountered in the previous scheme. The final

state is again |J = 0, F1 = 1/2, F = 0,MF = 0〉 and it does not depend on laser’s polarization. The

population transfer rate is much faster as well - 50 µs is more than enough to reach a plateau

even for modest auxiliary laser’s Rabi rates. While the population in the ground rotational state

increases by a factor of ∼ 7.4, so slightly smaller than in the benchmark scheme, the high selectivity

leads to a ∼ 29.5-fold increase in population in the final state. In the end we obtain about 33% of

all molecules in the desired state.
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Scheme
Auxiliary
transition Final state |f〉

Parameters
ρ|J=0〉(T ) ρ|f〉(T )

ρ|J=0〉(T )

ρ|J=0〉(0)

ρ|f〉(T )

ρ|f〉(0) % at 7K

Ωaux[Γ] ΩL[Γ] Ωµ12 [Γ] Ωµ23 [Γ]

Bench. None |F = 0,MF = 0〉 - 5.88 5.82 - 0.9910 0.6304 7.47 19.00 21.45

Pol-dep. R0F1 |F = 1,MF = 0〉 4.00 5.88 5.82 - 0.6620 0.6348 4.99 19.13 21.60

Pol-ind. R0F2 |F = 0,MF = 0〉 1.00 5.88 5.82 - 0.9806 0.9803 7.39 29.55 33.37

Bench. - full None |F = 0,MF = 0〉 - 5.88 5.82 5.82 0.9963 0.6547 11.53 30.32 34.19

Table 7.4.1: Comparison of three different rotational cooling schemes. All results are given after interaction

time of T = 50 µs. We assumed that the total initial population is equal to 1 and is distributed between

three lowest rotational states. The rightmost column shows the population in the final state as percentage

of all the molecules at 7 K, not only those beginning in the lowest rotational states used in the numerical

simulation. The last row shows results for the benchmark scheme with J = 3 included, for which initial

population in four lowest rotational states sums to 1. The final state is implied to be in the |J = 0, F1 = 1/2〉
manifold.

Unequivocally, engineering a polarization-independent dark state leads to the best results. Using

population in the final state as our metric, it is almost 50% better than the benchmark scheme.

Unfortunately, this comes at a cost. It requires an additional UV laser which would add a lot of

complexity and cost to our laser system. Possibility of adding an acousto-optic modulator to the

rotational cooling laser system, even at its IR or green stage, is excluded - frequency difference

between two lasers is ∼ 40 GHz. Ultimately, we decided to use the simplest scheme present - the

benchmark.

Having chosen the benchmark scheme as the final one, we performed numerical simulation with

inclusion of the J = 3 rotational state and the J = 2 ↔ J = 3 microwave coupling. The bottom

row in table 7.4.1 shows the parameters used and the results obtained after 50 µs of interaction.

To avoid any problematic dark states in the J = 3 manifold (there potentially can be 28− 20 = 8

such states) these microwaves were assumed to switch between two orthogonal linear polarization

at the same switching frequency as the laser and the other set of microwaves, while their switching

phase was offset by π/4 from laser’s (and therefore by −π/4 from the J = 1↔ J = 2 microwaves).

Fig. 7.4.7 shows time evolution of relevant states, from which we can conclude that the behavior is

152



CHAPTER 7. ROTATIONAL COOLING MODELS

that, which we observed in the previous benchmark scheme. Finally, comparing numbers from the

last column, we see that coupling J = 3 rotational state leads to an overall increase in the final

state population of about 60% with respect to the benchmark scheme with J = 0− 2 only.

(a) Time evolution of populations in J = 0 − 3

rotational manifolds in the X1Σ+ ground elec-

tronic state and
∣∣∣J̃ ′ = 1−, F̃ ′1 = 3/2, F ′ = 1

〉
hy-

perfine state in the B3Π1 excited electronic state.

(b) Time evolution of populations in the J = 0

rotational manifold in the X1Σ+ ground electronic

state.

Figure 7.4.7: Time evolution of states in the benchmark rotational cooling scheme with coupled J = 3−

manifold. The population accumulates in the |J = 0, F1 = 1/2, F = 0〉 state and reaches population of ∼ 0.65

after 50 µs of interaction time.

7.5 Effects of Doppler Broadening

All previously explored schemes assumed that the transverse velocity of interacting molecules is

0 and so that there is no Doppler shift in the UV laser’s frequency. In a real-world setting this

might play an important role - the process might work efficiently for only a narrow range of velocity

classes. From beam characterization experiments we know that the transverse velocity spread is

about σvt ≈ 39 m/s. Of course, most of the molecules with extreme velocities will never even reach

the rotational cooling interaction region. However, we should consider all molecules that we expect
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to collimate with the quadrupole lens and use in our experiment.

From the geometry of our setup and by assuming a point source we could expect that molecules

with transverse velocities smaller than |vt,lim| ≈ 6.1 m/s ≈ 14 Γ/k (for wavenumber k related to the

P2F1 transition frequency) will enter the quadrupole lens. To understand how this could affect our

rotational cooling schemes, we first look at efficiency of the process for different velocity classes.

We obtained population time evolutions for velocities v ∈ [−14, 13, . . . , 14] Γ/k (figure 7.5.1), which

effectively cause a Doppler shift and change detuning of the laser transition yielding δL = −kv.

Otherwise, in every simulation we repeated the benchmark scheme with the exact same parameters.

Using the velocity distributions we created a weighted average of resulting time evolutions, from

which we were able to obtain average efficiency of the rotational cooling process in that investigated

section of velocity classes. We should also note that we did not include the longitudinal velocity

spread, which would additionally result in molecule-dependent interaction times. Finally, please

note that this is the worst-case scenario - the true acceptance radius of the lens is smaller then its

physical, geometric radius (Chapter 3). Realistically, we expect |vt,lim| ≈ 2− 3 m/s.

Figure 7.5.1: Part of the measured transverse

velocity distribution with σ = 39 m/s. The

shaded part corresponds to velocity range of ±6.1

m/s.

Figure 7.5.2: Power spectrum of sidebands ob-

tained by phase modulation with depth β = 8.5 rad.

In the simulation, the phase modulation frequency

was fmod = 1 γ.
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Numerical simulations show that including a realistic transverse velocity distribution and sug-

gested worse limits placed on the transverse velocities does decrease the average efficiency of the

process quite substantially - by almost 50%. Despite the power broadening of the laser (∼ 6 Γ),

many of the molecules barely interact with it - they are too far from resonance. And because

we are truncating a much wider distribution, the distribution of transverse velocities in the range

considered is almost uniform, and so the percentage of molecules not interacting with the laser is

quite substantial.

A possible solution to that problem is to distribute the total power into sidebands that would

cover most, if not all, of the velocity classes. A natural choice is to consider a phase-modulating

electro-optic modulator resonant at γ ≈ 1.6 MHz creating sidebands spaced by γ (Γ in the angular

frequency units). In Fig. 7.5.2 we present distribution of power fractions in different sidebands for

modulation depth β = 8.5 rad, which should still be achievable by commercial resonant modulators.

As can be seen, such modulation depth creates sidebands with non-zero power at ±10 γ and overall

they should cover most of our ±14 Γ range of Doppler shifts. In table 7.5.1 comparing the results

we observe that the efficiency of rotational cooling improves by 50% once phase modulation is

included, although the average efficiency is still smaller than what is possible for a single velocity

class.

Scheme
Velocity

distribution
Phase

modulation ρ|J=0〉(T ) ρ|f〉(T )
ρ|J=0〉(T )

ρ|J=0〉(0)

ρ|f〉(T )

ρ|f〉(0)
% at 7K

Benchmark No No 0.9910 0.6304 7.47 19.00 21.45

Benchmark Yes No 0.5866 0.3474 4.42 10.46 11.82

Benchmark Yes Yes 0.7994 0.4954 6.02 14.92 16.84

Table 7.5.1: Comparison of benchmark scheme results. The first row shows results obtained in the previous

section, where no transverse velocity spread was included. The second row shows result averaged over the

worst expected velocity spread - we observe almost a 50% drop in rotational cooling efficiency. Finally,

results for the benchmark scheme with velocity distribution and laser phase modulation with depth β = 8.5

rad and fmod = 1 γ are included leading to increase in efficiency by a factor of 50%.
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Chapter 8

The Laser System

8.1 System Overview

In thallium fluoride the main transition we needed to address is at an ultraviolet wavelength of

approximately 271.7 nm. As it was shown, to scatter photons efficiently we will require a continuous-

wave (CW) laser with powers up to 50 mW at the desired frequency. Unfortunately, we are only

getting close to CW lasers operating in that regime [71, 72]. Therefore, our best option was to

create a frequency quadrupling system. The fundamental wavelength of about 1087 nm is perfect

from a technical stand point - stable and narrow-line sources are available, and so are the amplifiers.

Frequency doubling stages can also be either obtained from commercial vendors or built following

well-known techniques [73, 74, 75, 76].

To conduct the rotational cooling experiments, we built two such frequency quadrupling systems

schematic of which is shown in Fig. 8.1.1. Both of them used NKT Photnics Koheras BASIK Y10

fiber lasers as the source. These lasers are tunable with a tuning range of about 800 GHz centered

at 1086.78 nm, have narrow linewidths (< 20 kHz), low phase noise and allow for external frequency

modulation within an 8 GHz range via the piezoelectric transducer. They are controlled by a USB

connection to a computer with either the company-provided software or a home-built solution using

provided SDK (software development kit). Their output is coupled to a polarization-maintaining

(PM) fiber and was designed to be around 10 mW, although it decreased over time (currently, after

3 years of almost-everyday usage, it is ∼ 7.5 mW).

Output of those so-called seed lasers is then coupled through Thorlabs ADAFC3 mating sleeve
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to the input fiber of the NKT Photonics Koheras BOOSTIK Y80 Ytterbium-doped fiber amplifier.

These amplifiers produce a stable < 2.5 W output and can be controlled either directly through the

control panel on one of the amplifier’s faces or via a Serial connection from a computer. Their output

is coupled to a PM fiber terminated with a Thorlabs F220APC-1064 FC/APC fiber collimation

package providing a Guassian beam of 2.4 mm diameter and divergence of 0.032◦.

The infrared (IR) output of the the fiber amplifier has to be then split three ways: towards the

frequency quadrupling system, the wavemeter and the frequency stabilization system, which we will

describe later in this chapter. As shown in Fig. 8.1.1, the linearly polarized output is split using

a standard Thorlabs PBS103 polarizing beam splitter cube. The remainder of about ∼ 20 mW

for a 2 W amplifier output, appearing due to an imperfect extinction ratio of the beam splitter, is

directed towards a single-mode (SM) 90:10 Fiber Splitter (Thorlabs TN1064R2A1B). Low-power

part of the fiber splitter is directed to the Agiltron LBSC-0160X1003 16-channel fiber switcher,

which then is connected to the Bristol Instruments 671A wavemeter, while the high-power part is

directed towards the frequency stabilization system.

After passing through the polarizing beam splitter (PBS), the beam is directed through multiple

optical beam-shaping lenses, a Thorlabs WPH05M-1064 zero-order half-wave plate and a home-

built electro-optical modulator (EOM) into the first second-harmonic generation cavity (details

presented in the next section). Frequency-doubled light (wavelength of approximately 543.5 nm)

leaves the cavity through a collimating plano-convex spherical lens with f = 100 mm. This beam

is then coupled to a PM fiber bringing it to the commercial UV doubling stage built by Toptica,

where UV light at ∼ 271.7 nm is generated. The UV stage of the laser system is described in

Chapter 9.
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Figure 8.1.1: Schematic of the laser quadrupling system. Abbreviations used: PBS - polarizing beam

splitter, λ/2 - half-wave plate, EOM - electro-optic modulator. ppKTP and BBO are the nonlinear crystals

used for second harmonic generation (SHG).

8.2 Frequency Doubling

One of the most important parts of the laser system is the second-harmonic generation stage

converting IR laser into laser at green wavelengths of about 543 nm. The frequency doubling

process is a special case of sum-frequency generation and was first described and observed in

the early sixties [77, 78]. It is by nature a nonlinear optical process that occurs in media with
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no inversion symmetry, for example, in some birefringent crystals. In this process a nonlinear

polarization wave is generated with double the frequency, and the efficiency of this process depends

on the nonlinear susceptibility tensor χ(2) via P (2ω) = ε0χ
(2)E2(ω) for low conversion rates (without

power depletion at the fundamental frequency ω) [79, 80]. One can then show that in an extended

nonlinear medium giving an interaction length l light intensity at the second harmonic (2ω) is given

by:

I(2ω, l) =
2ω2d2

eff l
2

n2ωn2
ωc

3ε0
sinc 2

(
∆kl

2

)
I2(ω), (8.2.1)

where deff is an effective coefficient depending on components of the χ(2) tensor, nω is refraction

index at the fundamental frequency, n2ω at doubled frequency and ∆k ≡ k2ω − 2kω is difference

between the wavevectors at both frequencies.

The relation of Eq. (8.2.1) shows that the conversion is maximized for ∆k = 0, the so-called

phase matching criterion - the second-harmonic electromagnetic waves have to constructively in-

terfere at medium’s exit placing a condition on waves’ phases along the propagation direction.

Otherwise, energy transfer between both frequency components changes direction often within the

medium. Experimentally, the phase matching is usually performed by adjusting crystal’s angle

with respect to the beam’s propagation direction (“critical phase matching”). However, we chose

to utilize a periodically-poled crystal allowing quasi-phase-matching to take place.

Quasi-phase-matching is a clever way of ensuring that efficient energy transfer between the

pump (fundamental) frequency and signal (doubled) frequency can occur. In this process the phase

matching criterion is met by adding an additional contribution corresponding to the wavevector of

the periodic structure of the material [81, 82]. This leads to a slightly modified version of Eq. (8.2.1),

namely I(2ω) ∝ sinc 2(∆kΛ/2) with period of the structure Λ.

In practice, the periodically-poled crystals are grown in layers of alternating orientation of

ordinary and extraordinary axes (crystal domains). The period of those domains is chosen for

a particular wavelength, and because of the thermal expansion, the crystal has to be kept at a

particular temperature. For our purposes we chose an AR-coated 1mm × 2mm × 20mm ppKTP

(periodically-poled potassium titanyl phosphate KTiOPO4) crystal grown for us by Raicol Crystals

with a 9.5 µm period. One of the first tests we performed was observing single-pass frequency

doubling efficiency and its temperature dependence - the former should be quadratic for small

conversion rates, while the latter should behave like a sinc -squared function. Indeed, in Fig. 8.2.1
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we can see that the doubled frequency’s power grows quadratically with our input power (the

relationship holds for low conversion rates, i.e. low loss of power in the fundamental frequency, so

these input powers are not large in this context). Similarly, in Fig. 8.2.2, as expected, the output

power follows a sinc 2 dependence of Eq. (8.2.1) - changing the temperature changes the distance

between the domains (poles) in the crystal.

Figure 8.2.1: Output power of the second-harmonic

frequency generated in the ppKTP crystal as a func-

tion of input power of the coupled CW laser light at

1087 nm. The data follows a simple quadratic re-

lationship f(x) = ax2 expected for low conversion

efficiencies and represented here by the fitted curve.

Figure 8.2.2: Output power of the second-harmonic

frequency generated in the ppKTP crystal as a func-

tion crystal’s temperature for a 1.45 W continuous-

wave laser input at 1087 nm. As expected, power of

the doubled light follows a relationship proportional

to sinc 2T

8.2.1 Second-harmonic Generation Cavity

As shown in Fig. 8.2.1, conversion efficiency for input powers of even a couple of watts is unfortu-

nately not very high (∼ 1% for 1.45 W). To generate enough green laser light for the next stage of

frequency conversion we have two choices: we can use a much stronger amplifier and obtain input

powers of tens of watts or we can build a resonant cavity. Given the amplifier’s power limits we

chose the latter and decided to build it in a bow tie configuration. If designed correctly, the total
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circulating power within such cavity can reach ∼ 100 W for our input powers.

To design a resonant cavity for second harmonic generation, we first need to know parameters

of a Gaussian beam passing through the nonlinear crystal that optimize the conversion efficiency.

For a given crystal length l, one can find [83] that the optimal focusing condition for an incidence

angle of 0 is:

ξ ≡ l

b
≈ 2.84,

where ξ is the so-called focusing parameter and b is the confocal parameter equal to two Rayleigh

ranges zR defined as:

zR =
πω2

0n

λ
,

with beam’s waist at the focus ω0, crystal’s refraction index n and light’s wavelength λ. Putting

both together, we obtain a condition for beam’s waist inside the crystal:

ω0 =

√
λl

2.84× 2πn
. (8.2.2)

Solving Eq. (8.2.2) for our problem’s parameters, i.e. λ = 1087 nm, n(λ) ≈ 1.747 (SHG in our

crystal is of Type I, and the relevant index of refraction is ny) and l = 20 mm leads to waist of

ω0 ≈ 26.4 µm. Given this beam waist, one can then use software such as SNLO to find appropriate

physical parameters for different components of the bow tie cavity.

In such a cavity (Fig. 8.2.3) the light entering through mirror M1 (input coupler) travels in a

loop. The exact length of the loop is controlled by position of one of the mirrors, usually a high-

reflectivity mirror M2, which can be finely adjusted by a piezoelectric transducer (a “piezo”). The

beam is then focused into a crystal located between spherical concave mirrors M3 and M4, with

the latter being a dichroic letting light of double the frequency through. The power build-up in the

cavity occurs when the total optical path length k0l0 +kKTPlKTP = 2mπ for any integer m allowing

constructive interference. However, because the beam is Gaussian by nature, it diverges, and so

together with a previously obtained condition on beam’s waist inside the crystal ω0, a condition

on M3 and M4 mirrors’ radius curvature and their distance from each other, as well as the beam’s

waist ω1 between M1 and M2 mirrors has to be found in addition to the total path length to make

the resonator stable for the TEM00 mode. Finally, the total circulating power inside the resonator

(cavity) is also determined by the total losses at the entry mirror M1 and inside the cavity. It can

be found that the circulating power is maximized when M1 mirror’s transmittance matches all the
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intracavity losses [84] (impedance matching), e.g. on other mirrors’ faces, inside the crystal, on

crystal’s faces etc..

Figure 8.2.3: A generic bow tie resonant cavity.

We determined that the cavity will work best with M3 and M4 mirrors of R = 100 mm curvature

separated by 110 mm, and a total length of approximately 520 mm giving an FSR of about 575

MHz. Given these parameters and waist inside the crystal, we were able to determine waist ω1

between M1 and M2 mirrors. Knowing that number, we can determine what optical elements to

use to shape the beam appropriately - one can use Gaussian optics formula:

ω(z) = ω0

√
1 +

(
z

zR

)2

,

to find the beam waist at distance z from the focal point. In the first SHG system, shown in

Fig. 8.1.1, we created a telescope with one lens of f = 150 mm focal length and one with f = 75 mm,

while in the other SHG system the lenses had focal lengths of 160 mm and 40 mm respectively (the

difference comes from the fact that in the first system f = 50 mm lenses were used to focus the

beam passing through the EOM).

Having estimated the losses inside the cavity, input coupler M1 was chosen to have transmit-

tance T ≈ 4%. Together with other losses, this led to a cavity with finesse F ≈ 70. While initially

the cavity was built on a breadboard using single clamped posts, then it was designed in SolidWorks

as monolithic structure and machined in a block of aluminum. Two versions were built (machine

drawings are showng in Appendix C) designed to accomodate slightly different commercially avail-

able components. In the first version, shown in Fig. 8.2.4, the input coupler M1 had 1” diameter

and was placed in a Thorlabs Polaris Line mount. Mirror M2 was 0.5” in diameter and glued onto a
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round Thorlabs PA44RK piezo ring which was in turn glued onto a 1”-diameter 2”-long aluminum

cylinder placed inside another Polaris mount. M3 and M4 mirrors were both 0.5” in diameter and

held by Newport HVM-05i top-adjust mirror mounts, while the crystal holder was placed onto a

Newport 9081 five-axis alignment stage. In the second version of the cavity, M1 and M2 mirrors

were also held by Newport HVM-05i mirror mounts, with M1 having a diameter of 0.5” and M2

being glued onto a smaller, 0.5”-diameter cylinder. The crystal alignment was performed with the

help of the Thorlabs PY005 five-axis stage. In both cases all the mirrors were custom-made by

Layertec.

(a) SolidWorks design of the cavity. (b) Top-view picture of the cavity.

Figure 8.2.4: Design and top-view of the first home-built second-harmonic generation resonant cavity.

In both cavities, the ppKTP crystal had to be kept at T ≈ 67◦C. We achieved that by using

Thorlabs TECD2S thermoelectric (TEC) elements operated by Thorlabs TED200C temperature

controllers reading the temperature through a Thorlabs TH10K thermistor. The crystal itself was

first wrapped in indium foil and placed into a copper crystal holder and delicately clamped. The

crystal holder was then placed onto the TEC element after applying thermal paste to its TEC-

touching surface, and clamped to a copper heat sink, touching the other side of the TEC element,

with plastic screws. Designs for both the crystal holder and the heat sink for the second cavity

are shown in Fig. C.5 and Fig. C.6. The thermistor was placed inside a small hole drilled into the

crystal holder.

