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Abstract

Pathways Towards a Second Generation 88Sr2 Molecular Clock

Emily Tiberi

For years, frequency standards have been the cornerstone of precision measurement. Among

these frequency standards, atomic clocks have set records in both precision and accuracy, and have

redefined the second. There is growing interest in more complex molecular systems to comple-

ment precision measurements with atoms. The rich internal structure of even the simplest diatomic

molecules could provide new avenues for fundamental physics research, including searches for

extensions to the Standard Model, dark matter candidates, novel forces or corrections to gravity at

short distances, and tests of the variation of fundamental constants.

In this thesis, I discuss the fundamental architecture for a precise molecular system based on a

strongly forbidden weakly-bound to deeply-bound vibrational transition in 88Sr dimers. I discuss

early studies to characterise our system and gain technical and quantum control over the experi-

ment in anticipation of a precise metrological measurement. I, then, describe the achievement of

record-breaking precision for our 88Sr2 molecular clock, ushering in a new era for precision mea-

surement with clocks. Borrowing techniques from previous atomic clock architecture, we measure

a ∼32 THz clock transition between two vibrational levels in the electronic ground state, achieving

a fractional uncertainty of 4.6 × 10−14 in a new frequency regime. In this current iteration, our

molecular clock is fundamentally limited by two-body loss lifetimes of 200 ms and light scattering



induced by our high-intensity lattice.

Given these limitations, I suggest improvements to combat the effects from both the lattice and

two-body collisions in our 1D trap. These include technical improvements to our experiment and

strategic choices of particular clock states in our ground electronic potential. I describe in-depth

studies of the chemistry and polarizability behaviour of our molecule, which elucidate preferential

future directions for a second generation clock system. These empirical results are substantiated

by an improved theoretical picture.

Ultimately, our molecular system is built in order to probe new physics and as a tool for pre-

cision measurement. Leveraging our record-precision clock and our new-found understanding of

our molecule, I predict the capacity for our system to place meaningful, competitive constraints

on new physics, in particular on Yukawa-type extensions to gravity. These predictions motivate

improvements to our current generation clock and set the stage for future measurements with this

system.
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X1Σ+

𝑔 . This transition is strongly forbidden since g → g transitions, which do not
involve a change in parity, are Laporte forbidden. The transition is, therefore, ac-
cessed via an intermediate excited state |𝑒⟩ and two allowed transitions. . . . . . . 8

2.1 A subset of the molecular potentials in 88Sr2. The ground state potential, 𝑋1Σ+
𝑔 , is

taken from empirical data of the strontium dimer [31]. Also shown