Once built, performance of both cavities was measured. Because the power circulating inside
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the cavity is much bigger than the input power (Pcirc ≈ FPinput/π when impedances are matched),

we cannot use Eq. (8.2.1) to correctly describe the output power in the doubled frequency. Once

power depletion at the fundamental frequency is taken into account and phase matching ∆k = 0 is

assumed, one obtains a relationship [85] :

I(2ω, l) = I(ω, 0) tanh2

(
ωdeff l

nωc
E(ω, 0)

)
, (8.2.3)

where E(ω, 0) is electric field amplitude at the crystal’s input face at the fundamental frequency.

We therefore expect that the relationship between the output power in the doubled frequency and

the input power in the fundamental frequency will behave as P (2ω) = aP (ω) tanh2 (b
√
P (ω)) for

some constants a and b. In Fig. 8.2.5 we can see that data obtained from the first second-harmonic

generation cavity fits the model well.

Figure 8.2.5: Cavity’s output power at the doubled frequency generated in the ppKTP crystal as a function

of power of the coupled CW laser light at 1087 nm at cavity’s input mirror. The data follows an expected

f(x) = ax tanh2 (b
√
x) relationship for high input powers and shown as the fitted curve.

8.2.2 Cavity Locking and Alignment

One important aspect of building an SHG system is making the cavity stable. The total path

length inside the cavity has to be stabilized to allow for build-up of the circulating power. A

standard and most widely used method of cavity locking is the so-called Pound-Drever-Hall (PDH)
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technique [86, 87]. It is quite easy to set up and allows for a strong and zero-crossing locking with

high bandwidth. Its simplest realization takes signal from frequency-modulated or phase-modulated

input light reflected off the cavity’s input coupler and mixes it with the modulation signal. The low-

frequency component of mixer’s output has a characteristic shape with a steep linear part crossing

the zero line. In the first iteration of the doubling cavity this technique was used and provided a

robust and stable lock. However, because the intensity of light reflected off the input coupler is very

high, its attenuation and photodetector’s sensitivity created some problems. The main one was

related to cavity’s re-locking process. While the lock itself was stable, on rare occasions the lock

was lost. The analog servo controller in those cases looks for the next zero-crossing. Unfortunately,

the obtained signal consisted of more points to lock to than was desired, because even small cavity

misalignment imperfections were imprinted onto it, albeit with smaller amplitudes. To alleviate

the problem we had two choices: create an amplitude discriminator circuit or use the transmitted

frequency-doubled light, which should be less sensitive to these imperfections. We chose the latter.

In this locking scheme, presented in Fig. 8.2.6, we pick off some of the frequency-doubled light

using a thin AR-coated window (Thorlabs WG41010-A) and detect it using Thorlabs Si amplified

photodetector (PDA36A or PDA10A2). Output of the photodetector is directed into a standard

frequency mixer (Mini-Circuits ZAD-1+), where it is mixed with the modulation signal. In our

setup, because the NKT Photonics fiber lasers do not support external modulation in megahertz

frequencies required by the PDH locking technique, we decided to use an EOM to modulate the

phase of our laser.

The resonant EOM was initially built following instructions provided in Eric Norrgard’s thesis

[88]. We used AR-coated Y-cut 3mm × 3mm × 40mm lithium tantalate (LiTaO3) crystals that we

obtained from Almaz Optics as our nonlinear crystal, Hammond 1590LB aluminum boxes as our

EOM case and SPI 05063-AB silver paste. The inductor in the EOM’s RLC circuit was an iron

powder toroid obtained from Amidon. Because the PDH lock does not require the modulation to

be deep, we do not need an RLC circuit with high Q-factor (the resonance can be weak and so we

do not need to be impedance-matched). Because of that, we used a universal 16:1 chip transformer

RFMW XFA-0101-16UH, with which we reached ∼ −20 dB resonances at approximately 17 MHz.

Unfortunately, we ran into problems with this design. Namely, after putting 2 W of laser power

through this home-built EOM, we observed unexpected changes to polarization, modulation depth
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and some residual amplitude modulation due to heating and EOM’s temperature instability. To

fix that problem, we designed a new case (Fig. C.7, Fig. C.8, Fig. C.9) that allowed us to stabilize

the temperature of the EOM with TEC elements. Additionally, that case makes it easier to clamp

the copper wire to one of the crystal’s faces, as well as provides necessary space for the transformer

and the toroidal inductor. Once we moved all the components to the new case, previously observed

problems disappeared.
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Figure 8.2.6: Schematic of cavity locking setup that uses transmitted frequency-doubled light to create the

error signal necessary for locking.

The modulation signal was provided by a generic function generator (such as B&K Precision

4043) and split using a Mini-Circuits ZSC-2-1+ power splitter. Mixer’s low-frequency output was
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then directed to the servo controller (Vescent Photonics D2-125). We operated the controller in the

slave mode, where the triangular piezo ramp signal was provided by a function generator (signals

used were between 30 Hz and 50 Hz), and both the ramp signal and a cleaned error signal were

observed on an oscilloscope during cavity’s alignment. In our case, the error signal was simply a

derivative of Lorentzian peaks representing cavity’s frequency-doubled transmission obtained when

ramping the piezo, providing clear zero-crossings that were used for locking by the servo controller.

Servo’s output, between -10 V and 10 V, was then directed to Physik Instrumente E-663 piezo

amplifier where it was amplified and biased in order to obtain signals within the 0-150 V range

accepted by the piezo.

Because the locking setup is completely analog, we came across some typical problems, like

existence of 60 Hz (and its higher harmonics) noise in the error signal, which we traced to servo’s

malfunctioning power supply. However, one of the issues had to be addressed by building an

additional circuit. Namely, automatic re-locking, where the servo increases or decreases output

voltage until it finds a new zero-crossing lock point in the error signal, eventually causes the

voltage to rail beyond servo’s maximum or minimum output or beyond maximum or minimum

voltage accepted by the piezo. Fortunately, one of controller’s inputs automatically resets its

voltage back to 0 when supplied with ∼ 5 V input. Circuit shown in Fig. 8.2.7 activates this reset

function at appropriate moments by taking servo’s output as its input. Circuit’s input is directed

to two operational amplifiers which output 15 V, when the input goes above (under) the upper

(lower) limit set by the potentiometers. This output is then decreased to 6 V by a voltage divider,

and a 2µF capacitor is added to filter high frequency signals and therefore prevent the circuit from

resetting the servo controller too often.

Finally, cavity’s alignment was performed using the following procedure. First, with M1 and M4

mirrors, and the crystal removed, we used the two mirrors preceding the cavity to place IR laser’s

spot in the center of M2 mirror, and then proceeded to using M2 and M3 mirrors to direct the IR

light through the center of cavity’s output hole. Then, the ppKTP crystal was placed in the holder

and single-pass SHG was optimized. We did that by mostly adjusting crystal’s position via the

5-axis stage, and sometimes by slightly changing M2 and M3 mirrors’ angles, as well as changing

crystal’s temperature. It was also useful to already place M4 mirror after the crystal, which allowed

to filter the transmitted IR light. Once single-pass doubling was maximized, M1 mirror was placed
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Figure 8.2.7: Electronic circuit used for automatic cavity re-locking and protecting against voltage rails in

the servo. By adjusting voltage limits on the operational amplifiers, the circuit works as a comparator - if

the input voltage is below the lower limit or above the upper limit, it provides a 6 V output that is connected

to the servo controller. Otherwise, there is 0 V on the output.

inside the cavity, and IR light reflecting off the M4 mirror was directed at the same spot on the

M1 mirror where the input light is transmitted. Next, M1 mirror was adjusted until the second

order spot (from light making 1 loop inside the cavity) was aligned with the first order spot (from

light just entering the cavity) on the M2 mirror. At this point, spots of higher orders could already

be seen and mirrors M4 and M1 were simultaneously used to align all of the visible spots close

to crystal’s input face after mirror M3 (the light is focused tightly there, so many spots can be

seen). Once this was done, usually it was possible to observe the cavity’s frequency-doubled output

on a photodetector while scanning cavity’s loop distance by ramping the piezo, and several peaks

were observed representing different Gaussian modes. On rare occasions when this was not the

case, cavity’s output would itself consist of closely overlapping spots that were used for the initial

alignment using M4 and M1 mirrors, and once the piezo scan was engaged, one could notice with

naked eye different modes and interference patterns of the output light when it was directed onto

a screen (for example a piece of paper).
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Once peaks were seen by the photodetector, further adjustment of M4 and M1 mirrors em-

phasized the TEM00 mode, although other peaks still remained. Initially, their elimination was

performed by successive adjustments of two pairs of mirrors - two mirrors preceding the M1 mirror

and the M4 + M1 pair - together with small changes to crystal’s position. In general, it should

not be necessary to touch M2 and M3 mirrors and it is not advised to do so, because they decide

not only how the light is directed through the crystal, which can be changed by changing crystal’s

position, but also modify whole cavity’s alignment. At the very end, it was also useful to check

once again crystal’s optimal temperature, as well as PID locking parameters that, by determining

the actual lock point and lock’s quality, influence output’s power.

8.3 Reference Laser

All the “science” UV lasers will eventually have to consistently target one of the TlF transitions of

interest, which all have a natural linewidth of γ ≈ 1.6 MHz. While the fiber lasers we are using are

narrow, their center frequency can drift over time and, in general, is not stable. Therefore, in such

situation it is necessary to build a frequency-stabilizing system with stability (usually calculated

as the root-mean-square of the error) comparable to the natural linewidth. One way of doing it is

transferring stability through an additional cavity from a reference laser that is stabilized by being

always on resonance with a particular transition in an atom or molecule of our choice. We decided

to use cesium’s so-called D2 line [89], which corresponds to a transition between its 6 2S1/2 and

6 2P3/2 states and occurs at approximately 852.347 nm (351.725 THz).

In order to stabilize laser’s frequency to one of its lines we decided use a well-known Doppler-

free technique called Modulation Transfer Spectroscopy (MTS) [90, 91, 92] that produces sub-

Doppler lineshapes. This technique, in analogy to the saturation absorption spectroscopy, requires

two counter-propagating beams (the pump and the probe beams), albeit of approximately equal

power. In it a single-frequency pump beam is phase-modulated by an EOM, and thus acquires

sidebands, and directed through a vapor cell. Unmodulated single-frequency probe beam is then

passed through the same vapor cell aligned with the probe beam in the opposing direction, and

directed onto a photodetector afterwards. Due to existence of nonlinear effects in the atomic vapor,

frequency components of both beams combine and a four-wave mixing process occurs effectively
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adding sidebands to the probe beam [93].

The MTS method of laser stabilization is popular due to several features of the resulting signal.

The major advantage is that its lineshape baseline is not sensitive to changes in absorption within

the cell that can potentially result from temperature, laser intensity or polarization fluctuations.

The resulting signal has then a flat zero background. This lack of signal’s dependence on absorption

happens, because the process of transferring modulation can occur only when the sub-Doppler

resonance takes place. In turn, this leads to the zero-crossing of the demodulated error signal to

always be at the center of this resonance.

Our experimental realization of the MTS technique is shown on the left side of Fig. 8.3.1. As

the light source we used Toptica DLC PRO diode laser, and the beam was shaped by a pair of

anamorphic prisms not shown in the figure. By using a broadband PBS (Thorlabs PBS102) and

a half-wave plate (Thorlabs WPH05M-850) we then divided the beam into part that is directed

towards the wavemeter and the transfer cavity, and a part that is required for the MTS laser locking

method. The latter was split into pump and probe beams by using Gouch&Housego AOMO 3080-

122 830NM acousto-optic modulator (AOM) driven by ∼ 1 W of 80 MHz radio-frequency signal.

We split the beam using an AOM instead of a PBS to avoid parasitic interferences [94] that might

appear due creation of etalons on different pairs of optical elements. This frequency shift of 80 MHz

means that the modulation transfer resonance will occur for atoms that have equal, but opposite

Doppler shifts for the probe and the pump beams, i.e. ± 40 MHz, which in turn means that the

laser itself will be locked 40 MHz away from the zero-velocity resonance.

The pump beam was then directed through a 3 MHz resonant EOM (custom made Thorlabs

EO-PM-R-3-C1). The modulation frequency was chosen to be close to ∼ 0.3−0.6 γCs, with natural

linewidth γCs ≈ 5.22 MHz, for which the resulting error signal has the steepest zero-crossing [92].

Both probe and pump beams were expanded using two plano-convex lenses with focal lengths of

50 mm and 100 mm. The beams were counter-propagated through the Cs vapor cell placed inside

a mu-metal cylindrical magnetic shield obtained from Magnetic Shield Corporation. The magnetic

shielding of the vapor cell is necessary due to ∼ 0.5 MHz/G effective g-factors of the hyperfine

states we are addressing in the D2 line and that could cause locked laser’s frequency to change with

changing ambient magnetic field. Finally the probe beam was directed onto a standard Thorlabs

Si amplified photodetector. The error signal was obtained by first amplifying the photodetector’s
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signal (Mini-Circuits ZFL-2AD+ 9 dB amplifier) and demodulating it using a combination of a

mixer and a low-pass filter, just like it was done in the PDH technique for the doubling cavity.

The resulting error signal was then connected to one of the input channels of the laser control box

provided by Toptica, which allowed us to use their built-in laser locking module.
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Figure 8.3.1: Schematic of the Cesium reference setup and the transfer cavity system. Abbreviations used:

PD - photodetector, DC - dichroic mirror, FPI - Fabry-Perot interferometer, PBS - polarizing beam splitter,

λ/2 - half-wave plate, EOM - electro-optic modulator, AOM - acousto-optic modulator, IR 1 and IR 2 - the

first and the second infrared lasers used in the frequency quadrupling system.
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Stability of frequency locking was finally tested by beating the laser against its sister system

built simultaneously for a different experiment. The measurement was taken over a span of 12

hours and its results are presented in Fig. 8.3.2 showing an approximately 14 kHz RMS error, well

below the ∼ 1.6 MHz requirement imposed by thallium fluoride’s natural linewidth. Reaching this

level of stability was not initially easy and one crucial element (not shown in the diagram) was

added to improve system’s performance. Namely, we added a combination of a half-wave plate

and a polarizer (Thorlabs LPNIRB050-MP2) along the pump beam’s beamline just before the

EOM. This increased polarization purity inside the EOM and allowed us to eliminate polarization

fluctuations and unwanted EOM effects, such as residual amplitude modulation, that somewhat

influenced the quality of the error signal.

Figure 8.3.2: Cesium frequency lock stability beat-note measurement data obtained by beating the laser’s

frequency against another one coming from an analogical system stabilized to the same spectral line. The

measurement was taken over a period of 12 hours and resulted in a 14 kHz RMS error.

8.4 Transferring Stability

The final step is transferring stability of the Cesium frequency locking system to our science lasers.

One of the most commonly used techniques is based on utilizing a Fabry-Perot Interferometer (FPI)

[86, 95], where the path length inside the cavity is stabilized to a transmission or reflection peak of
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the reference laser, just like in the case of the doubling cavity, and then the science laser’s frequency

is stabilized to “fit” locked cavity’s length. To gain flexibility in controlling science laser’s frequency

(one can lock it to an already locked cavity only at frequencies spaced by cavity’s free spectral range)

one adds an AOM to create an easily controllable frequency offset. However, we decided to choose

a different approach and to implement the so-called scanning cavity lock [96, 97, 98].

In this approach the cavity is constantly scanned, and we lock it to the reference laser by

locking transmission peak’s position since the beginning of the scan, e.g. we always want to detect

the peak 4 ms after the scan started. The feedback loop then adjusts piezo scan’s offset voltage

accordingly. Science lasers can then be locked by locking position of their transmission peaks,

which are controlled by adjusting voltage on lasers’ piezos, with regards to the reference laser peak.

The feedback loop can also be easily implemented digitally, although such approach leads to lower

(sub-kilohertz) bandwidths, which, fortunately, are sufficient for us.

Experimental realization of this scanning cavity lock is shown on the right side of Fig. 8.3.1.

As the FPI we used Toptica’s FPI 100-0980-3V0 scanning Fabry-Perot confocal cavity with 1 GHz

FSR, finesse of about 500 and 2 MHz resolution. The reference laser was transferred to this laser

system via a single-mode patchcord (e.g. Thorlabs P3-830A-FC-2) and coupled to the FPI using

two mirrors - one standard broadband mirror and Thorlabs DMLP950 longpass dichroic mirror

with cutoff wavelength of 950 nm. The reference laser light that is transmitted through the cavity

was placed onto a photodetector and separated from science IR lasers by an identical dichroic

mirror. Science lasers’ light was brought by polarization-maintaining fibers with lasers having

linear polarization perpendicular with respect to each other. In principle, we can lock any number

of lasers using this cavity, as long as the cavity mirrors have appropriate coating and lasers are

separable. In our case, both science lasers have roughly the same wavelength, so we can separate

them only by adjusting their polarization. It means we can at most couple two science lasers to

our cavity.

Before the science lasers reached the FPI, they were combined on a PBS. In addition to what is

already shown in Fig. 8.3.1, we also placed half-wave plates before the PBS to make it possible to

adjust intensity of light reaching the FPI. After the lasers were combined, they went through the

dichroic mirror and were both coupled to the cavity. Transferred light of both lasers went through

the second dichroic mirror and was separated by another PBS afterwards. Finally, light from both
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science lasers reached their respective photodetectors.

As was mentioned, the lock itself is digital. Signals from all the photodiodes are collected by

a computer, analyzed on-line, and then generated feedback signals are sent to both science lasers

and FPI’s piezo. To send and receive analog signals we used National Instruments PCIe-6353 data

acquisition card with 4 analog outputs and allowing 1 MS/s multichannel data collection, and two

National Instruments BNC-2110 boards. Using SDKs provided by national instruments and NKT

Photonics, we built multithreading software (together with a graphical user interface) in Python

that controls the science lasers and the FPI used as a transfer cavity. It is responsible for data

collection, analysis, plotting and feedback control1. This program enabled us to not only lock the

science lasers to chosen frequencies, but also to scan their frequencies in multiple ways. It also

communicates with our wavemeter, as well as with another experiment data collection software we

built. Screenshot of the GUI is shown in Fig. 8.4.2

The lock itself is based on finding peak positions when scanning the FPI. In order to quickly

and reliably determine positions of those peaks, the software first applies a peak-emphasizing filter

to the obtained photodetector data. This filter replaces a data point from an array A (our data is

simply a time-series represented by an array of numbers) at position i by using a formula:

A[i]← A[i]2 −A[i− k]A[i+ k],

for window size k. This simple filter is fast and greatly enhances signal-to-noise ratio. Afterwards,

the signal is passed through a Savitzky-Golay derivative filter, and zero-crossings, representing peak

positions, are found. To showcase how the process works on noisy Lorentzian peaks, we plotted

simulated signals at every filtering stage and present them in Fig. 8.4.1.

Once the peak positions are obtained, we use a so-called velocity algorithm to create the feedback

signal. It is simply a different way of looking at a PID loop. Namely, assuming E is the error

signal (peak position minus desired peak position), then the feedback signal FS would normally be

calculated using:

FS = KPE +KI

∫
Edt+KD

dE

dt
,

where KP , KI and KD are proportional, integral and differential gain respectively. We can look at

1The program is available at https://github.com/kwenz/Transfer-Cavity-Lock-Control
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Figure 8.4.1: Simulated photodetector signal passed through a peak-enhancing filter and a Savitzky-Golay

derivative filter. Zero-crossings in the derivative signal correspond to peak positions needed for the scanning

cavity lock.

this formula from another angle and see how the feedback signal changes:

d

dt
FS = KP

dE

dt
+KIE +KD

d2E

dt2
. (8.4.1)

Now the proportional term becomes a “velocity” term proportional to changes in the error signal

in time, integral term is a “positional” term, and derivative term is an “acceleration” term. In our

software we use only proportional and integral gains, and update the feedback signal iteratively.

Assuming time interval between consecutive feedback-generating iterations is T (in reality it is

simply time between two data inputs from the photodetector), we can write Eq. (8.4.1) at iteration

j as:

FS(j) = FS(j − 1) +KP [E(j)− E(j − 1)] +KITE(j).

The software uses the above formula for every feedback loop engaged separately, and simply assumes

FS = 0 and E = 0 at the 0-th iteration. In the end, the RMS error of the cavity lock is about

∼ 0.15 MHz and ∼ 0.2 MHz for both laser at their IR frequency, which provides a total 1 MHz

RMS error at laser’s UV frequency. The cavity is scanned with frequency of approximately 30-33

Hz and is limited by Python’s multithreading implementation. Putting the data acquisition and
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signal-sending processes operated via the PCIe on a separate process than the GUI (via Python’s

multiprocessing) can increase this frequency to about 100 Hz.

Figure 8.4.2: Screenshot of our home-built scanning cavity locking software. White peaks correspond to

Cs reference laser signals, green ones are created by the rotational cooling seed laser and magenta by the

detection seed laser.
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Chapter 9

Apparatus for Rotational Cooling

9.1 Overview

Having chosen the best scheme for the rotational cooling process we designed and built an ex-

perimental setup allowing us to test and validate methods and predictions discussed in previous

chapters. The apparatus is shown in figure Fig. 9.1.1 and is, basically, a shortened version of the

planned final setup - in the future, both the beam source and rotational cooling chambers will be

in the same positions, while in place of the detection chamber, a pre-lens state-selection region will

be moved. The overall idea behind such experimental configuration is simple:

• First, we ablate the TlF target with a pulsed Nd-YAG laser. The molecules thermalize with

cold Ne atoms present in the chamber and undergo expansion into vacuum once they leave

the chamber creating a cold molecular beam (described in Chapter 3).

• Just after the beam source, we placed a gate valve and wide 6” bellows. Gate valve allows us

to perform changes to downstream chambers, while keeping the beam source under vacuum,

and the bellows gives us some flexibility with molecular beam alignment.

• Bellows are connected to the rotational cooling chamber. There, ultraviolet laser propagates

perpendicularly to the molecular beam and drives the main rotational cooling transition

(P2F1). On both sides of the chamber, we also placed two sets of microwave horns producing

beams that drive rotational transitions in the molecule.

177



CHAPTER 9. APPARATUS FOR ROTATIONAL COOLING

• Finally, the rotational cooling chamber is connected to a rather large detection chamber.

There, perpendicularly to the molecular beam, another ultraviolet laser is propagated. It

drives a chosen detection transition. Underneath the chamber, we placed a photomultiplier

tube sensitive to ultraviolat light emitted by the molecule. It is kept outside the vacuum, so

the fluorescent light is transported via a light pipe.

Beam Source Rotational Cooling 
Chamber

Detection ChamberPulse Tubes

TlF Target

Gate Valve

6" Bellows

Microwave Horns 
Emitting

PMT 
Assembly

Lightpipe

Turbopump

Laser 
Windows

Receiving
Microwave Horns 

Figure 9.1.1: Side-view of the whole experimental apparatus. The setup consists of three main parts: the

beam source, where we ablate the TlF target in a neon-filled chamber, the rotational cooling chamber, where

we interrogate the molecules with the help of polarization-switched laser and microwaves, and the detection

chamber, where we perform fluorescence spectroscopy measurements.

The whole system is kept under a vacuum of about 10−9 Torr, if there’s no neon flow, and under

approximately 10−6 Torr once the gas is flowing. The pressure is measured by InstruTech Hornet

IGM 401 vacuum gauges placed on the beam source and the detection chamber. The vacuum is

created by two turbopumps: one, a very small one, is placed on the beam source, while the main

one, the Pfeiffer Vacuum HiPace 700M, is placed on top of the detection chamber.
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We found that good results are obtained with neon flowing at a rate of at least 25 sccm and no

more than 50 sccm, and with cell temperature kept at about 16 − 20 K. As described in Chapter

3, we obtain a molecular beam with a longitudinal velocity of v̄z = 184 ± 17 m/s with spread

of σvz = 16.1 ± 0.8 m/s corresponding to longitudinal temperature of Ttr = 7.0 ± 0.7 K. Beam’s

transverse velocity is distributed around v̄t = 0 with σvt = 39± 3 m/s. Rotational temperature we

are working with is estimated to be Trot = 6.3± 0.2 K.

As was shown in the previous chapter, molecules’ transverse velocity spread negatively affects

rotational cooling results. Hence, as depicted in Fig. 9.2.1, we installed circular apertures of 4 mm

radius along the beam line, which drastically reduces the velocity spread in the detection region,

though at a cost of much smaller signal. However, the apertures have also drastically helped with

removing noise coming from the rotational cooling lasers.

9.2 Rotational Cooling Laser System

The main part of the laser system used in our experiment was already described in Chapter 8. In

this section, we will describe the last part of the optical setup. Fig. 9.2.1 shows the layout used in

the rotational cooling experiment. In total we used three lasers: Nd-YAG pulsed laser ablating the

target, and two frequency-stabilized UV lasers created through two frequency doubling stages.

9.2.1 Ablation

In order to produce the molecular beam, we ablate a solid TlF target made of pressed TlF powder.

The ablation laser is a Litron Lasers Nano LG 130-50 solid-state, water-cooled Nd-YAG nanosecond

free-space laser. Its pulse energy can be adjusted between 2 and 130 mJ with repetition rate up to

50 Hz. Apart from the main 1064 nm harmonic, it also emits doubled 532 nm light, which, while

useful for alignment, is redirected into a beam dump.

We direct the ablation light through 2” optics into the beam source chamber. We use a set of

lenses to focus the beam onto the target, and two mirrors to point the laser at the right spot. The

mirror closest to the beam chamber is placed on Zaber T-MM2 motorized mirror mount, which we

control via RS-232 serial interface. We use a motorized mirror in order to be able to easily change

the ablated spot once signal becomes smaller. Signal decay usually occurs after ∼ 500−1000 shots,
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which for often-used repetition rates of 5-10 Hz means that at most we have to move the mirror

every minute or so. Moreover, the software control of the motorized mirror mount allows us to

continuously move the spot as well.

The ablation laser and supporting optics are kept on separate vibration-isolated optical table

to prevent random changes to the ablated spot’s position. Despite the fact that most of the light is

either directed towards the TlF target (1st harmonic) or towards the beam dump (2nd harmonic),

the amount of scattered light is big enough to be caught by photodetectors responsible for frequency

stabilization. To ameliorate this problem, we keep the system under an enclosure.

9.2.2 UV Lasers

Ultraviolet light at approximately 271.7 nm is obtained through a frequency doubling process. In

the doubling system described in Chapter 8, we produce 500-1000 mW of green linearly-polarized

laser light, which we couple to 10 m long single-mode polarization-maintaining fibers. These fibers

are then coupled to a commercial doubling cavity.

9.2.2.1 Optical Fibers

The fibers we use are Thorlabs P3-488PM-FC-10 PANDA-style patch cables with angled FC/APC

connectors. These fibers, while specified to operate with powers under 100 mW, perform very

well with powers we coupled. We did not observe any visible damage. We achieved coupling

efficiencies of 60% and did not observe any decline in the transmitted power. However, given high

light intensities it is crucial to keep fibers clean and well coupled. Otherwise, the glue and face of

fiber’s ferrule might melt. The 10 m length of fibers is determined by physical constraints of our

laboratory space. The doubling system producing the green light is on a separate optical table,

while the UV laser system is close to the main apparatus to allow free space coupling of the UV

light into the vacuum chamber. The 10 m fiber length does cause some rather annoying problems.

In polarization-maintaining fibers, the polarization is stabilized by tension inside the fiber cre-

ated by rods placed inside the patch cable. Any changes of this tension can cause changes in

polarization. Polarization stability is very important in the frequency doubling process, if we desire

to keep the light intensity relatively constant. When we first coupled the light through the 10 m

fibers, we observed modulation of polarization on the time scale of tens of seconds. Because the
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Figure 9.2.1: Schematic of the laser system used in rotational cooling experiment. Both commercial UV

doublers use a green laser input described in chapter 8. One of the lasers drives the main rotational cooling

transition, while the other the detection transition of choice. Both are multipassed through their respective

chambers with the help of right-angle prisms.

fiber cables were placed close to the ceiling on racks above the optical tables, we attributed this

modulation to temperature changes and air flow caused by lab’s temperature and humidity stabi-

lization system. To fix the problem, we first placed both fibers in separate 9 m long plastic tubes

that we placed inside a silicone foam pipe providing temperature isolation.

Another important fix was precision of the laser coupling. We launched the light coming out

of the fiber through a polarization beam-splitting cube into two photodetectors (such as Thorlabs

PDA10A2 fixed gain Si amplified photodetector), which allowed us to look at light intensity of both

polarizations simultaneously. To adjust the fiber coupling, we placed an additional zero-order half-

wave plate (Thorlabs WPH05M-546) upstream from the fiber coupler and rotated it until signal

from one of the linear polarizations is maximized and stabilized while simultaneously scanning
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laser’s frequency over a range of several GHz. Eventually, we got rid of most of polarization-

modulating effects. They still occur on time scales of minutes, albeit with a very small amplitude.

Fig. 9.2.2 shows polarization stability before and after the adjustments were made.

(a) Before adjustments. (b) After adjustments.

Figure 9.2.2: Photodiode signal traces taken from the oscilloscope. The cyan trace corresponds to high-

power beam of polarization accepted by the doubling cavity, while the yellow trace corresponds to the

low-power beam of rejected polarization. Before adjustments were made, oscillation period was about 1 min

(one box corresponds to 50 s), while after it is as long as 6 min. The amplitude decreased by a factor of 2.

9.2.2.2 Doubling Cavity

The doubling cavity we use is fiber-coupled Toptica’s SHG Pro. It is a stand-alone system that

requires only the input light. Light coupled into the system is first directed through a mode-

matching lens, which can be moved along the beam path, then through an EOM already provided by

the company, and is finally coupled into the doubling cavity via two steering 1” mirrors (Fig. 9.2.3).

The doubling resonator is of a standard bow tie configuration and uses an AR-coated BBO

(BaB2O4) crystal as its nonlinear medium. The cavities are stabilized using PDH locking procedure,

where the error signal is generated from the light reflected from cavity’s in-coupling mirror. The

locking system has a built-in re-locking mechanism as well, which very quickly stabilizes the cavity

in case the lock is lost. The output of the beam is directed through beam-shaping optics creating

an almost-Gaussian beam shape (Fig. 9.2.4) of approximately 3 mm diameter.

Both doubling cavities in use are specified to provide 30 mW of output light. We managed to

obtain more light from both. The UV doubler on the rotational cooling laser beam line provides up
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(a) Doubler’s schematic. (b) Picture of the doubler with lid removed.

Figure 9.2.3: Schematic and real picture of Toptica’s frequency doubler. Fine adjustments and cavity

alignments can be performed using set screws and knobs on cavity’s walls. However, simplicity and robustness

of this system requires such actions to be taken very rarely.

to 90 mW of UV light given a 500 mW linearly polarized input, while the doubler on the detection

laser line can reach powers of 45 mW with 280 mW input. Usually, we operate the rotational

cooling laser at 80 mW output power (providing ∼ 40−50 mW of laser power inside the rotational

cooling chamber), and the detection laser was always set to provide 30 mW.

9.2.2.3 Polarization Modulation and Switching

Once the laser beam leaves the UV doubling system it goes through a polarization modulation

or polarization switching stage (in Fig. 9.2.1 the rotational cooling laser beam also goes through

a shutter first, which we will discuss later). As was shown in Chapter 7, character of the main

rotational cooling P2F1 transition necessitates polarization switching of the laser light; polarization

switching is a feature of the benchmark scheme we chose. The detection transition might or might

not require any manipulation of polarization - it depends on transition that is chosen. Details are

provided in Chapter 10.

Polarization switching of the rotational cooling laser is performed by a non-resonant electro-

optic modulator. We use Conoptics 370-LA-DUV EOM specified to work in deep UV wavelengths.

Despite the wavelength specification, we observe laser power transmission losses as high as 35%. The
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Figure 9.2.4: Beam profile of the output of one of the Toptica doubling cavities taken using Thorlabs

BC106N-UV beam profiler. The beam has a nearly-Gaussian shape with discernible vertical bands on both

sided. These bands do not contain much power, and so do not cause any unexpected problems with either

rotational cooling or detection.

EOM is driven by Conoptics 25D high-voltage driver. By adjusting bias voltage and amplitude of

modulating signal, modulation of full π rad depth is achievable (90◦ polarization rotation). In order

to find proper bias voltage and laser alignment, we placed a polarizing beam-splitter cube after

the EOM and directed both polarization components to their respective photodetectors. When

the laser is aligned, and bias voltage chosen correctly, the polarization extinction ratio reaches

maximum. We adjusted the EOM’s alignment by placing it on a 4-axis stage, such as Newport’s

NewFocus 9071, and provide stability by mounting it in a V-shaped mount.

To find appropriate modulation amplitude, we connect the TTL input of our high-voltage EOM

driver to a function generator, such as BK Precision 4063, which we run at desired modulation

frequency. As was shown in the previous chapter, modulation frequencies of ∼ 1 MHz are most

suitable. We set the TTL input to be a square wave of 3.3 V amplitude and aforementioned

frequency. Photodiodes are fast enough (nanosecond rise time) to capture power changes occurring

with such frequency. Therefore, we simply adjust the drive amplitude until we reach exactly

modulation depth of π radians shown in Fig. 9.2.5a.
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(a) Polarization switching. (b) Polarization modulation.

Figure 9.2.5: Oscilloscope screenshots depicting polarization switching and modulation. Both show a

perfect π rad modulation (90◦ polarization rotation). Traces show light intensity of orthogonal linear polar-

izations hitting the photodiode. a) Switching was performed at 100 kHz frequency due to limited photodiode

bandwidth. Measured photodiode voltages were different due to imperfect alignments. b) Modulation was

performed at 1.56 MHz. The purple trace is sum of both photodiode signals and is constant over time.

On the detection laser, polarization is sinusoidally modulated by a resonant Qubig AM6-UV

polarization modulator showing very high laser power transmission of around 98%. It is driven by

sinusoidal signal of another arbitrary function generator at resonant frequency of about 1.56 MHz.

Before reaching the modulator, output of the function generator is first amplified by about 20 dB

by an off-the-shelf RF amplifier - the EOM requires sufficiently high drive amplitude in order to

provide π rad modulation depths. In order to reach desired modulation depth, we need to place a

quarter-wave plate before the modulator and properly align the laser as well.

The UV laser beam, just after leaving the UV doubler, was passed through Thorlabs WPQ05M-

266 quarter-wave plate before going through the EOM, which was mounted on Thorlabs PY005

5-axis stage that provided stability and ability of fine position adjustment. Like before, we placed

a polarizing beam-splitter cube together with two photodiodes downstream from the modulator.

The first step in the optimization process was quarter wave-plate rotation angle adjustment - we

moved it until light intensity on both photodiodes was identical in the presence of no modulation

(due to making the polarization nearly circular). Next, we started adjusting both frequency and

amplitude of modulating signal until we observed two 180◦ out-of-phase sinusoidal signals of same

amplitude and minimum of ∼ 0 V on our photodiodes shown in Fig. 9.2.5b. Reaching that point
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required slight adjustment of EOM’s position and quarter-wave plate’s rotation angle as well.

9.2.2.4 Multipassing

After the polarization is switched on the rotational cooling laser, we asymmetrically expand it

using a cylindrical lens telescope with adjustable magnification. We create an elongated beam of

an approximately ellipsoidal shape of ∼ 2.4×7.4 mm. This beam is then passed through a vacuum

UV window AR coated at laser’s wavelength in order to minimize transmission losses. On the other

side of the rotational cooling chamber, on a linear translation stage we placed UV AR-coated CVI

P180-100-266-UV 90◦ angle prism. The laser beam undergoes internal reflection inside the prism

and then propagates through the rotational cooling chamber in the opposite direction. Identical

prism is placed on the side of UV doublers, just in front of the vacuum window. Using these two

prisms, we manage to multipass the laser beam through the rotational cooling chamber 17 − 19

times (Fig. 9.2.6).

Even though every pass incurs a power loss, this method creates an interaction region of decently

uniform laser intensity that is about 7 mm tall and 25 mm long. The height of the interaction region

allows us to be certain that we talk to the molecules that end up being detected downstream, while

the length leads to approximate interaction time of ∼ 250 µs. In Chapter 7 we showed that 50 µs

should be more than enough to fully perform the cooling with the caveat that we have sufficiently

intense laser. While we work with a beam of smaller intensities than assumed in simulations (our

real Rabi rate can be estimated to be on the order of 3 Γ for the first beam entering the chamber

with total power in the beam of about 50 mW), we have ample interaction time, and, therefore,

expect to realize the cooling process in its entirety.

In the case of the detection laser, the beam is first expanded using Thorlabs BE03-266 UV beam

expander with 3× magnification and then passed through the UV AR-coated vacuum chamber

windows. Here, we also placed an identical prism on the other side of the chamber, but not on the

side of UV doublers, so the laser beam passes the detection chamber twice. Because the detection

transitions do not require very high intensities or interaction times to scatter maximum possible

number of photons, as will be soon explained, this setup is sufficient. This configuration creates

an interaction region ∼ 1 cm long (interaction time of ∼ 50µs) and ∼ 6 mm tall with estimated

Rabi rates of ∼ 1 Γ. Finally, we should note that while in the previous section we discussed how
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Figure 9.2.6: Picture of rotational cooling chamber’s UV window showing the multipassed elongated laser

beam.

the velocity spread affects the observed signal, and sidebands placement as a way of increasing

the number of molecules we talk to, in this experiment our goal was to simply observe the process

occurring, and so we performed it without laser phase modulation.

9.3 Microwave Sources

In the rotational cooling process, apart from the laser, microwaves play an important role. As

was shown in Chapter 7, we require two sets of microwaves: one coupling J = 1 with J = 2,

and one coupling J = 2 with J = 3. The rotational cooling chamber is designed in such a way,

that these microwaves can propagate at an angle of ±45◦ with respect to the laser beam in the

plane perpendicular to the molecular beam (Fig. 9.3.1). They are emitted by microwave horns with

microwave lenses attached to them. These lenses ensure that the microwave beam is Gaussian and

focused exactly where molecules interact with the laser. The horns are just outside of the vacuum

chamber behind a special large vacuum window. Its thickness and index of refraction are such,

that the transmitted microwaves of frequencies 26.6 GHz and 40 GHz constructively interfere (the

window creates a small Fabry-Perot cavity) resulting in high power transmission.

The microwave-generating setup for J = 1↔ J = 2 is depicted in Fig. 9.3.2 with major compo-
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Figure 9.3.1: Schematic of the rotational cooling chamber with laser and microwave beams included. Both

microwave beams propagate at ±45◦ angle with respect to the laser beam in the plane perpendicular to the

molecular beam.

nents included (J = 2 ↔ J = 3 system has the same architecture, but with components designed

for different frequency). All of our microwaves are generated by a computer-controlled Windfreak

Technologies SynthHD microwave synthesizer. It allows external modulation and attaching an ex-

ternal 10 GHz reference. We tested accuracy of generated microwaves with and without an external

reference, for which we used SRS FS740 Rubidium clock, with a spectrum analyzer and observed

that connecting external frequency reference does not cause any discernible change in accuracy.

The synthesizer can generate microwaves with powers up to 10 dBm and frequencies up to 20 GHz.

We generated microwaves with frequencies 10.001 GHz and 13.334 GHz, and output power of up

to 5 dBm.

Microwaves of sub-20 GHz frequencies can be transmitted using SM cables with standard SMA

termination, while microwaves in the 20 − 40 GHz range require KM cables. Both, incur quite

high transmission losses in power, so it was important to keep the connectors as short as possible.

We therefore connected the synthesizer output with a short SM cable to an active doubler (Marki
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Microwave ADA 1020) in case of the 26.6 GHz microwaves, and to an active quadrupler (Norden

Millimeter NQ3350G10P10) in case of the 40 GHz microwaves. Both components amplify the signal

by several dBm, which is then put into a KM cable.

The next major component is a so-called SPDT (single pole double throw) switch, which de-

pending on voltage applied to its TTL pin, sends the signal through one of its two outputs. We

do this to be able to modulate microwaves’ polarization. These distinct outputs, controlled by an

external modulation signal, can then be directed to different inputs of an orthomode transducer,

which results in emission of linearly polarized microwaves with polarizations perpendicular to one

another. We use Pasternack Enterprises PE71S6215 SPDT switch in the case of 26.6 GHz mi-

crowaves, and Eravant (previously known as Sage Millimeter) SKD-2734034560-KFKF-A3 switch

for 40 GHz ones.
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<20 dBmTTL

10 GHz
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SPDT PIN Diode Switch

Out 1

Out 2

Active Doubler
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Figure 9.3.2: Schematic of the 26.6 GHz-generating J = 2 ↔ J = 3 microwave system with major

components included. We modulate their polarization by directing the signal to different inputs of an

orthomode transducer by using an SPDT switch. Power measurements were taken with Rhode&Schwarz

NRP50S power meter. The 40 GHz J = 2↔ J = 3 system has identical architecture.

Before reaching the transducer, the microwaves need to be amplified. Given the beam waists of

a couple centimeters, we need approximately 100-150 mW of microwaves in the beam interacting

with the molecules. That corresponds to about 20-22 dBm output horn output power. Given all

the losses, an active frequency multiplier is not enough. Because the SPDT switch is responsible

for significant losses, we place amplifiers after both of its outputs. For 26.6 GHz microwaves we

use Qorvo TGA4536-SM EVB amplifiers, and Spacek Labs SP394-30-30 for 40 GHz microwaves.

The Qorvo amplifiers, while specified to amplify the signal by 18 dBm, have a maximum output of
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25 − 27 dBm. Because of that, we can operate the microwave synthesizer at powers as low as -5

dBm and obtain the same power output from the amplifiers.

Amplified 26.6 GHz signals are finally directed to Eravant SWR-5991530-340-S1 orthomode

transducer, and 40 GHz towards Eravant SAT-FQ-22422-S1 transducer. These are then connected

via a waveguide to a microwave horn. The J = 1↔ J = 2 setup uses Eravant SAQ-273085-315-S1

horn, while Eravant SAQ-403085-219-S1 horn is used by in the J = 2 ↔ J = 3 setup. In both

cases we can easily obtain 21 dBm of output power. In general, power budget for both setups is

very similar. Values shown in Fig. 9.3.2 were obtained by connecting the outputs to directional

couplers, such as Eravant SCD-0632732912-SF-SA for 26.6 GHz and SCD-1834032012-KF-SA for

40 GHz, and directing the auxiliary output (decreased by 20 or 30 dBm) to a power meter such as

Rhode&Schwarz NRP50S. Finally, on the side opposite to the emitting horn, we placed identical

receiving horns (Fig. 9.3.1) connected to a terminator. These horns can also be connected directly

to the power meter, which allowed us to measure power transmitted through the chamber.

Initially, the frequency modulation signal for J = 1↔ J = 2 microwaves, connected to the TTL

port on the SPDT switch, was generated by the same function generator that creates modulation

signal for laser’s polarization switching EOM. The microwave-modulating signal is a square wave

with the same modulation frequency and a π/2 phase offset with respect to the laser’s polarization-

modulating signal. The third modulating signal (for the 40 GHz microwaves) was identical, but

the phase offsets were changed to π/3 and 2π/3.

9.4 Detection System

The detection chamber is directly connected to the rotational cooling chamber and the distance

between both interaction regions is about 60 cm. The connection between these chambers was

initially 6” in diameter, which led to light scattered from the rotational cooling UV windows to

reach the detection setup. To ameliorate that problem, we installed a beam collimator with a 1 cm

diameter (in addition to the 4 mm apertures mentioned earlier). To further reduced the light scatter

inside the detection chamber, its interior walls were painted with Alion Quart MH2200 black paint.

Finally, we installed additional 6”-long 2”-diameter nipples on both sides of the detection chamber

through which the detection laser propagates. They minimize the amount of light scattered from
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the UV windows reaching the detection region.

The fluorescent light is detected by a head-on Hamamatsu P375 photomultiplier tube with

quantum efficiency at 271.7 nm of about 20 − 25% and a circular active area of 46 mm diameter.

We keep the PMT outside the vacuum chamber, as is shown in Fig. 9.4.1, and collect the light

directly via a fused silica polished lightpipe. The lightpipe is 1’ long and has a 2” diameter. It is

placed about 1 cm below the interaction region and its outer cylindrical surface inside the vacuum

chamber is shielded by 2”-diameter lens tubes made of blackened aluminum.

Pfeiffer Vacuum
Turbopump

HiPace 700 M

Vacuum Gauge
InstruTech

Hornet IGM 401

Vacuum

Out of vacuum

Fused Silica 
Lightpipe

2" diameter

Aluminum Outer
Layer

(acting as a clamp)

Thorlabs Cage

Mu-metal Sheet

Rubber Sheets

Bandpass UV Filter
Semrock

FF01-280/20-50.8-D

PMT
Hamamatsu

R375
PMT Socket 

Assembly
Hamamatsu

E1435-02

Figure 9.4.1: Schematic of the detection chamber with a magnified view of the cross-section of the PMT

assembly.

The lightpipe leaves the vacuum chamber through a special flange and connects to the PMT

assembly. Placed between the lightpipe and the PMT active area is a Semrock FF01-280/20-50.8-D

UV bandpass filter, which is placed inside a Thorlabs cage (lens tube). PMT’s output is connected

to Hamamatsu E1435-02 socket and both are wrapped in a rubber sheet and placed in a clamping

aluminum cover. That cover, together with lens tube and the out-of-vacuum part of the light pipe

are then wrapped in a mu-metal sheet providing some magnetic field shielding. Finally, a clamp
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(not shown in the figure) touching the mu-metal sheet is placed around the PMT, and attached

via 4 rods to the bottom of the vacuum chamber.

The PMT was at the beginning operated at an input voltage of -1 kV. Initially, big amount of

scattered light reaching the PMT and chosen PMT voltage caused it to operate in the nonlinear

regime, i.e. the output signal voltage was no longer depending linearly on the incident light’s

intensity. This caused unusual problems - we observed a stronger signal (higher gain) when the

amount of background light was higher. Placing a beam collimator fixed the issue by substantially

reducing the amount of scattered light. Additionally, out of caution, we lowered the voltage to

-850 V. The output signal of the PMT is directed towards SRS SR445A 350 MHz pre-amplifier,

where it undergoes three amplification processes, each increasing the signal by a factor of 5. The

output then goes through a 1 kHz low-pass filter, and the filtered and amplified signal is eventually

connected to the data-collecting oscilloscope.

9.4.1 Data Collection

Rotational cooling data collection has to be performed in a way that would allow to measure

accumulation in desired states. Theoretical details on how this can be achieved are shown in the

next chapter. Here, we just mention that this requires performing fluorescence spectroscopy at

various transitions and comparing the signals with and without rotational cooling. We achieve that

by installing a shutter at the output of the P2F1 transition-driving laser’s UV doubler (Fig. 9.2.1)

and interchangeably collect appropriate data.

The data collection is performed by National Instruments PXIe-5171 8-channel 250 MHz oscil-

loscope that is interfaced with a computer with the help of National Instruments PCIe-8381 card

allowing a 3.2 GB/s data transfer. One of the oscilloscopes inputs is connected to the output of the

PMT amplifier, while another one obtains a TTL signal that initiates a single data collection event

resulting in a time series with PMT voltage on the y-axis. The signal is collected for a total time

of 20 ms in 10 µs steps resulting in 2000 data points (with an exception of the final data collection

run, where we increased the number of data points to 2500 and total time to 25 ms). Each time

series (time-of-flight data), together with additional information such as instantaneous frequency

of rotational cooling and detection lasers, their lock status or status of the shutter, are recorded as

separate datasets and attributes in an hdf5 file.
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We control the data collection sequence by programming the Spincore PBESR-PRO-250-USB-

RM programmable pulse generator. It controls the exact timing of ablation, shutter opening and

closing, and data collection initialization. In most of the experimental runs, the ablation laser was

sent a 10 Hz TTL signal. Identical TTL signal was directed to the PXIe oscilloscope in order to

initialize the data collection. Another signal, with frequency of 5 Hz was sent to the shutter. The

shutter we use is SRS475 laser shutter and it requires a typical 3.3 V TTL signal that is provided

by the pulse generator. This signal was delayed with respect to the ablation-controlling signal by

about 30 ms - we want the shutter to open or close after the 20 ms-long data collection shot, but

before the next one. Given a 10 Hz ablation frequency, time between the shots is 100 ms, so a 30

ms delay should work well - 70 ms is enough for this shutter to open or close.

We collect one time-of-flight data instance with rotational laser going through the chamber and

interacting with the molecules, and then one without. Comparing both allows us to deduce the

sought-after values. Such approach allows us to estimate effects of rotational cooling by minimizing

the shot-to-shot signal variance - while we scan the motorized mirror controlling the location of

ablation, the scan is slow enough to allow for high degree of similarity between consecutive shots.

However, as we will discuss in the next chapter, the number of shots with or without rotational

cooling laser that is used for analysis is chosen to be higher than 1 in order to be able to average

several results, which helps to improve signal-to-noise ratio and further average out the shot-to-shot

variation.
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Chapter 10

Rotational Cooling Results

10.1 Theoretical Predictions

Before we move on to presenting results of the experiment, we would first like to investigate how the

rotational cooling process and its efficiency can be measured experimentally and what its signatures

are. First, we will look at the detection transitions that can be used to deduce the accumulation

of population in the desired state.

Next, we will show how the detection line strength change depending on the details of the

rotational cooling process. We would like to see what results we expect if we simply perform

optical pumping on the rotational cooling transition with or without the help of microwaves, or

with or without polarization switching.

10.1.1 Accumulation Detection Lines

In order to perform measurements on the ground rotational state and see the effects of rotational

cooling we need measure line strengths of transitions, which would be sensitive to the population

in all Zeeman sublevels. Using two transitions, which we will call, using spectroscopic notation,

R0F2 and R0F1, we were able to estimate the population in the final |J = 0, F1 = 1/2, F = 0〉 state.

Fig. 10.1.1 shows these transitions.

The line strength of both transitions depends on the populations in different sublevels in the

ground rotational manifold. In the case of the R0F2 transition, regardless of laser’s polarization,

due to selection rules we have 3 ground state sublevels in the |J = 0, F = 1〉 hyperfine state and
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(a) R0F1. (b) R0F2.

Figure 10.1.1: Detection transitions. a) R0F1 transition is sensitive to total population in the whole ground

rotational state, while b) the R0F2 transition is sensitive only to population in the F = 1 hyperfine state.

5 available excited state sublevels (this line is separated from the R0F1 line by about 300 MHz),

which means no dark states will be created. The line strength of this transition is proportional to

total number of photons scattered, which in turn depends on the number of interacting molecules

and number of photons per molecule we can obtain from this process. Because in our experiment

the number of all molecules that can interact with the detection laser is on average constant, the

total number of photons will depend on the percentage of all molecules that do interact with the

detection laser, which in our calculations is represented by the populations appearing in the density

matrix. Assuming LR0F2 is the line strength of the transition and that we completely remove the

population from the interacting states, we have:

LR0F2 = αρ|J=0,F=1〉 = α (ρ1,−1 + ρ1,0 + ρ1,1) ,

where ρF,mF represent populations in Zeeman sublevels of the hyperfine state F in the ground

rotational manifold J = 0, and α is a proportionality constant. We should note that while the

exact number of photons we obtain per interacting molecule from this transition depends simply

on the rotational branching ratios and is nγ ≈ 1.92, it is not relevant to our calculations - this

number is already included in the constant α.

In the case of the R0F1 transition, the situation is slightly more complicated. This transition

couples to all 4 sublevels (ground state splitting is only on the order of 10 kHz as shown in Fig. 2.2.1)
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in the J = 0 manifold, while in the excited F ′ = 1 state it couples to 3 sublevels - a dark state will

be created and it will depend on laser’s polarization. Fortunately, a simple polarization modulation

or switching procedure will destabilize it. Like in the case of the R0F2 transition, if we assume

that we completely remove population from the interacting states, we can write:

LR0F1 = βρ|J=0〉 = β (ρ0,0 + ρ1,−1 + ρ1,0 + ρ1,1) ,

with a different proportionality constant (in this case number of photons per molecule is very

similar, nγ ≈ 1.94).

If we define LRC as line strengths after the rotational cooling process, we can easily find ratios:

kR0F1 ≡
LRC

R0F1

LR0F1
kR0F2 ≡

LRC
R0F2

LR0F2
. (10.1.1)

If we assume that the initial populations before a rotational cooling process in all Zeeman sublevels

of J = 0 manifold are equal, i.e. ρ0,0 = ρ1,−1 = ρ1,0 = ρ1,1, then one can show that the factor by

which the population has increased in the final |J = 0, F1 = 1/2, F = 0〉 state is:

rf ≡
ρRC

0,0

ρ0,0
= 4kR0F1 − 3kR0F2. (10.1.2)

In the experiment, by measuring line strengths of both R0F1 and R0F2 transitions before and after

rotational cooling, we will be able to use Eq. (10.1.1) and Eq. (10.1.2) to estimate how big the gain

we achieve is and compare it to predictions obtained from numerical simulations.

10.1.2 Effects of Rotational Cooling on Detection

To make experimental predictions, we simulated both R0F1 and R0F2 transitions that we have just

described. In the simulations we tried to emulate real experimental values of various parameters. In

them, we assumed a conservative Tdet = 25 µs interaction time, laser with uniform intensity, beam

diameter of ddet = 4.5 mm and total power Pdet = 32 mW (Ωdet ≈ 3.1 Γ). For the R0F1 transition

we also assumed polarization modulation with fmod = γ ≈ 1.6 MHz and depth of βmod ≈ π rad.

For such parameters the whole ground rotational manifold becomes depopulated.

In order to properly measure the line strength, we used procedure similar to the one, when we

were discussing optical cycling and average scattering rates. Namely, the total number of photons

scattered, and so the line strength, can be written as Nγ = Γ̃Tdet with Γ̃ defined analogically to
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Eq. (6.3.2). Because decay rate Γ is the same for all the excited states we are using, for simplicity

we can define the line strength as:

L ≡
∑
i

∫ Tdet

0
ρei,eidt, (10.1.3)

where the sum is over all excited states.

Having chosen detection transitions, parameters and a measuring method, we simulated the

detection transitions for various initial populations, where each one was a final population of a ro-

tational cooling process. To obtain those populations we simulated the chosen benchmark scheme

with previously used parameters. We chose to simulate the process without the microwaves (simple

optical pumping) first, with and without polarization switching, in order to have a guideline pre-

diction with the simplest experimental realization. The benchmark scheme with microwaves was

also simulated with and without microwave polarization switching. In figure Fig. 10.1.2 we compare

evolution of populations in different rotational states for the aforementioned processes.

(a) J = 0. (b) J = 1. (c) J = 2.

Figure 10.1.2: Evolution of populations in first three rotational states in the benchmark rotational cooling

process with: laser only and no polarization switching, laser with polarization switching only, laser with

polarization switching and microwaves without, both laser and microwaves with polarization switching.

To show how the line strengths are expected to change, we also plotted the first 5 µs of time

evolution of excited state populations in both detection transition. Fig. 10.1.3 shows these for:

initial populations with no rotational cooling process, and after the optical pumping processes with

and without polarization switching (P2F1 transition without the J = 1↔ J = 2 microwaves).

Finally, in table 10.1.1 we included predictions for all the variations of the rotational cooling

197



CHAPTER 10. ROTATIONAL COOLING RESULTS

(a) R0F1. (b) R0F2.

Figure 10.1.3: Time evolution of excited states’ populations for both detection transitions for initial pop-

ulations without a preceding rotational cooling process, and with preceding optical pumping on the P2F1

rotational cooling transition.

benchmark scheme. We calculated the predicted increase in the final state’s population directly

from populations obtained in numerical simulations, and by using Eq. (10.1.2) with the ratios that

are presented in the table. The ratios were obtained from rounded line strengths that are shown

in the table and were calculated using Eq. (10.1.3). We can see that the predicted factors rf agree

well (up to rounding errors) with the direct results of our numerical simulations.
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Scheme
Rotational Cooling Details

ρ0,0 ρ1,−1 ρ1,0 ρ1,1 LR0F1 LR0F2 kR0F1 kR0F2
ρRC

0,0

ρ0,0
rf

ΩL fpsw
L Ωµ12 fpsw

µ

Initial - - - - 0.033 0.033 0.033 0.033 25.00 18.94 1 1 1 1

Benchmark Yes No No No 0.095 0.042 0.043 0.042 41.39 23.84 1.65 1.26 2.88 2.85

Benchmark Yes Yes No No 0.208 0.058 0.061 0.058 71.89 33.54 2.89 1.78 6.30 6.19

Benchmark Yes Yes Yes No 0.555 0.106 0.115 0.106 167.27 62.31 6.69 3.29 16.80 16.89

Benchmark Yes Yes Yes Yes 0.630 0.117 0.126 0.118 188.01 68.57 7.52 3.62 19.10 19.22

Initial - - - - 0.022 0.022 0.022 0.022 16.55 12.32 1 1 1 1

Benchmark - full Yes Yes Yes Yes 0.655 0.112 0.118 0.111 190.94 64.92 11.54 5.27 30.32 30.35

Table 10.1.1: Summary of predicted line strengths and population increase in the desired final state. All

results are based on the benchmark scheme described in Chapter 7 and use the same parameters. Columns 2

through 5 represent information about the scheme used - columns labeled “Ω” show whether or not transition

was used, while fpsw say if the corresponding light field had its polarization switched. The second-to-last

column was calculated directly from the estimated populations, while the last column was evaluated using

Eq. (10.1.2). We see that the estimates are quite accurate.

In the table we also included results for a full benchmark rotational cooling process that includes

the J = 3 rotational manifold and J = 2 ↔ J = 3 microwaves. Because the numerical values of

populations represent the percentage of molecules in given state, in the full simulations we begin

with a smaller number molecules in the ground J = 0 rotational state relative to population in the

first four rotational states J = 0− 3.

It is also worth noting that results for incomplete rotational cooling, that is either without any

microwaves or with one pair of microwaves, but without polarization switching, are only as good

as the parameters used. Change of interaction time or Rabi rates would lead to factors kR0F1 and

kR0F2 different than shown in the table above, and so we expected presented numbers to be only

ballpark estimates of what we will actually see in the experiment. In the case of full rotational

cooling, because we are removing population from J = 1 − 3 states completely, parameters other

than used in simulations should lead to very comparable results as long as they lead to full removal

of aforementioned populations. In the experiment, we expect the interaction time to be long enough
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for the process to finish even for Rabi rates smaller than assumed in calculations presented here.

Therefore, these predictions should be more accurate.

Figure 10.1.4: Ratios of R0F1 transition’s signal strengths with and without the rotational cooling process

including only the P2F1 transition’s laser for different values of laser’s Rabi rate.

To further emphasize this point, in Fig. 10.1.4 we show kR0F1 ratios as a function of rotational

cooling’s P2F1 laser’s Rabi rate ΩL in the benchmark scheme without microwaves and with laser’s

polarization switching (the third row of table 10.1.1). We can clearly see that depending on the

laser’s power, the sought-after ratio might vary and the maximum is reached when true Rabi rates,

that is including the dipole transition matrix elements, are comparable to naturally occurring

remixing rate related to energy splittings, as was discussed in Chapter 5. In reality, the beam is

not only multipassed through the rotational cooling chamber, but it also has an elliptical Gaussian

profile, which means that molecules see a spatially varying Rabi rate as they move.

Additionally, the non-zero transverse velocity spread creating Doppler shifts in the rotational

cooling molecule-laser interaction causes the efficiency (and so the ratio as well) of this process to

decrease. With the apertures that we installed at the entrance and exit of the rotational cooling

chamber, ∼ 90% of the molecules that reach the detection chamber and interact with the laser

have transverse velocities |vt| . 2 m/s limiting the Doppler shifts to at most ∼ 5 Γ. While for the

R0F1 and R0F2 detection lines this makes little difference (50 µs interaction time, 30 mW laser
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power and required scattering of only 2 photons per molecule ensures scattering to completion),

this spread will still influence the final result. Finally, a small percentage of those molecules might

not talk to the rotational cooling laser - trajectories going above or below the multipassed laser,

and yet reaching the detection region are possible. Full Monte Carlo trajectory simulations with

realistic laser beam shapes and experiment’s geometry show that we should expect the kR0F1 ratio,

in the discussed case of laser-only interaction, to be around 3.

10.2 Results

Having made predictions we are now interested in comparing them to the experimental results.

First, however, we need to address some of the issues that come up during the data analysis and

choose one and consistent method of approaching the experimental data.

10.2.1 Data Analysis

Analyzing the experimental data seems, on the face of it, rather easy. We simply need to look at

signal strengths, i.e. integrals of the PMT signals, with and without the rotational cooling process

taking place, and compare both. However, there are some complications, some stemming from the

experimental imperfections themselves, but some because we need to look at ratios of two random

numbers.

If we assume that we collected the experimental signals and their integrals are normally dis-

tributed around their respective means (and, for simplicity, the same variances), i.e. X1 =

N (µ1, σ), X2 = N (µ2, σ) shown in Fig. 10.2.1a, estimating the true ratio of their means µ1/µ2

from the distribution of their ratios X1/X2 is not straight-forward. The ratio distribution, shown

in Fig. 10.2.1b, does not have any well-defined moments such as the mean, although empirical esti-

mators can still be obtained. It is also a heavy-tailed distribution with many potential outliers. For

this reason the empirical mean does not provide a good estimate of normal distributions’ means’

ratio (in our case it overestimates them). The median value, on the other hand, seems to be pretty

accurate in this estimation. However, that is the case if the ratio distribution can be constructed -

we need enough ratio data points and the variances of both normal distributions cannot be unrea-

sonably large. Empirically, what helps is filtering the data by removing the outliers, even just the
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last percentile, and by keeping the ratios above 0.
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Figure 10.2.1: Simulated distribution of signals’ integrals. The ratio distribution obtained from two normal

distributions is heavy-tailed and does not have well-defined moments. Its median provides the best estimate

of the ratio of normal distributions’ means.

Of course, one could ask why not just obtain the means of the normal distributions first, and

then calculate the ratio. Unfortunately, due to experimental imperfections this method does not

provide good and consistent results. The problem is the shot-to-shot noise created by the necessity

of moving ablation spots on the target. Otherwise, we could expect the signal to perform a kind

of symmetric random walk leading to a normal distribution of its integrals. However, because the

signal decays quite quickly, and after putting the apertures the number of molecules reaching the

detection region is severely limited, we must move between different location on the target. That

causes sudden random changes of signal’s strength akin to a jump process. Averaging the integrals

of signals with and without the rotational cooling process over the whole data run results then in

incorrectly estimated ratios.

The problem can be somewhat ameliorated by ablating a spot on the TlF target 50 times - 25

with the shutter open (with the P2F1 laser reaching the rotational cooling chamber) and 25 with

it being closed. The signal was found to be quite stable over this many shots. Then, we can move

to another spot and repeat the process. When analyzing the data, we could then bunch 25 signals

together and obtain a good estimate of the ratio for every ablated spot, and next combine all ratios
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into one ratio distribution. Given the total number of shots of, usually, 4000, this method might

not provide enough data to obtain a good estimator. Hence, instead we decided to bunch 2 signals

together obtaining in the end 1000 ratios creating a robust distribution.

The whole data analysis process was performed in following steps. First, we subtracted the

background mean from obtained PMT signals by looking at the first 3 ms of the time-of-flight

data1. Then, we averaged two consecutive signals with the shutter open and two with shutter

closed, and calculated integrals of both average signals. On most occasions we did not perform any

filtering of the signals, but when we did, for example by removing signals resulting in negative or

very small integrals, we did it in pairs - if either of the consecutive signals, with the shutter open

or closed, had to be removed, both of them were, and so the overall number of signals with shutter

open or closed stayed the same.

Once all the integral ratios were obtained, we first removed the last percentile (we kept the

lowest 99% of values), and removed ratios smaller than 0. In vast majority of cases the data was

robust and this filtering process did not affect the estimate in any way. Finally, we estimated the

sought-after ratios by taking median of the remaining integral ratios. As the error of the estimate

we chose to use error of the empirical mean, i.e. s̄/
√
n, where s̄ is empirical standard deviation and

n is number of averaged data points.

10.2.2 Line Searches

One of the first experimental data was taken before the full rotational cooling setup was constructed.

We first needed to identify spectral lines of TlF and find their approximate frequencies, and results

for a couple of them are depicted in Fig. 10.2.2. In the experiment the most crucial were frequencies

of: the P2F1 rotational cooling line, R0F1 and R0F2 detection lines, and Q1 and Q23 quasi-cycling

lines that were used for depletion measurements. Once these were found, before every data run

we would center the lasers close to the measured frequencies by looking at the wavemeter, locking

them to the Cesium reference laser, and then narrowly scanning their frequencies in a 20 MHz

range in IR (80 MHz in UV). After the scans were performed, center of their lines were dictating

the choice of the frequency lockpoint that the software had to be set to.

Even though the effective rotational constant is known to a good precision, and so should be

1To be more precise, we used points from the interval between 1.25 ms and 2.5 ms.
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Figure 10.2.2: Spectral lines of TlF obtained through a frequency scan of the detection laser.

the J = 1 ↔ J = 2 and J = 2 ↔ J = 3 transition frequencies, we scanned microwave frequencies

to confirm our prediction. In the case of the 26.6 GHz transition, we performed the scan by looking

at population depletion in the J = 1 rotational state, which can be measured by looking at the

Q1 line. Of course, by solely including the microwave interaction, populations of J = 1 and J = 2

states would simply mix - it would be a coherent population transfer process. This would not result

in strong signal changes. Instead, we performed a rotational cooling measurement with both the

P2F1 laser and the microwaves. By looking at the Q1 line in the detection region, we would expect

the signal to drop drastically after the population in J = 1 is removed via the rotational cooling

process. Indeed, in Fig. 10.2.3a we see a clear signature of depletion at a particular frequency with

a Lorentzian lineshape fitted to the data. The obtained frequency matches the expectation - the

transition occurs at 26.669 GHz.

The other microwave transition could potentially be measured using a similar procedure by

looking at the Q23 line, which is sensitive to population in both J = 2 and J = 3 rotational state.

However, to perform this scan we instead decided to see if the resonance signature can be seen

by looking at the accumulation in the J = 0 state measured through the R0F1 detection line. As
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(a) J = 1↔ J = 2 microwave frequency scan.
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(b) J = 2↔ J = 3 microwave frequency scan.

Figure 10.2.3: Microwave frequency scans using the rotational cooling process and detection centered on:

a) Q1 line which measures depletion in the J = 1 rotational state; b) R0F1 line measuring accumulation in

the J = 0 rotational state. We fitted Lorentzian lineshapes to both datasets to find center of every line.

shown in Fig. 10.2.3b, the resonance can be found and it is centered at 40.004 GHz.

10.2.3 Optical Pumping as Proof of Principle

The first measurement that we performed did not include any microwaves, and so it was strictly a

optical pumping process removing population from the J = 2 rotational state and accumulating it

in the ground rotational state. In this measurement, polarization of the P2F1 transition laser was

switched with frequency of 1.5 MHz, which was slightly less than the frequency used in numerical

simulations (and for which we obtained reasonably good results), but slightly more than the 1.22

MHz estimated at the beginning of Chapter 7 to be related to characteristic time of the spontaneous

decay. Even though in the end we are interested in the rf ratio representing population accumula-

tion in the final |J = 0, F1 = 1/2, F = 0〉 hyperfine state, initially, we checked how the kR0F1 ratio,

measuring changes in total population in J = 0, behaves with changing rotational cooling laser

power. In this and all other measurements presented the power of the detection laser was always

around 30 mW.

The obtained ratios are shown in Fig. 10.2.4 and show an improvement with higher laser power.

If we were to believe ratios acquired through numerical simulations and presented in Fig. 10.1.4,

it seems that we are in the regime on the far left part of the plot, and observe a quick increase
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in the accumulation in J = 0 with increasing power. The last three points would then point to

a slight decrease in the ratio following the predictions. However, the predictions were created for

an idealized experiment, and the last three data points are rather inconclusive when it comes to

estimating how the data fits the predictions. In the end, it is not of high importance - a full

rotational cooling process for our 250 µs interaction time should work quite efficiently for a rather

large range of powers.
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Figure 10.2.4: Measured R0F1 line strength ratios for different powers of the rotational cooling laser

addressing the P2F1 transition.

Next, to follow the conditions for which results in table 10.1.1 were obtained, we measured

both the kR0F1 and kR0F2 ratios with the rotational cooling laser’s power of 45 mW. In Fig. 10.2.5

we present average PMT signals (after mean subtraction) with the shutter open and closed (so

with and without the rotational cooling process, or simply optical pumping in this case, taking

place). For clarity, both signals were plotted after applying a moving average filter with a very

short window. The rotational cooling process results in the integral of the R0F1 signal increasing

by a factor of 3.000 ± 0.083, and the R0F2 signal by 1.739 ± 0.029, as calculated using procedure

described in the previous section. These ratios are very close to the ones predicted in simulations.

Using Eq. (10.1.2), we can calculate that through this optical pumping process the population of

the |J = 0, F1 = 1/2, F = 0〉 hyperfine state increases by a factor of rf = 6.78± 0.34.
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(a) R0F1 line.
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Figure 10.2.5: Average time-of-flight PMT signals with and without rotational cooling process taking place.

a) The R0F1 transition resulting in a ratio kR0F1 = 3.000± 0.083 and b) the R0F2 transition leading to a

kR0F2 = 1.739 ± 0.029 ratio. The rotational cooling process only included interaction with the P2F1 laser.

The y-axis is provided in data acquisition hardware’s internal analog-to-digital conversion (ADC) units.

This measurement was also performed to show that our data analysis method argumentation

is sound. To do that, we plotted histograms of different filtered ratios obtained from measuring

effects of rotational cooling on both detection lines. These are presented in Fig. 10.2.6 and both show

skewed and heavy-tailed distributions very similar to the simulated one depicted in Fig. 10.2.1b.

We also placed calculated mean and median on the plots - the mean is larger due to the outliers.

10.2.4 Rotational Cooling with J = 1↔ J = 2 Microwaves

Next, we turned on the 26.6 GHz microwaves and performed a proper rotational cooling mea-

surement following the “benchmark” scheme discussed before. While keeping the P2F1 transition

laser at a power of about 45 mW, we performed two scans: first, we scanned power of used

microwaves, and then, we looked at how the effects of rotational cooling change with changing

polarization switching frequency. The former was performed with a previously-used 1.5 MHz po-

larization switching frequency and the power was measured through a receiver horn on the other

side of the rotational cooling vacuum chamber. The real power in the chamber was estimated

to be about 1.5 dBm higher. Like in the previous power scan, we looked at the accumulation in

J = 0 represented by strength of the R0F1 line. Results of this scan are shown in Fig. 10.2.7a. As
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Figure 10.2.6: Histograms of filtered ratios obtained from a rotational cooling measurement representing

their observed distributions, which follow a predicted skewed and heavy-tailed ratio distribution obtained

from a ratio of two normal random variables.

expected, the scan reveals that once the microwaves reach certain power, the efficiency plateaus

and the signal stops growing.

For the next measurement, and all the subsequent ones, we kept the microwaves at about 20

dBm power as measured by the receiver horn (corresponding to about 140 mW of microwave power

inside the chamber). The polarization switching frequency was the same for both the laser and

the microwaves, but with a π/2 phase offset assumed in the simulations. Experimentally, this can

be set up by simply using a coupling function between two channels of a function generator. The

scan, presented in Fig. 10.2.7b, reveals that in this regime, i.e. between 0.2 MHz and 2 MHz, the

frequency does not play a major role. That is to be expected given our rather long interaction

time and reasonably high Rabi rates. At the high end of the scan, that is at 2 MHz, the signal

enhancement seems to get slightly lower, as it should, although we would require more data to

reach a proper conclusion.

Having set the polarization switching frequency to 1.5 MHz as before, we again performed

measurement of the ratios required to calculate the rf factor we were looking for. Average signals

of those measurements are depicted in Fig. 10.2.8, and the ratios obtained were kR0F1 = 6.422±0.174

and kR0F2 = 2.888± 0.033, which lead to the population enhancement factor of rf = 17.02± 0.70,

quite close to the predictions. It is worth noting that the difference between the obtained ratio
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(a) Microwave power scan.
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(b) Polarization switching frequency scan.

Figure 10.2.7: kR0F1 ratios for a rotational cooling process with the J = 1 ↔ J = 2 microwaves included

obtained for different values of a) microwave power and b) polarization switching frequency of both the

rotational cooling laser and the microwaves.

and the predicted value of ∼ 19 is equal to about 10%, which could be taken as an estimate the

number of molecule that are either outside of desired transverse velocity range obtained by placing

two apertures, or that do not completely go through the multipassed rotational cooling laser.
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(a) R0F1 line.
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Figure 10.2.8: Average time-of-flight PMT signals with and without rotational cooling process taking

place, which included both the P2F1 laser transition and the J = 1 ↔ J = 2 microwave coupling. a)

The R0F1 transition resulting in a ratio kR0F1 = 6.422 ± 0.174 and b) the R0F2 transition leading to a

kR0F2 = 2.888± 0.033 ratio. The y-axis is provided in data acquisition hardware’s internal analog-to-digital

conversion (ADC) units.
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One additional measurement that can be performed is measurement of population removal

(depletion) from the J = 1 rotational state. That can be easily achieved by looking at the cycling

Q1 transition (Fig. 6.4.1) detailed in Chapter 6. This transition, while detected without full dark

state remixing (there are no J = 0 ↔ J = 1 microwaves in our detection region), should be a

good measure of remaining population, and should provide a strong clear signal. Ideally, after

the rotational cooling takes place, this signal should average to zero. However, as can be seen in

Fig. 10.2.9, there still is a non-zero residual signal. The actual ratio obtained on this transition was

kQ1 = 0.100 ± 0.001 again confirming that we were left with approximately 10% of our molecules

in their original states.
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Figure 10.2.9: Average time-of-flight PMT signal with and without rotational cooling process taking place,

which included both the P2F1 laser transition and the J = 1 ↔ J = 2 microwave coupling for the Q1

transition measuring population depletion in the J = 1 state. The measured ratio is kQ1 = 0.100 ± 0.001.

The y-axis is provided in data acquisition hardware’s internal analog-to-digital conversion (ADC) units.

10.2.5 Full Rotational Cooling

Finally, we added the last set of microwaves coupling J = 2 and J = 3 rotational states. Just like

when we added the first set of microwaves, we performed a power scan and polarization switching

frequency scan by measuring the kR0F1 ratio. The former was performed by adjusting current drawn
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by microwave amplifiers, in contrast to the previous set of microwaves where we could adjust the

power by adjusting the power at the source, and the emitted power was estimated by taking into

account predicted losses on components downstream from the amplifiers. Polarization switching

was set to 1.5 MHz and phase offsets between the laser and the other set of microwaves were 2π/3

and π/3 respectively (in simulations we assumed π/2 and π/4 offsets) providing the most optimal

combination of different fields’ polarizations. Setting precise phase offsets between three different

channels required us to connect two separate 2-channel function generators and synchronize them.

The first channel of the first function generator provided the TTL signal to one of the polarization

switching components, while the second channel was connected to a trigger input of the other

function generator. Once the trigger was obtained, an infinite “burst” of a square TTL signal

was initiated after an appropriately set delay. The delay was different for both channels and it

determined the exact phase offset between all the signals. For these measurements, given that the

signals were expected to be larger than before, the data was collect over 25 ms, not 20 ms.

The power scan of Fig. 10.2.10a is, rather surprisingly, consistent with a straight line. The

data, however, was really noisy mostly due to vary large spot-to-spot variations of the signals and

difficulty in finding a good place on the target to perform the ablation. Notwithstanding, we chose

to subsequently operate this set of microwaves at about 325 mW of emitted power. The effects of

changing polarization switching frequency were measured for a wider range than previously. This

time the data more clearly shows that after reaching frequencies & 1.5 MHz the ratio slightly drops

matching our expectations.

For the final kR0F1 and kR0F2 ratio measurements we set the polarization switching frequency

to 1 MHz. Average signals from these measurements are shown in Fig. 10.2.11 and show ratios of

kR0F1 = 8.746 ± 0.267 and kR0F2 = 3.763 ± 0.120. These are below the predictions of table 10.1.1

by a wider margin than before, and so is the enhancement rf in the final hyperfine state - we

can calculate that rf = 23.70 ± 1.13, about 20% lower than the factor of 30 predicted for perfect

rotational cooling.

Like before, we then performed a depletion measurement, this time on the quasi-cycling Q23

transition line (Fig. 6.5.1) being also one of the most prominent lines in TlF at our rotational

temperature. This transition is a proxy for combined populations of J = 2, 3 rotational states,

with the same caveat as before - without the microwave remixing some population inevitably ends
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(a) Microwave power scan.
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(b) Polarization switching frequency scan.

Figure 10.2.10: kR0F1 ratios for a rotational cooling process with both the J = 1 ↔ J = 2 and J = 2 ↔
J = 3 microwaves included obtained for different values of a) J = 2 ↔ J = 3 microwave power and b)

polarization switching frequency of the rotational cooling laser and both sets of microwaves.
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(a) R0F1 line.
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Figure 10.2.11: Average time-of-flight PMT signals with and without rotational cooling process taking

place, which included both the P2F1 laser transition, the J = 1↔ J = 2 microwave coupling, as well as the

last set of microwaves coupling J = 2 and J = 3 rotational states. a) The R0F1 transition resulting in a

ratio kR0F1 = 8.746± 0.267 and b) the R0F2 transition leading to a kR0F2 = 3.763± 0.120 ratio. The y-axis

is provided in data acquisition hardware’s internal analog-to-digital conversion (ADC) units.

up in the dark state subspace. However, the obtained ratio, ideally 0 for complete state population

depletion, should have still provided valuable information telling us what percentage of the initial

population remained in the J = 2, 3 states after rotational cooling. As shown in Fig. 10.2.12, the
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ratio, just like in the case of the Q1 depletion measurement, is equal to 0.101±0.001. The depletion

measurements while pointing to a 10% drop in efficiency comparing to the idealized situation, can

be interpreted as such if the population is removed from hyperfine states within the J = 1, 2, 3

rotational manifolds uniformly. The depletion measurements without a proper remixing procedure

look at population changes in the bright states with respect to these transitions. It is possible,

however unlikely, that the dark state population had not been removed through the rotational

cooling process with the same efficiency.
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Figure 10.2.12: Average time-of-flight PMT signal with and without rotational cooling process taking place,

which included both the P2F1 laser transition, the J = 1 ↔ J = 2 microwave coupling, as well as the last

set of microwaves coupling J = 2 and J = 3 rotational states, for the Q23 transition measuring population

depletion in both J = 2 and J = 3 states. The measured ratio is kQ23 = 0.101±0.001. The y-axis is provided

in data acquisition hardware’s internal analog-to-digital conversion (ADC) units.

10.3 Limitations and Possible Improvements

All in all, the observed increase in the |J = 0, F1 = 1/2, F = 0〉 population is substantial - a factor

of ∼ 24. Comparison of growing average PMT fluorescence signals for the R0F1 line obtained for

the “benchmark” scheme of rotational cooling with different light fields included is presented in

Fig. 10.3.1. It shows a quite staggering improvement in signal’s strength. The results are also with
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a rather good agreement with theoretical predictions.
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Figure 10.3.1: Average time-of-flight PMT signals for the R0F1 detection transition: without the rotational

cooling, only with the optical pumping process, with both the P2F1 laser transition and the J = 1 ↔
J = 2 microwave coupling, and with the laser transition and both microwave couplings. The signal grows

significantly, albeit the ratios do not reach the maximum value possible to obtain in an idealized situation.

The y-axis is provided in data acquisition hardware’s internal analog-to-digital conversion (ADC) units.

The discrepancies can be mostly explained by the fact that not all molecules that are detected

undergo a full cooling process. As was mentioned before, not only does some portion of the detected

molecules not talk to the high-intensity parts of the multipassed P2F1 transition laser beam, but

also those that do can have quite large transverse velocities, and thus Doppler shifts, thereby

limiting the efficiency of the process. We estimated the percentage of such molecules to be about

10%. However, even out of the remaining 90% not all of the TlF molecules might get transferred

to the ground rotational manifold. A full Monte Carlo simulation with accurate depiction of all the

light fields and real molecular trajectories is necessary to fully compare theory to the experiment.

If the results are indeed limited by the transverse velocity spread we have two solutions - we

can either power broaden the P2F1 transition laser beam, i.e. increase its power, or add sidebands

through phase modulation. Adding more power is the simpler option. Currently, the polarization-

switching EOM incurs a ∼ 35 − 40% loss in the UV laser power. Replacing it with a resonant
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polarization-modulating EOM (a sine-wave modulation would work just as well) with losses no

larger than ∼ 3% would greatly increase available power. On the other hand, if we are limited by

size of the beam, we can simply try expanding it further.

A less likely explanation points towards a rotational temperature of the beam being slightly

higher than expected from the previous measurements. This would lead to population being more

concentrated in higher rotational states, which would decrease the percentage of molecules accessible

via rotational cooling inside the beam. One reason for that might be Ne flow lower than when the

initial measurement was performed, although this is probably not the case. Our flow is only about

10 sccm smaller and we believe that we provide more than enough neon for the ablated TlF to

quickly thermalize.

The performed experiment was also limited in its precision due to various imperfections. One

of the major issues we experienced was the inconsistency of the molecular beam intensity, and

therefore strength of our signal. The fluctuations were caused by randomness in the TlF target

ablation efficiency and highly depended on the ablated spot, as well as ablation laser parameters

such as its power and focus. One of the possible solutions to this problem would be placing a new

target, preemptively scanning it for good spots and using only these for the actual measurement.

Another issue lowering our signal’s SNR was the noise coming from the detection laser’s scat-

tered light. While the beam was going through 6”-long nipples on both sides of the detection

chamber, both of which had an installed blackened aluminum honeycomb mesh on its inner walls,

the chamber’s walls were covered with a light-absorbing paint, and the lightpipe sticking inside the

vacuum chamber was inside a blackened aluminum tube, the SNR of our R0 transition signals was

around 2 for a single shot. We reckon that adding baffles inside the nipples could help us with

reducing this noise. Better coated AR windows would also be provide a non-negligible improvement.

The laser systems we used were not always stable either. Any fluctuations coming from the

seed lasers, amplifiers or any of the doubling cavities would then automatically be observed as a

non-random noise on the PMT and potentially change the calculated ratios quite drastically. The

simplest change is to go away with home-built systems altogether. There are currently sold sets of

high-power amplifiers connected to single-stage frequency doubling components for a price that is

comparable to a price of building a full frequency-doubling apparatus. We actually obtained one

such part (MPB Communcations 2RU-VYFA-P-10000-543), which requires us to simply connect
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the output of our seed laser to the input fiber of this amplifier-doubler combo. The output at

∼ 543.5 nm is already fiber coupled and can be directly connected to Toptica’s UV cavity. The

green output is also linearly polarized and power-stabilized with maximum power of 1.1 W.

Finally, our reference laser locked to Cesium’s D2 line, while very stable on short timescales,

experiences slow frequency drifts. These are rather tiny (∼ 2 MHz), but given that we lock our

science lasers at the IR frequency, the drift in the UV frequency increases to 8 MHz, or about 5

natural linewidths. Despite the fact that the P2F1 and both R0 detection transitions are quite

broad, such drifts might cause a drop in measured rotational cooling efficiency. We plan to further

stabilize the system by adding temperature stabilization of the Cs vapor cell and degaussing the

magnetic shield it is in.
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Chapter 11

Conclusions and Prospects

11.1 Effects of Rotational Cooling

As we have seen in the previous chapter, experimentally obtained enhancement ratio rf is ∼ 24.

This is what we achieve for transverse velocities |vt| . 2 m/s. In CeNTREX, what is of importance

is the efficiency of this process for all the molecules that are accepted by the EQL. In Chapter 7

we saw that in the worst-case scenario of maximum Doppler shifts of ±14 Γ the rf factor drops by

about 50% compared to an ideal system. However, we can conclude from Monte Carlo trajectory

simulations with realistic apparatus geometry that the electrostatic lens should accept molecules

with |vt| . 2 m/s along the X direction (laser beam propagation direction) and |vt| . 3 m/s in

the Y direction (perpendicular to the laser beam and the molecular beam), leading to the same

Doppler shifts of at most ±5 Γ that we worked with in our experiment. Therefore, we can expect

that the enhancement ratio in full beam experiment will be very close to the one we obtained.

Differences might potentially come from higher velocities along the Y direction, which could

lead to fewer molecules flying through the rotational cooling interaction region and limiting the

overall efficiency. However, small improvements to our experiment described at the end of the

previous chapter, such as swapping the polarization-switching EOM for a polarization-modulating

one and hence drastically increasing available laser power or further expanding the beam along

the Y direction, would probably bring the ratio back to the observed value. Adding sidebands to

the laser through phase modulation should also help with increasing the rf factor. All in all, it is

reasonable to assume that in CeNTREX we will be working with rf ≈ 24.
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11.2 Anticipated Sensitivity

As was already briefly mentioned in the introduction and shown in Eq. (1.4.1), in molecular beam

searches for EDMs utilizing spin precession experimental precision is dictated by the total precession

time and the number of interrogated molecules. To be more specific, in CeNTREX, where we plan

to perform a SOF frequency measurement, the molecule-shot-noise limited sensitivity to frequency

changes induced by the NSM can be written as:

δνSNL =
1

2πT

1

CSOF

1√
NdNp

Z. (11.2.1)

In this equation, just like in the general case, T is the total interaction time, which here occurs in

the MI region, equal to LSOF/v̄Z , CSOF is the SOF fringe contrast (slope of the curve around the

RF transition resonance that determines sensitivity to changes in frequency ν [36]), and the total

number of molecules detected N is divided into Np - the number of pulses used in the measurement,

and Nd - average number of molecules detected per pulse. We hope to obtain fringe contrast

CSOF ≈ 1, just like it was done in the ACME electron EDM measurement [61]. Finally, because

the detection transitions we will be using, i.e. Q1 and Q23, are quasi-cycling transitions, which are

not completely closed, an additional factor Z, taking values 1 < Z <
√

2 has to be added in order

to take into account an excess of noise [99]. To be conservative, we will assume Z =
√

2.

In order to estimate the Nd parameter, we start with the observed time-averaged beam intensity

of 5 × 1012 molecules/state/sr/s, corresponding to 1 × 1011 molecules/state/sr/pulse. While the

molecules within every pulse are initially distributed according to the Boltzmann distribution,

rotational cooling is expected to increase the number of molecules in the |J = 0, F1 = 1/2, F = 0〉
hyperfine state by a factor of 24. Then, all three state transfer procedures: SPA, SPB and SPC,

are predicted to have efficiencies of 99%, 96% and 96% respectively, giving a combined 91% state

transfer efficiency. Next, by assuming the transverse area of the fluorescence detection region to be

18 mm × 30 mm, and by using true apparatus geometry, we can expect the solid angle subtended

by the detection region to be 1.3×10−5 sr. Finally, the electrostatic quadrupole lens is predicted to

increase the number of molecules reaching the detection region (effectively increasing the detection

region’s solid angle) 24-fold. Given the currently designed fluorescence collection apparatus and

the average number of photons scattered through Q1 and Q23 transitions, the detection efficiency

should reach 90%. In the end, we anticipate Nd ≈ 6.1× 108 molecules/pulse.
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Given the measured average transverse velocity v̄Z = 184 m/s and LSOF ≈ 2.5 m, we estimate

that CeNTREX sensitivity to frequency shifts should be:

δνSNL ≈
0.7√
Np

mHz. (11.2.2)

Assuming a total measurement time typical for molecular beam searches of about 300 hours, and

a 50 Hz repetition rate gives Np ≈ 5.4 × 107. By plugging this value into Eq. (11.2.2) we obtain

δνSNL ≈ 90 nHz, which is equivalent to sensitivity to CP-violating energy shifts of δ∆CPV ≈ 45 nHz.

For comparison, the previous best limit achieved was δ∆CPV ≈ 120 µHz [34], showing that we

anticipate to achieve a 2500-fold statistical improvement over the past limits.

11.2.1 Extracting the Energy Shift

The sought-after energy shift ∆CPV can be extracted from the data following schemes similar to

the ones used in previous experiments [36, 53, 61, 100]. The asymmetry parameter described in

Chapter 3 is given by A = sgn (φSOF) sinφCPV if there are no experimental imperfections. However,

in reality an additional contribution φ′ to the accumulated precession phase must be taken into

account, and that might appear due to various unwanted effects, e.g. deviations from RF resonance

frequencies. Then A = sgn (φSOF) sin(φCPV + φ′) and in order to only obtain the phase term related

to CP-violating interactions we will need to measure A under two different conditions where the

energy shift ∆CPV reverses its sign. One of such changes in conditions occurs when the direction

of the MI electric field EMI is reversed. We obtain:

A+EMI
−A−EMI

≈ ±2φCPV,

independent of φ′ so long as φ′ � 1. Following [34] we refer to this reversal as E-modulation. It is

also possible to reverse the sign ∆CPV in several other ways as well. For example, simultaneously

reversing the magnetic fields in state preparation regions B and C, BSPB and BSPC, reverses the

signs of all the angular momenta relative to the fixed laboratory z-axis, which corresponds to

changing the signs of MI1 ,MI2 , and MJ , and hence also the sign of ∆CPV. Other possible ways of

changing sign of the energy shift are described in detail in [34], and we plan to use most of them

for in-situ diagnostics and independent extraction of the energy shifts.
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11.3 Systematic Errors

Most of the EDM searches are also plagued by a myriad of systematic errors. It is important to bring

them to values comparable to estimated statistical errors, and here we note a couple most important

systematic errors that we anticipate to encounter. The first important contribution comes from

non-reversing parts of the EMI fields, e.g. stray DC fields. These non-reversing fields will cause

the separation between the spin-up and spin-down states of thallium in the |J = 1,MJ = ±1〉
science state to change slightly due to the higher-order spin-spin and spin-rotation couplings to

distant
∣∣∣J̃ ,MJ

〉
states, which might then lead to changes in frequencies of the NMR transitions

with changing orientation of the MI electric field. This systematic effect can be determined and

suppressed by a proper combination of field reversals [34], and accounted for by adding small

non-reversing DC offsets, as well as increasing precision of B-field reversals.

Another systematic effect, and perhaps the most obvious, comes from stray magnetic fields in

the interaction region creating spurious contributions to the measured energy shift. Nominally, the

free precession should occur with no magnetic field present. However, in spite of significant effort

we will undertake to shield the MI region, some B-fields will persist. They can come from many

sources, e.g. leakage currents, leakage of ambient magnetic fields through the magnetic shields or

residual magnetization of the shield itself. All the these stray fields can act in two ways: by directly

creating the energy shifts, or by acting together with motional-field effects.

If we consider the static fields only, for the pair of states used in the SOF measurement, that is

pairs e+j and h+k, a B-field along EMI, i.e. Bz, generates a direct frequency shift of ±2.5 mHz/µG,

where the sign applies for the e↔j and h↔k transition respectively. CeNTREX hopes to obtain

residual B-fields below 10 µG, which alone should shift the transition frequency by about ±25 mHz.

However, these stray static field, depending on their origin, will not change under certain combi-

nations of field reversals and modulations. Hence, these effects can be measured and suppressed

in the same way the aforementioned φ′ contribution to the accumulated phase can by suppressed

via E-modulation. However, the stray fields originating in leakage currents are more difficult to

deal with and none of the modulations can be used to distinguish these shifts from the true NSM

signal, since both the leakage currents and the real shift reverse when we flip the EMI direction. It

is therefore crucial to keep the leakage currents as small as possible - even as low as 1 nA to ensure

that this effect is smaller than the predicted statistical sensitivity.
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The motional magnetic field appears in the reference frame of moving molecules, that is:

Bmot = v× E
c2
.

It is always perpendicular to both v and E, i.e. nominally in the y direction. However, if there is

any static magnetic field with a non-zero y-component, the total magnetic field magnitude will be

Btot =
√
B2

int + (Bmot +Bst)2, where Bint is the intra-molecular static magnetic field. The total

field Btot will then change in magnitude when EMI is reversed, which will cause frequency shift

between the spin-up and spin-down states, because their Zeeman splitting is proportional to Btot.

Assuming we are able to reach our target level of residual magnetic field, Bst . 10µG, a shift of

0.5 µHz is expected. Fortunately, this shift can also be suppressed by a one of the modulations - the

M modulation, which, instead of reversing the field, changes the science state and the transitions

used, i.e. e↔j and h↔k. This is possible due to unequal Zeeman shifts of both pairs of states due

to the motional magnetic field. The resulting difference in transition frequencies for anticipated

magnitude of static fields in the MI region is roughly the same as the estimated statistical sensitivity

we hope to achieve.

Finally, we should mention one more known source of systematic errors which was taken into

account in previous searches for NSM in TlF. Namely, the energy shifts can also be caused by

the so-called Millman effect [101], which in turn is caused by misalignment of the NMR RF field

coils. However, good construction techniques are predicted to limit this residual effect below our

anticipated sensitivity. Furthermore, it can be quantified experimentally [34].

11.3.1 Internal Co-magnetometry in CeNTREX

The stray magnetic fields in EDM searches cause a lot of headache and are quite often the main

factor ultimately limiting experimental sensitivity. The newest searches started using a new ap-

proach, co-magnetometry, allowing to measure magnetic fields located in the same place in space

and time as the EDM-sensitive systems. One of the ways this has already been achieved was by

using a different species that were, nominally, sharing the same volume [13, 100]. However, one

can potentially use different internal states of utilized systems (upon which EDM measurements

are performed) that have different sensitivity to EDM and/or magnetic fields [61, 102]. This so-

called internal co-magnetometer approach guarantees spatial overlap between the two systems, and

thereby reduces experimental complexity [103].
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In CeNTREX, we hope to utilize different internal states of TlF. While for the NSM measure-

ments we plan to use the discussed e↔j and h↔k transitions which both flip thallium’s spin and

simultaneously keep all other quantum numbers the same, it is possible to employ other pairs of

states where the spin of fluorine’s nucleus changes direction, i.e. the pairs e↔g and f↔h (Fig. 3.7.1).

These pairs should be 2 to 3 times more susceptible to any effects caused by the magnetic fields,

and at the same time their sensitivity to CP-violating effects is nearly negligible due to low atomic

and charge numbers A and Z of the 19F nucleus. Therefore, these pairs behave like classic co-

magnetometers. A big advantage of utilizing this scheme is a miniscule change in experimental

configuration that is required - we simply need to lower the NMR resonance frequency to about

10.6 kHz from 119.5 kHz used for the e↔j and h↔k transitions. This should provide a novel

diagnostic method for systematic errors and stray fields in CeNTREX.

11.4 Prospects

As we have discussed, the predicted statistical sensitivity to the energy shifts induced by CP-

violating effects is δ∆CPV ≈ 50 nHz, which roughly constitutes a 2500-fold improvement over

the current best measurements of the nuclear Schiff moment in 205Tl nucleus. We can then use

Eq. (1.2.6) to translate this into limits that we can potentially place on the parameters of fun-

damental physics. Obtained sensitivities should be significantly better than the ones achieved in

previous experiments. To give a few examples, CeNTREX is estimated to greatly improve the limit

on the QCD θ̄ parameter: θ̄ . 1 × 10−12, a factor of ∼ 100 smaller than current bounds [11, 13];

and on the proton EDM: dp . 6× 10−27 e cm, a factor of ∼ 30 smaller than the current best limit

[11].

Now, that the rotational cooling measurements have been completed and proven to lead to

24-fold signal enhancement, the SPA region and then the EQL region will be attached to the

apparatus for testing and optimization. The MI region is currently under construction, and the

remaining regions are under design. After assembling the entire experimental setup, optimizing it

and thoroughly testing, we will begin the main measurement process aiming to reach the target

sensitivity δ∆CPV . 50 nHz.

In the future, next generations of CeNTREX are planned. We plan to, for instance, implement
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transverse laser cooling to collimate the TlF beam [39, 44], and to use a continuous cryogenic buffer

gas beam source [104, 105, 106, 107] loaded by a thermal TlF beam. We estimate that with these

improvements CeNTREX could increase the detected number of molecules by a factor of 30-100.

It may also be possible to slow, cool, and optically trap the TlF molecules, which would drastically

increase the interaction time per molecule further increasing the sensitivity.

Nonetheless, our experimental approach has the potential to yield greatly improved sensitiv-

ity to flavor-neutral CP-violating physics in the hadronic sector. Additionally, CeNTREX could

potentially also be used to search for axions. This could be achieved by either measuring the os-

cillating Schiff moment produced by the interaction with an axion dark matter particle [108] or

by searching for virtual axions mediating CP-violation and producing a Schiff moment in the Tl

nucleus [109, 110].
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Appendix A

Spherical Tensor Algebra

For the sake of completion, couple of often used formulas from spherical tensor algebra are presented.

These are based on [41] and [111]. One of the most often used formula comes from the Wigner-

Eckart theorem:

〈
j,m

∣∣T kp (A)
∣∣j′,m′〉 = (−1)j−m

 j k j′

−m p m′

〈j∣∣∣∣∣∣T k(A)
∣∣∣∣∣∣j′〉 (A.1)

where T kp (A) is p-th component of a k-rank spherical tensor created from an operator A acting on

j. Having put the m dependence into a 3j-symbol, one has to only evaluate the reduced matrix

element. For a rank 1 tensor:〈
j
∣∣∣∣T 1(A)

∣∣∣∣j′〉 = δj,j′
√
j(j + 1)(2j + 1). (A.2)

In case when we have two coupled angular momenta such that j = j1 + j2 and a spherical tensor

that is a tensor product of two different spherical tensors acting on different angular momenta (i.e.

WK(A1,A2) = T k1(A1)× T k2(A2), where Ai acts on ji), one obtains:

〈
j1, j2, j

∣∣∣∣WK(A1,A2)
∣∣∣∣j′1, j′2, j′〉 =

√
(2K + 1)(2j′ + 1)(2j + 1)


j j′ K

j1 j′1 k1

j2 j′2 k2

〈
j1

∣∣∣∣∣∣T k1(A1)
∣∣∣∣∣∣j′1〉〈j2∣∣∣∣∣∣T k2(A2)

∣∣∣∣∣∣j′2〉 .
(A.3)

Tensor product can also be explicitly decomposed into product of two tensors:

WK
p (A,B) = (−1)k1−k2+p

√
2K + 1

∑
p1p2

k1 k2 K

p1 p2 −p

T k1
p1

(A)T k2
p2

(B). (A.4)
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In a special case when we have a scalar product K = 0, k1 = k2 ≡ k, and only p = 0 is allowed.

Then, combining Wigner-Eckart theorem with the Eq. (A.3) gives us the following:

〈
j1, j2, j,m

∣∣T k(A1) · T k(A2)
∣∣j′1, j′2, j′,m′〉 =(−1)j

′
1+j2+jδm,m′δj,j′

j′2 j′1 j

j1 j2 k

〈
j1

∣∣∣∣∣∣T k1(A1)
∣∣∣∣∣∣j′1〉〈j2∣∣∣∣∣∣T k2(A2)

∣∣∣∣∣∣j′2〉 .
(A.5)

If both of the spherical tensors act on the same angular momentum in a coupled scheme then we

can just write:〈
j1, j2, j,m

∣∣T k(A1) · T k(B1)
∣∣j′1, j′2, j′,m′〉 = δm,m′δj,j′δj2,j′2

〈
j1

∣∣∣∣∣∣T k(A1) · T k(B1)
∣∣∣∣∣∣j′1〉 . (A.6)

In a different special case, if we have a matrix element of a single operator in a coupled scheme

T k2(A2) = 1, then k2 = 0 and k12 = k1. Therefore:

〈
j1, j2, j

∣∣∣∣∣∣T k1(A1)
∣∣∣∣∣∣j′1, j′2, j′〉 =δj2,j′2(−1)j1+j2+j′+k1

√
(2j′ + 1)(2j + 1)

j′1 j′ j2

j j1 k

〈
j1

∣∣∣∣∣∣T k1(A1)
∣∣∣∣∣∣j′1〉 .

(A.7)

Analogically:

〈
j1, j2, j

∣∣∣∣∣∣T k2(A2)
∣∣∣∣∣∣j′1, j′2, j′〉 =δj1,j′1(−1)j1+j′2+j+k2

√
(2j′ + 1)(2j + 1)

j′2 j′ j1

j j2 k

〈
j2

∣∣∣∣∣∣T k2(A2)
∣∣∣∣∣∣j′2〉 .

(A.8)

Sometimes it is also necessary to change the frame of reference from laboratory frame to a molecular

frame. To perform the transformation we use Wigner D-functions D
(k)
pq (ω), which can be thought

of as irreducible representation of rotation group SO(3) or SU(2) and which are eigenfunctions of

the hamiltonian of spherical and symmetric rigid rotors. To go from space (p) to molecular (q)

axes we write:

T kp (A) =
∑
q

D (k)
pq (ω)∗ T kq (A).

One can then evaluate the reduced matrix element of the D-function. We have:

〈
J,Ω

∣∣∣∣∣∣D (k)
.q (ω)∗

∣∣∣∣∣∣J ′,Ω′〉 = (−1)J−Ω
√

(2J + 1)(2J ′ + 1)

 J k J ′

−Ω q Ω′

 , (A.9)

where Ω is projection of J onto internuclear axis.
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Appendix B

Rotational Branching Ratios Tables
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|J, F1, F,MF 〉
∣∣1, 1

2
, 0, 0

〉∣∣1, 1
2
, 1,−1

〉∣∣1, 1
2
, 1, 0

〉∣∣1, 1
2
, 1, 1

〉∣∣1, 3
2
, 1,−1

〉∣∣1, 3
2
, 1, 0

〉∣∣1, 3
2
, 1, 1

〉∣∣1, 3
2
, 2,−2

〉∣∣1, 3
2
, 2,−1

〉∣∣1, 3
2
, 2, 0

〉∣∣1, 3
2
, 2, 1

〉∣∣1, 3
2
, 2, 2

〉∣∣0, 1
2
, 0, 0

〉
0 2/9 2/9 2/9 4/9 4/9 4/9 0 0 0 0 0∣∣0, 1

2
, 1,−1

〉
2/9 2/9 2/9 0 1/9 1/9 0 2/3 1/3 1/9 0 0∣∣0, 1

2
, 1, 0

〉
2/9 2/9 0 2/9 1/9 0 1/9 0 1/3 4/9 1/3 0∣∣0, 1

2
, 1, 1

〉
2/9 0 2/9 2/9 0 1/9 1/9 0 0 1/9 1/3 2/3∣∣2, 3

2
, 1,−1

〉
1/9 1/36 1/36 0 1/72 1/72 0 1/300 1/600 1/1800 0 0∣∣2, 3

2
, 1, 0

〉
1/9 1/36 0 1/36 1/72 0 1/72 0 1/600 1/450 1/600 0∣∣2, 3

2
, 1, 1

〉
1/9 0 1/36 1/36 0 1/72 1/72 0 0 1/1800 1/600 1/300∣∣2, 3

2
, 2,−2

〉
0 1/6 0 0 1/300 0 0 1/50 1/100 0 0 0∣∣2, 3

2
, 2,−1

〉
0 1/12 1/12 0 1/600 1/600 0 1/100 1/200 3/200 0 0∣∣2, 3

2
, 2, 0

〉
0 1/36 1/9 1/36 1/1800 1/450 1/1800 0 3/200 0 3/200 0∣∣2, 3

2
, 2, 1

〉
0 0 1/12 1/12 0 1/600 1/600 0 0 3/200 1/200 1/100∣∣2, 3

2
, 2, 2

〉
0 0 0 1/6 0 0 1/300 0 0 0 1/100 1/50∣∣2, 5

2
, 2,−2

〉
0 0 0 0 9/50 0 0 1/75 1/150 0 0 0∣∣2, 5

2
, 2,−1

〉
0 0 0 0 9/100 9/100 0 1/150 1/300 1/100 0 0∣∣2, 5

2
, 2, 0

〉
0 0 0 0 3/100 3/25 3/100 0 1/100 0 1/100 0∣∣2, 5

2
, 2, 1

〉
0 0 0 0 0 9/100 9/100 0 0 1/100 1/300 1/150∣∣2, 5

2
, 2, 2

〉
0 0 0 0 0 0 9/50 0 0 0 1/150 1/75∣∣2, 5

2
, 3,−3

〉
0 0 0 0 0 0 0 1/5 0 0 0 0∣∣2, 5

2
, 3,−2

〉
0 0 0 0 0 0 0 1/15 2/15 0 0 0∣∣2, 5

2
, 3,−1

〉
0 0 0 0 0 0 0 1/75 8/75 2/25 0 0∣∣2, 5

2
, 3, 0

〉
0 0 0 0 0 0 0 0 1/25 3/25 1/25 0∣∣2, 5

2
, 3, 1

〉
0 0 0 0 0 0 0 0 0 2/25 8/75 1/75∣∣2, 5

2
, 3, 2

〉
0 0 0 0 0 0 0 0 0 0 2/15 1/15∣∣2, 5

2
, 3, 3

〉
0 0 0 0 0 0 0 0 0 0 0 1/5

Table B.1: Branching ratios for decays from pure e-parity states |J ′, F ′1, F ′,M ′F 〉 (columns) in

B3Π1 to states in X1Σ+ (rows)

|J, F1, F,MF 〉
∣∣1, 1

2
, 0, 0

〉∣∣1, 1
2
, 1,−1

〉∣∣1, 1
2
, 1, 0

〉∣∣1, 1
2
, 1, 1

〉∣∣1, 3
2
, 1,−1

〉∣∣1, 3
2
, 1, 0

〉∣∣1, 3
2
, 1, 1

〉∣∣1, 3
2
, 2,−2

〉∣∣1, 3
2
, 2,−1

〉∣∣1, 3
2
, 2, 0

〉∣∣1, 3
2
, 2, 1

〉∣∣1, 3
2
, 2, 2

〉∣∣1, 1
2
, 0, 0

〉
0 2/9 2/9 2/9 1/9 1/9 1/9 0 0 0 0 0∣∣1, 1

2
, 1,−1

〉
2/9 2/9 2/9 0 1/36 1/36 0 1/6 1/12 1/36 0 0∣∣1, 1

2
, 1, 0

〉
2/9 2/9 0 2/9 1/36 0 1/36 0 1/12 1/9 1/12 0∣∣1, 1

2
, 1, 1

〉
2/9 0 2/9 2/9 0 1/36 1/36 0 0 1/36 1/12 1/6∣∣1, 3

2
, 1,−1

〉
1/9 1/36 1/36 0 25/72 25/72 0 1/12 1/24 1/72 0 0∣∣1, 3

2
, 1, 0

〉
1/9 1/36 0 1/36 25/72 0 25/72 0 1/24 1/18 1/24 0∣∣1, 3

2
, 1, 1

〉
1/9 0 1/36 1/36 0 25/72 25/72 0 0 1/72 1/24 1/12∣∣1, 3

2
, 2,−2

〉
0 1/6 0 0 1/12 0 0 1/2 1/4 0 0 0∣∣1, 3

2
, 2,−1

〉
0 1/12 1/12 0 1/24 1/24 0 1/4 1/8 3/8 0 0∣∣1, 3

2
, 2, 0

〉
0 1/36 1/9 1/36 1/72 1/18 1/72 0 3/8 0 3/8 0∣∣1, 3

2
, 2, 1

〉
0 0 1/12 1/12 0 1/24 1/24 0 0 3/8 1/8 1/4∣∣1, 3

2
, 2, 2

〉
0 0 0 1/6 0 0 1/12 0 0 0 1/4 1/2

Table B.2: Branching ratios for decays from pure f -parity states |J ′, F ′1, F ′,M ′F 〉 (columns) in

B3Π1 to states in X1Σ+ (rows).
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|J, F1, F,MF 〉
∣∣2, 3

2
, 1,−1

〉∣∣2, 3
2
, 1, 0

〉 ∣∣2, 3
2
, 1, 1

〉 ∣∣2, 3
2
, 2,−2

〉∣∣2, 3
2
, 2,−1

〉∣∣2, 3
2
, 2, 0

〉 ∣∣2, 3
2
, 2, 1

〉 ∣∣2, 3
2
, 2, 2

〉∣∣1, 1
2
, 0, 0

〉
1/3 1/3 1/3 0 0 0 0 0∣∣1, 1

2
, 1,−1

〉
1/12 1/12 0 1/2 1/4 1/12 0 0∣∣1, 1

2
, 1, 0

〉
1/12 0 1/12 0 1/4 1/3 1/4 0∣∣1, 1

2
, 1, 1

〉
0 1/12 1/12 0 0 1/12 1/4 1/2∣∣1, 3

2
, 1,−1

〉
1/24 1/24 0 1/100 1/200 1/600 0 0∣∣1, 3

2
, 1, 0

〉
1/24 0 1/24 0 1/200 1/150 1/200 0∣∣1, 3

2
, 1, 1

〉
0 1/24 1/24 0 0 1/600 1/200 1/100∣∣1, 3

2
, 2,−2

〉
1/100 0 0 3/50 3/100 0 0 0∣∣1, 3

2
, 2,−1

〉
1/200 1/200 0 3/100 3/200 9/200 0 0∣∣1, 3

2
, 2, 0

〉
1/600 1/150 1/600 0 9/200 0 9/200 0∣∣1, 3

2
, 2, 1

〉
0 1/200 1/200 0 0 9/200 3/200 3/100∣∣1, 3

2
, 2, 2

〉
0 0 1/100 0 0 0 3/100 3/50∣∣3, 5

2
, 2,−2

〉
6/25 0 0 4/225 2/225 0 0 0∣∣3, 5

2
, 2,−1

〉
3/25 3/25 0 2/225 1/225 1/75 0 0∣∣3, 5

2
, 2, 0

〉
1/25 4/25 1/25 0 1/75 0 1/75 0∣∣3, 5

2
, 2, 1

〉
0 3/25 3/25 0 0 1/75 1/225 2/225∣∣3, 5

2
, 2, 2

〉
0 0 6/25 0 0 0 2/225 4/225∣∣3, 5

2
, 3,−3

〉
0 0 0 4/15 0 0 0 0∣∣3, 5

2
, 3,−2

〉
0 0 0 4/45 8/45 0 0 0∣∣3, 5

2
, 3,−1

〉
0 0 0 4/225 32/225 8/75 0 0∣∣3, 5

2
, 3, 0

〉
0 0 0 0 4/75 4/25 4/75 0∣∣3, 5

2
, 3, 1

〉
0 0 0 0 0 8/75 32/225 4/225∣∣3, 5

2
, 3, 2

〉
0 0 0 0 0 0 8/45 4/45∣∣3, 5

2
, 3, 3

〉
0 0 0 0 0 0 0 4/15∣∣3, 7

2
, 3,−3

〉
0 0 0 0 0 0 0 0∣∣3, 7

2
, 3,−2

〉
0 0 0 0 0 0 0 0∣∣3, 7

2
, 3,−1

〉
0 0 0 0 0 0 0 0∣∣3, 7

2
, 3, 0

〉
0 0 0 0 0 0 0 0∣∣3, 7

2
, 3, 1

〉
0 0 0 0 0 0 0 0∣∣3, 7

2
, 3, 2

〉
0 0 0 0 0 0 0 0∣∣3, 7

2
, 3, 3

〉
0 0 0 0 0 0 0 0∣∣3, 7

2
, 4,−4

〉
0 0 0 0 0 0 0 0∣∣3, 7

2
, 4,−3

〉
0 0 0 0 0 0 0 0∣∣3, 7

2
, 4,−2

〉
0 0 0 0 0 0 0 0∣∣3, 7

2
, 4,−1

〉
0 0 0 0 0 0 0 0∣∣3, 7

2
, 4, 0

〉
0 0 0 0 0 0 0 0∣∣3, 7

2
, 4, 1

〉
0 0 0 0 0 0 0 0∣∣3, 7

2
, 4, 2

〉
0 0 0 0 0 0 0 0∣∣3, 7

2
, 4, 3

〉
0 0 0 0 0 0 0 0∣∣3, 7

2
, 4, 4

〉
0 0 0 0 0 0 0 0

Table B.5: Branching ratios for decays from pure J ′ = 2, F ′1 = 3/2 e-parity states |J ′, F ′1, F ′,M ′F 〉
(columns) in B3Π1 to states in X1Σ+ (rows).
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|J, F1, F,MF 〉
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2
, 2, 1
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2
, 3, 0

〉
0 2/11025 2/3675 2/11025 0 0 0 4/441 0 4/441 0 0∣∣3, 5

2
, 3, 1

〉
0 0 4/11025 16/33075 2/33075 0 0 0 4/441 2/1323 10/1323 0∣∣3, 5

2
, 3, 2

〉
0 0 0 4/6615 2/6615 0 0 0 0 10/1323 8/1323 2/441∣∣3, 5

2
, 3, 3

〉
0 0 0 0 2/2205 0 0 0 0 0 2/441 2/147∣∣3, 7

2
, 3,−3

〉
40/147 0 0 0 0 1/98 1/294 0 0 0 0 0∣∣3, 7

2
, 3,−2

〉
40/441 80/441 0 0 0 1/294 2/441 5/882 0 0 0 0∣∣3, 7

2
, 3,−1

〉
8/441 64/441 16/147 0 0 0 5/882 1/882 1/147 0 0 0∣∣3, 7

2
, 3, 0

〉
0 8/147 8/49 8/147 0 0 0 1/147 0 1/147 0 0∣∣3, 7

2
, 3, 1

〉
0 0 16/147 64/441 8/441 0 0 0 1/147 1/882 5/882 0∣∣3, 7

2
, 3, 2

〉
0 0 0 80/441 40/441 0 0 0 0 5/882 2/441 1/294∣∣3, 7

2
, 3, 3

〉
0 0 0 0 40/147 0 0 0 0 0 1/294 1/98∣∣3, 7

2
, 4,−4

〉
0 0 0 0 0 2/7 0 0 0 0 0 0∣∣3, 7

2
, 4,−3

〉
0 0 0 0 0 1/14 3/14 0 0 0 0 0∣∣3, 7

2
, 4,−2

〉
0 0 0 0 0 1/98 6/49 15/98 0 0 0 0∣∣3, 7

2
, 4,−1

〉
0 0 0 0 0 0 3/98 15/98 5/49 0 0 0∣∣3, 7

2
, 4, 0

〉
0 0 0 0 0 0 0 3/49 8/49 3/49 0 0∣∣3, 7

2
, 4, 1

〉
0 0 0 0 0 0 0 0 5/49 15/98 3/98 0∣∣3, 7

2
, 4, 2

〉
0 0 0 0 0 0 0 0 0 15/98 6/49 1/98∣∣3, 7

2
, 4, 3

〉
0 0 0 0 0 0 0 0 0 0 3/14 1/14∣∣3, 7

2
, 4, 4

〉
0 0 0 0 0 0 0 0 0 0 0 2/7

Table B.6: Branching ratios for decays from pure J ′ = 2, F ′1 = 5/2 e-parity states |J ′, F ′1, F ′,M ′F 〉
(columns) in B3Π1 to states in X1Σ+ (rows).
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|J, F1, F,MF 〉
∣∣2, 3

2
, 1,−1

〉∣∣2, 3
2
, 1, 0

〉 ∣∣2, 3
2
, 1, 1

〉 ∣∣2, 3
2
, 2,−2

〉∣∣2, 3
2
, 2,−1

〉∣∣2, 3
2
, 2, 0

〉 ∣∣2, 3
2
, 2, 1

〉 ∣∣2, 3
2
, 2, 2

〉∣∣2, 3
2
, 1,−1

〉
3/8 3/8 0 9/100 9/200 3/200 0 0∣∣2, 3

2
, 1, 0

〉
3/8 0 3/8 0 9/200 3/50 9/200 0∣∣2, 3

2
, 1, 1

〉
0 3/8 3/8 0 0 3/200 9/200 9/100∣∣2, 3

2
, 2,−2

〉
9/100 0 0 27/50 27/100 0 0 0∣∣2, 3

2
, 2,−1

〉
9/200 9/200 0 27/100 27/200 81/200 0 0∣∣2, 3

2
, 2, 0

〉
3/200 3/50 3/200 0 81/200 0 81/200 0∣∣2, 3

2
, 2, 1

〉
0 9/200 9/200 0 0 81/200 27/200 27/100∣∣2, 3

2
, 2, 2

〉
0 0 9/100 0 0 0 27/100 27/50∣∣2, 5

2
, 2,−2

〉
3/50 0 0 1/225 1/450 0 0 0∣∣2, 5

2
, 2,−1

〉
3/100 3/100 0 1/450 1/900 1/300 0 0∣∣2, 5

2
, 2, 0

〉
1/100 1/25 1/100 0 1/300 0 1/300 0∣∣2, 5

2
, 2, 1

〉
0 3/100 3/100 0 0 1/300 1/900 1/450∣∣2, 5

2
, 2, 2

〉
0 0 3/50 0 0 0 1/450 1/225∣∣2, 5

2
, 3,−3

〉
0 0 0 1/15 0 0 0 0∣∣2, 5

2
, 3,−2

〉
0 0 0 1/45 2/45 0 0 0∣∣2, 5

2
, 3,−1

〉
0 0 0 1/225 8/225 2/75 0 0∣∣2, 5

2
, 3, 0

〉
0 0 0 0 1/75 1/25 1/75 0∣∣2, 5

2
, 3, 1

〉
0 0 0 0 0 2/75 8/225 1/225∣∣2, 5

2
, 3, 2

〉
0 0 0 0 0 0 2/45 1/45∣∣2, 5

2
, 3, 3

〉
0 0 0 0 0 0 0 1/15

Table B.7: Branching ratios for decays from pure J ′ = 2, F ′1 = 3/2 f -parity states |J ′, F ′1, F ′,M ′F 〉
(columns) in B3Π1 to states in X1Σ+ (rows).

∣∣2, 5
2
, 2,−2

〉∣∣2, 5
2
, 2,−1

〉∣∣2, 5
2
, 2, 0

〉 ∣∣2, 5
2
, 2, 1

〉 ∣∣2, 5
2
, 2, 2

〉 ∣∣2, 5
2
, 3,−3

〉∣∣2, 5
2
, 3,−2

〉∣∣2, 5
2
, 3,−1

〉∣∣2, 5
2
, 3, 0

〉 ∣∣2, 5
2
, 3, 1

〉 ∣∣2, 5
2
, 3, 2

〉 ∣∣2, 5
2
, 3, 3

〉∣∣2, 3
2
, 1,−1

〉
3/50 3/100 1/100 0 0 0 0 0 0 0 0 0∣∣2, 3

2
, 1, 0

〉
0 3/100 1/25 3/100 0 0 0 0 0 0 0 0∣∣2, 3

2
, 1, 1

〉
0 0 1/100 3/100 3/50 0 0 0 0 0 0 0∣∣2, 3

2
, 2,−2

〉
1/225 1/450 0 0 0 1/15 1/45 1/225 0 0 0 0∣∣2, 3

2
, 2,−1

〉
1/450 1/900 1/300 0 0 0 2/45 8/225 1/75 0 0 0∣∣2, 3

2
, 2, 0

〉
0 1/300 0 1/300 0 0 0 2/75 1/25 2/75 0 0∣∣2, 3

2
, 2, 1

〉
0 0 1/300 1/900 1/450 0 0 0 1/75 8/225 2/45 0∣∣2, 3

2
, 2, 2

〉
0 0 0 1/450 1/225 0 0 0 0 1/225 1/45 1/15∣∣2, 5

2
, 2,−2

〉
392/675 196/675 0 0 0 2/45 2/135 2/675 0 0 0 0∣∣2, 5

2
, 2,−1

〉
196/675 98/675 98/225 0 0 0 4/135 16/675 2/225 0 0 0∣∣2, 5

2
, 2, 0

〉
0 98/225 0 98/225 0 0 0 4/225 2/75 4/225 0 0∣∣2, 5

2
, 2, 1

〉
0 0 98/225 98/675 196/675 0 0 0 2/225 16/675 4/135 0∣∣2, 5

2
, 2, 2

〉
0 0 0 392/675 392/675 0 0 0 0 2/675 2/135 2/45∣∣2, 5

2
, 3,−3

〉
2/45 0 0 0 0 2/3 2/9 0 0 0 0 0∣∣2, 5

2
, 3,−2

〉
2/135 4/135 0 0 0 2/9 8/27 10/27 0 0 0 0∣∣2, 5

2
, 3,−1

〉
2/675 16/675 4/225 0 0 0 10/27 2/27 4/9 0 0 0∣∣2, 5

2
, 3, 0

〉
0 2/225 2/75 2/225 0 0 0 4/9 0 4/9 0 0∣∣2, 5

2
, 3, 1

〉
0 0 4/225 16/675 2/675 0 0 0 4/9 2/27 10/27 0∣∣2, 5

2
, 3, 2

〉
0 0 0 4/135 2/135 0 0 0 0 10/27 8/27 2/9∣∣2, 5

2
, 3, 3

〉
0 0 0 0 2/45 0 0 0 0 0 2/9 2/3

Table B.8: Branching ratios for decays from pure J ′ = 2, F ′1 = 5/2 f -parity states |J ′, F ′1, F ′,M ′F 〉
(columns) in B3Π1 to states in X1Σ+ (rows).
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|J, F1, F,MF 〉
∣∣∣2, 3

2
, 1,−1

〉 ∣∣∣2, 3
2
, 1, 0

〉 ∣∣∣2, 3
2
, 1, 1

〉 ∣∣∣2, 3
2
, 2,−2

〉 ∣∣∣2, 3
2
, 2,−1

〉 ∣∣∣2, 3
2
, 2, 0

〉 ∣∣∣2, 3
2
, 2, 1

〉 ∣∣∣2, 3
2
, 2, 2

〉∣∣∣0, 1
2
, 0, 0

〉
0.1202 0.1202 0.1202 0 0 0 0 0∣∣∣0, 1

2
, 1,−1

〉
0.0312 0.0312 0 0.1869 0.0935 0.0312 0 0∣∣∣0, 1

2
, 1, 0

〉
0.0312 0 0.0312 0 0.0935 0.1246 0.0935 0∣∣∣0, 1

2
, 1, 1

〉
0 0.0312 0.0312 0 0 0.0312 0.0935 0.1869∣∣∣2, 3

2
, 1,−1

〉
0.2109 0.2109 0 0.0535 0.0268 0.0089 0 0∣∣∣2, 3

2
, 1, 0

〉
0.2109 0 0.2109 0 0.0268 0.0357 0.0268 0∣∣∣2, 3

2
, 1, 1

〉
0 0.2109 0.2109 0 0 0.0089 0.0268 0.0535∣∣∣2, 3

2
, 2,−2

〉
0.0517 0 0 0.2986 0.1493 0 0 0∣∣∣2, 3

2
, 2,−1

〉
0.0258 0.0258 0 0.1493 0.0746 0.2239 0 0∣∣∣2, 3

2
, 2, 0

〉
0.0086 0.0345 0.0086 0 0.2239 0 0.2239 0∣∣∣2, 3

2
, 2, 1

〉
0 0.0258 0.0258 0 0 0.2239 0.0746 0.1493∣∣∣2, 3

2
, 2, 2

〉
0 0 0.0517 0 0 0 0.1493 0.2986∣∣∣2, 5

2
, 2,−2

〉
0.1856 0 0 0.0140 0.0070 0 0 0∣∣∣2, 5

2
, 2,−1

〉
0.0928 0.0928 0 0.0070 0.0035 0.0105 0 0∣∣∣2, 5

2
, 2, 0

〉
0.0309 0.1237 0.0309 0 0.0105 0 0.0105 0∣∣∣2, 5

2
, 2, 1

〉
0 0.0928 0.0928 0 0 0.0105 0.0035 0.0070∣∣∣2, 5

2
, 2, 2

〉
0 0 0.1856 0 0 0 0.0070 0.0140∣∣∣2, 5

2
, 3,−3

〉
0 0 0 0.2076 0 0 0 0∣∣∣2, 5

2
, 3,−2

〉
0 0 0 0.0692 0.1384 0 0 0∣∣∣2, 5

2
, 3,−1

〉
0 0 0 0.0138 0.1107 0.0830 0 0∣∣∣2, 5

2
, 3, 0

〉
0 0 0 0 0.0415 0.1246 0.0415 0∣∣∣2, 5

2
, 3, 1

〉
0 0 0 0 0 0.0830 0.1107 0.0138∣∣∣2, 5

2
, 3, 2

〉
0 0 0 0 0 0 0.1384 0.0692∣∣∣2, 5

2
, 3, 3

〉
0 0 0 0 0 0 0 0.2076∣∣∣4, 7

2
, 3,−3

〉
0 0 0 3.25×10−5 0 0 0 0∣∣∣4, 7

2
, 3,−2

〉
0 0 0 1.08×10−5 2.17×10−5 0 0 0∣∣∣4, 7

2
, 3,−1

〉
0 0 0 0.22×10−5 1.73×10−5 1.30×10−5 0 0∣∣∣4, 7

2
, 3, 0

〉
0 0 0 0 0.65×10−5 1.95×10−5 0.65×10−5 0∣∣∣4, 7

2
, 3, 1

〉
0 0 0 0 0 1.30×10−5 1.73×10−5 0.22×10−5∣∣∣4, 7

2
, 3, 2

〉
0 0 0 0 0 0 2.17×10−5 1.08×10−5∣∣∣4, 7

2
, 3, 3

〉
0 0 0 0 0 0 0 3.25×10−5∣∣∣4, 7

2
, 4,−4

〉
0 0 0 0 0 0 0 0∣∣∣4, 7

2
, 4,−3

〉
0 0 0 0 0 0 0 0∣∣∣4, 7

2
, 4,−2

〉
0 0 0 0 0 0 0 0∣∣∣4, 7

2
, 4,−1

〉
0 0 0 0 0 0 0 0∣∣∣4, 7

2
, 4, 0

〉
0 0 0 0 0 0 0 0∣∣∣4, 7

2
, 4, 1

〉
0 0 0 0 0 0 0 0∣∣∣4, 7

2
, 4, 2

〉
0 0 0 0 0 0 0 0∣∣∣4, 7

2
, 4, 3

〉
0 0 0 0 0 0 0 0∣∣∣4, 7

2
, 4, 4

〉
0 0 0 0 0 0 0 0∣∣∣4, 9

2
, 4,−4

〉
0 0 0 0 0 0 0 0∣∣∣4, 9

2
, 4,−3

〉
0 0 0 0 0 0 0 0∣∣∣4, 9

2
, 4,−2

〉
0 0 0 0 0 0 0 0∣∣∣4, 9

2
, 4,−1

〉
0 0 0 0 0 0 0 0∣∣∣4, 9

2
, 4, 0

〉
0 0 0 0 0 0 0 0∣∣∣4, 9

2
, 4, 1

〉
0 0 0 0 0 0 0 0∣∣∣4, 9

2
, 4, 2

〉
0 0 0 0 0 0 0 0∣∣∣4, 9

2
, 4, 3

〉
0 0 0 0 0 0 0 0∣∣∣4, 9

2
, 4, 4

〉
0 0 0 0 0 0 0 0

Table B.9: Branching ratios for decays from mixed J̃ ′ = 2, F̃ ′1 = 3/2 f -parity states∣∣∣J̃ ′, F̃ ′1, F ′,M ′F〉 (columns) in B3Π1 to states in X1Σ+ (rows).
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|J, F1, F,MF 〉
∣∣∣2, 5

2
, 2,−2

〉 ∣∣∣2, 5
2
, 2,−1

〉 ∣∣∣2, 5
2
, 2, 0

〉 ∣∣∣2, 5
2
, 2, 1

〉 ∣∣∣2, 5
2
, 2, 2

〉 ∣∣∣2, 5
2
, 3,−3

〉 ∣∣∣2, 5
2
, 3,−2

〉 ∣∣∣2, 5
2
, 3,−1

〉 ∣∣∣2, 5
2
, 3, 0

〉 ∣∣∣2, 5
2
, 3, 1

〉 ∣∣∣2, 5
2
, 3, 2

〉 ∣∣∣2, 5
2
, 3, 3

〉∣∣∣0, 1
2
, 0, 0

〉
0 0 0 0 0 0 0 0 0 0 0 0∣∣∣0, 1

2
, 1,−1

〉
7.21×10−5 3.61×10−5 1.20×10−5 0 0 0 0 0 0 0 0 0∣∣∣0, 1

2
, 1, 0

〉
0 3.61×10−5 4.81×10−5 3.61×10−5 0 0 0 0 0 0 0 0∣∣∣0, 1

2
, 1, 1

〉
0 0 1.20×10−5 3.61×10−5 7.21×10−5 0 0 0 0 0 0 0∣∣∣2, 3

2
, 1,−1

〉
0.2207 0.1104 0.0368 0 0 0 0 0 0 0 0 0∣∣∣2, 3

2
, 1, 0

〉
0 0.1104 0.1471 0.1104 0 0 0 0 0 0 0 0∣∣∣2, 3

2
, 1, 1

〉
0 0 0.0368 0.1104 0.2207 0 0 0 0 0 0 0∣∣∣2, 3

2
, 2,−2

〉
0.0194 0.0097 0 0 0 0.2518 0.0839 0.0168 0 0 0 0∣∣∣2, 3

2
, 2,−1

〉
0.0097 0.0049 0.0146 0 0 0 0.1678 0.1343 0.0504 0 0 0∣∣∣2, 3

2
, 2, 0

〉
0 0.0146 0 0.0146 0 0 0 0.1007 0.1511 0.1007 0 0∣∣∣2, 3

2
, 2, 1

〉
0 0 0.0146 0.0049 0.0097 0 0 0 0.0504 0.1343 0.1678 0∣∣∣2, 3

2
, 2, 2

〉
0 0 0 0.0097 0.0194 0 0 0 0 0.0168 0.0839 0.2518∣∣∣2, 5

2
, 2,−2

〉
0.4329 0.2164 0 0 0 0.0358 0.0119 0.0024 0 0 0 0∣∣∣2, 5

2
, 2,−1

〉
0.2164 0.1082 0.3247 0 0 0 0.0238 0.0191 0.0072 0 0 0∣∣∣2, 5

2
, 2, 0

〉
0 0.3247 0 0.3247 0 0 0 0.0143 0.0215 0.0143 0 0∣∣∣2, 5

2
, 2, 1

〉
0 0 0.3247 0.1082 0.2164 0 0 0 0.0072 0.0191 0.0238 0∣∣∣2, 5

2
, 2, 2

〉
0 0 0 0.2164 0.4329 0 0 0 0 0.0024 0.0119 0.0358∣∣∣2, 5

2
, 3,−3

〉
0.0337 0 0 0 0 0.4934 0.1645 0 0 0 0 0∣∣∣2, 5

2
, 3,−2

〉
0.0112 0.0225 0 0 0 0.1645 0.2193 0.2741 0 0 0 0∣∣∣2, 5

2
, 3,−1

〉
0.0022 0.0180 0.0135 0 0 0 0.2741 0.0548 0.3289 0 0 0∣∣∣2, 5

2
, 3, 0

〉
0 0.0067 0.0202 0.0067 0 0 0 0.3289 0 0.3289 0 0∣∣∣2, 5

2
, 3, 1

〉
0 0 0.0135 0.0180 0.0022 0 0 0 0.3289 0.0548 0.2741 0∣∣∣2, 5

2
, 3, 2

〉
0 0 0 0.0225 0.0112 0 0 0 0 0.2741 0.2193 0.1645∣∣∣2, 5

2
, 3, 3

〉
0 0 0 0 0.0337 0 0 0 0 0 0.1645 0.4934∣∣∣4, 7

2
, 3,−3

〉
0.0383 0 0 0 0 0.0018 0.0006 0 0 0 0 0∣∣∣4, 7

2
, 3,−2

〉
0.0128 0.0255 0 0 0 0.0006 0.0008 0.0010 0 0 0 0∣∣∣4, 7

2
, 3,−1

〉
0.0026 0.0204 0.0153 0 0 0 0.0010 0.0002 0.0012 0 0 0∣∣∣4, 7

2
, 3, 0

〉
0 0.0077 0.0230 0.0077 0 0 0 0.0012 0 0.0012 0 0∣∣∣4, 7

2
, 3, 1

〉
0 0 0.0153 0.0204 0.0026 0 0 0 0.0012 0.0002 0.0010 0∣∣∣4, 7

2
, 3, 2

〉
0 0 0 0.0255 0.0128 0 0 0 0 0.0010 0.0008 0.0006∣∣∣4, 7

2
, 3, 3

〉
0 0 0 0 0.0383 0 0 0 0 0 0.0006 0.0018∣∣∣4, 7

2
, 4,−4

〉
0 0 0 0 0 0.0406 0 0 0 0 0 0∣∣∣4, 7

2
, 4,−3

〉
0 0 0 0 0 0.0102 0.0305 0 0 0 0 0∣∣∣4, 7

2
, 4,−2

〉
0 0 0 0 0 0.0015 0.0174 0.0218 0 0 0 0∣∣∣4, 7

2
, 4,−1

〉
0 0 0 0 0 0 0.0044 0.0218 0.0145 0 0 0∣∣∣4, 7

2
, 4, 0

〉
0 0 0 0 0 0 0 0.0087 0.0232 0.0087 0 0∣∣∣4, 7

2
, 4, 1

〉
0 0 0 0 0 0 0 0 0.0145 0.0218 0.0044 0∣∣∣4, 7

2
, 4, 2

〉
0 0 0 0 0 0 0 0 0 0.0218 0.0174 0.0015∣∣∣4, 7

2
, 4, 3

〉
0 0 0 0 0 0 0 0 0 0 0.0305 0.0102∣∣∣4, 7

2
, 4, 4

〉
0 0 0 0 0 0 0 0 0 0 0 0.0406∣∣∣4, 9

2
, 4,−4

〉
0 0 0 0 0 2.73×10−5 0 0 0 0 0 0∣∣∣4, 9

2
, 4,−3

〉
0 0 0 0 0 0.68×10−5 2.05×10−5 0 0 0 0 0∣∣∣4, 9

2
, 4,−2

〉
0 0 0 0 0 0.10×10−5 1.17×10−5 1.46×10−5 0 0 0 0∣∣∣4, 9

2
, 4,−1

〉
0 0 0 0 0 0 0.29×10−5 1.46×10−5 0.97×10−5 0 0 0∣∣∣4, 9

2
, 4, 0

〉
0 0 0 0 0 0 0 0.58×10−5 1.56×10−5 0.58×10−5 0 0∣∣∣4, 9

2
, 4, 1

〉
0 0 0 0 0 0 0 0 0.97×10−5 1.46×10−5 0.29×10−5 0∣∣∣4, 9

2
, 4, 2

〉
0 0 0 0 0 0 0 0 0 1.46×10−5 1.17×10−5 0.10×10−5∣∣∣4, 9

2
, 4, 3

〉
0 0 0 0 0 0 0 0 0 0 2.05×10−5 0.68×10−5∣∣∣4, 9

2
, 4, 4

〉
0 0 0 0 0 0 0 0 0 0 0 2.73×10−5

Table B.10: Branching ratios for decays from mixed J̃ ′ = 2, F̃ ′1 = 5/2 f -parity states∣∣∣J̃ ′, F̃ ′1, F ′,M ′F〉 (columns) in B3Π1 to states in X1Σ+ (rows).
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|J, F1, F,MF 〉
∣∣∣2, 3

2
, 1,−1

〉 ∣∣∣2, 3
2
, 1, 0

〉 ∣∣∣2, 3
2
, 1, 1

〉 ∣∣∣2, 3
2
, 2,−2

〉 ∣∣∣2, 3
2
, 2,−1

〉 ∣∣∣2, 3
2
, 2, 0

〉 ∣∣∣2, 3
2
, 2, 1

〉 ∣∣∣2, 3
2
, 2, 2

〉∣∣∣1, 1
2
, 0, 0

〉
0.0993 0.0993 0.0993 0 0 0 0 0∣∣∣1, 1

2
, 1,−1

〉
0.0259 0.0259 0 0.1472 0.0736 0.0245 0 0∣∣∣1, 1

2
, 1, 0

〉
0.0259 0 0.0259 0 0.0736 0.0981 0.0736 0∣∣∣1, 1

2
, 1, 1

〉
0 0.0259 0.0259 0 0 0.0245 0.0736 0.1472∣∣∣1, 3

2
, 1,−1

〉
0.2319 0.2319 0 0.0561 0.0281 0.0094 0 0∣∣∣1, 3

2
, 1, 0

〉
0.2319 0 0.2319 0 0.0281 0.0374 0.0281 0∣∣∣1, 3

2
, 1, 1

〉
0 0.2319 0.2319 0 0 0.0094 0.0281 0.0561∣∣∣1, 3

2
, 2,−2

〉
0.0568 0 0 0.3392 0.1696 0 0 0∣∣∣1, 3

2
, 2,−1

〉
0.0284 0.0284 0 0.1696 0.0848 0.2544 0 0∣∣∣1, 3

2
, 2, 0

〉
0.0095 0.0379 0.0095 0 0.2544 0 0.2544 0∣∣∣1, 3

2
, 2, 1

〉
0 0.0284 0.0284 0 0 0.2544 0.0848 0.1696∣∣∣1, 3

2
, 2, 2

〉
0 0 0.0568 0 0 0 0.1696 0.3392∣∣∣3, 5

2
, 2,−2

〉
0.1742 0 0 0.0147 0.0073 0 0 0∣∣∣3, 5

2
, 2,−1

〉
0.0871 0.0871 0 0.0073 0.0037 0.0110 0 0∣∣∣3, 5

2
, 2, 0

〉
0.0290 0.1161 0.0290 0 0.0110 0 0.0110 0∣∣∣3, 5

2
, 2, 1

〉
0 0.0871 0.0871 0 0 0.0110 0.0037 0.0073∣∣∣3, 5

2
, 2, 2

〉
0 0 0.1742 0 0 0 0.0073 0.0147∣∣∣3, 5

2
, 3,−3

〉
0 0 0 0.1899 0 0 0 0∣∣∣3, 5

2
, 3,−2

〉
0 0 0 0.0633 0.1266 0 0 0∣∣∣3, 5

2
, 3,−1

〉
0 0 0 0.0127 0.1013 0.0760 0 0∣∣∣3, 5

2
, 3, 0

〉
0 0 0 0 0.0380 0.1140 0.0380 0∣∣∣3, 5

2
, 3, 1

〉
0 0 0 0 0 0.0760 0.1013 0.0127∣∣∣3, 5

2
, 3, 2

〉
0 0 0 0 0 0 0.1266 0.0633∣∣∣3, 5

2
, 3, 3

〉
0 0 0 0 0 0 0 0.1899∣∣∣3, 7

2
, 3,−3

〉
0 0 0 0.18×10−5 0 0 0 0∣∣∣3, 7

2
, 3,−2

〉
0 0 0 0.06×10−5 0.12×10−5 0 0 0∣∣∣3, 7

2
, 3,−1

〉
0 0 0 0.01×10−5 0.09×10−5 0.07×10−5 0 0∣∣∣3, 7

2
, 3, 0

〉
0 0 0 0 0.04×10−5 0.11×10−5 0.04×10−5 0∣∣∣3, 7

2
, 3, 1

〉
0 0 0 0 0 0.07×10−5 0.09×10−5 0.01×10−5∣∣∣3, 7

2
, 3, 2

〉
0 0 0 0 0 0 0.12×10−5 0.06×10−5∣∣∣3, 7

2
, 3, 3

〉
0 0 0 0 0 0 0 0.18×10−5∣∣∣3, 7

2
, 4,−4

〉
0 0 0 0 0 0 0 0∣∣∣3, 7

2
, 4,−3

〉
0 0 0 0 0 0 0 0∣∣∣3, 7

2
, 4,−2

〉
0 0 0 0 0 0 0 0∣∣∣3, 7

2
, 4,−1

〉
0 0 0 0 0 0 0 0∣∣∣3, 7

2
, 4, 0

〉
0 0 0 0 0 0 0 0∣∣∣3, 7

2
, 4, 1

〉
0 0 0 0 0 0 0 0∣∣∣3, 7

2
, 4, 2

〉
0 0 0 0 0 0 0 0∣∣∣3, 7

2
, 4, 3

〉
0 0 0 0 0 0 0 0∣∣∣3, 7

2
, 4, 4

〉
0 0 0 0 0 0 0 0∣∣∣5, 9

2
, 4,−4

〉
0 0 0 0 0 0 0 0∣∣∣5, 9

2
, 4,−3

〉
0 0 0 0 0 0 0 0∣∣∣5, 9

2
, 4,−2

〉
0 0 0 0 0 0 0 0∣∣∣5, 9

2
, 4,−1

〉
0 0 0 0 0 0 0 0∣∣∣5, 9

2
, 4, 0

〉
0 0 0 0 0 0 0 0∣∣∣5, 9

2
, 4, 1

〉
0 0 0 0 0 0 0 0∣∣∣5, 9

2
, 4, 2

〉
0 0 0 0 0 0 0 0∣∣∣5, 9

2
, 4, 3

〉
0 0 0 0 0 0 0 0∣∣∣5, 9

2
, 4, 4

〉
0 0 0 0 0 0 0 0

Table B.11: Branching ratios for decays from mixed J̃ ′ = 2, F̃ ′1 = 3/2 e-parity states∣∣∣J̃ ′, F̃ ′1, F ′,M ′F〉 (columns) in B3Π1 to states in X1Σ+ (rows).
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|J, F1, F,MF 〉
∣∣∣2, 5

2
, 2,−2

〉 ∣∣∣2, 5
2
, 2,−1

〉 ∣∣∣2, 5
2
, 2, 0

〉 ∣∣∣2, 5
2
, 2, 1

〉 ∣∣∣2, 5
2
, 2, 2

〉 ∣∣∣2, 5
2
, 3,−3

〉 ∣∣∣2, 5
2
, 3,−2

〉 ∣∣∣2, 5
2
, 3,−1

〉 ∣∣∣2, 5
2
, 3, 0

〉 ∣∣∣2, 5
2
, 3, 1

〉 ∣∣∣2, 5
2
, 3, 2

〉 ∣∣∣2, 5
2
, 3, 3

〉∣∣∣1, 1
2
, 0, 0

〉
0 0 0 0 0 0 0 0 0 0 0 0∣∣∣1, 1

2
, 1,−1

〉
0.0002 8.10×10−5 2.70×10−5 0 0 0 0 0 0 0 0 0∣∣∣1, 1

2
, 1, 0

〉
0 8.10×10−5 1.08×10−5 8.10×10−5 0 0 0 0 0 0 0 0∣∣∣1, 1

2
, 1, 1

〉
0 0 2.70×10−5 8.10×10−5 0.0002 0 0 0 0 0 0 0∣∣∣1, 3

2
, 1,−1

〉
0.4699 0.2350 0.0783 0 0 0 0 0 0 0 0 0∣∣∣1, 3

2
, 1, 0

〉
0 0.2350 0.3133 0.2350 0 0 0 0 0 0 0 0∣∣∣1, 3

2
, 1, 1

〉
0 0 0.0783 0.2350 0.4699 0 0 0 0 0 0 0∣∣∣1, 3

2
, 2,−2

〉
0.0367 0.0183 0 0 0 0.5235 0.1745 0.0349 0 0 0 0∣∣∣1, 3

2
, 2,−1

〉
0.0183 0.0092 0.0275 0 0 0 0.3490 0.2792 0.1047 0 0 0∣∣∣1, 3

2
, 2, 0

〉
0 0.0275 0 0.0275 0 0 0 0.2094 0.3141 0.2094 0 0∣∣∣1, 3

2
, 2, 1

〉
0 0 0.0275 0.0092 0.0183 0 0 0 0.1047 0.2792 0.3490 0∣∣∣1, 3

2
, 2, 2

〉
0 0 0 0.0183 0.0367 0 0 0 0 0.0349 0.1745 0.5235∣∣∣3, 5

2
, 2,−2

〉
0.1386 0.0693 0 0 0 0.0117 0.0039 0.0008 0 0 0 0∣∣∣3, 5

2
, 2,−1

〉
0.0693 0.0347 0.1040 0 0 0 0.0078 0.0062 0.0023 0 0 0∣∣∣3, 5

2
, 2, 0

〉
0 0.1040 0 0.1040 0 0 0 0.0047 0.0070 0.0047 0 0∣∣∣3, 5

2
, 2, 1

〉
0 0 0.1040 0.0347 0.0693 0 0 0 0.0023 0.0062 0.0078 0∣∣∣3, 5

2
, 2, 2

〉
0 0 0 0.0693 0.1386 0 0 0 0 0.0008 0.0039 0.0117∣∣∣3, 5

2
, 3,−3

〉
0.0120 0 0 0 0 0.1620 0.0540 0 0 0 0 0∣∣∣3, 5

2
, 3,−2

〉
0.0040 0.0080 0 0 0 0.0540 0.0720 0.0900 0 0 0 0∣∣∣3, 5

2
, 3,−1

〉
0.0008 0.0064 0.0048 0 0 0 0.0900 0.0180 0.1080 0 0 0∣∣∣3, 5

2
, 3, 0

〉
0 0.0024 0.0072 0.0024 0 0 0 0.1080 0 0.1080 0 0∣∣∣3, 5

2
, 3, 1

〉
0 0 0.0048 0.0064 0.0008 0 0 0 0.1080 0.0180 0.0900 0∣∣∣3, 5

2
, 3, 2

〉
0 0 0 0.0080 0.0040 0 0 0 0 0.0900 0.0720 0.0540∣∣∣3, 5

2
, 3, 3

〉
0 0 0 0 0.0120 0 0 0 0 0 0.0540 0.1620∣∣∣3, 7

2
, 3,−3

〉
0.1787 0 0 0 0 0.0080 0.0027 0 0 0 0 0∣∣∣3, 7

2
, 3,−2

〉
0.0596 0.1191 0 0 0 0.0027 0.0036 0.0045 0 0 0 0∣∣∣3, 7

2
, 3,−1

〉
0.0119 0.0953 0.0715 0 0 0 0.0045 0.0009 0.0054 0 0 0∣∣∣3, 7

2
, 3, 0

〉
0 0.0357 0.1072 0.0357 0 0 0 0.0054 0 0.0054 0 0∣∣∣3, 7

2
, 3, 1

〉
0 0 0.0715 0.0953 0.0119 0 0 0 0.0054 0.0009 0.0045 0∣∣∣3, 7

2
, 3, 2

〉
0 0 0 0.1191 0.0596 0 0 0 0 0.0045 0.0036 0.0027∣∣∣3, 7

2
, 3, 3

〉
0 0 0 0 0.1787 0 0 0 0 0 0.0027 0.0080∣∣∣3, 7

2
, 4,−4

〉
0 0 0 0 0 0.1852 0 0 0 0 0 0∣∣∣3, 7

2
, 4,−3

〉
0 0 0 0 0 0.0463 0.1389 0 0 0 0 0∣∣∣3, 7

2
, 4,−2

〉
0 0 0 0 0 0.0066 0.0794 0.0992 0 0 0 0∣∣∣3, 7

2
, 4,−1

〉
0 0 0 0 0 0 0.0198 0.0992 0.0661 0 0 0∣∣∣3, 7

2
, 4, 0

〉
0 0 0 0 0 0 0 0.0397 0.1058 0.0397 0 0∣∣∣3, 7

2
, 4, 1

〉
0 0 0 0 0 0 0 0 0.0661 0.0992 0.0198 0∣∣∣3, 7

2
, 4, 2

〉
0 0 0 0 0 0 0 0 0 0.0992 0.0794 0.0066∣∣∣3, 7

2
, 4, 3

〉
0 0 0 0 0 0 0 0 0 0 0.1389 0.0463∣∣∣3, 7

2
, 4, 4

〉
0 0 0 0 0 0 0 0 0 0 0 0.1852∣∣∣5, 9

2
, 4,−4

〉
0 0 0 0 0 0.36×10−5 0 0 0 0 0 0∣∣∣5, 9

2
, 4,−3

〉
0 0 0 0 0 0.09×10−5 0.27×10−5 0 0 0 0 0∣∣∣5, 9

2
, 4,−2

〉
0 0 0 0 0 0.01×10−5 0.15×10−5 0.19×10−5 0 0 0 0∣∣∣5, 9

2
, 4,−1

〉
0 0 0 0 0 0 0.04×10−5 0.19×10−5 0.13×10−5 0 0 0∣∣∣5, 9

2
, 4, 0

〉
0 0 0 0 0 0 0 0.08×10−5 0.20×10−5 0.08×10−5 0 0∣∣∣5, 9

2
, 4, 1

〉
0 0 0 0 0 0 0 0 0.13×10−5 0.19×10−5 0.04×10−5 0∣∣∣5, 9

2
, 4, 2

〉
0 0 0 0 0 0 0 0 0 0.19×10−5 0.15×10−5 0.01×10−5∣∣∣5, 9

2
, 4, 3

〉
0 0 0 0 0 0 0 0 0 0 0.27×10−5 0.09×10−5∣∣∣5, 9

2
, 4, 4

〉
0 0 0 0 0 0 0 0 0 0 0 0.36×10−5

Table B.12: Branching ratios for decays from mixed J̃ ′ = 2, F̃ ′1 = 5/2 e-parity states∣∣∣J̃ ′, F̃ ′1, F ′,M ′F〉 (columns) in B3Π1 to states in X1Σ+ (rows).
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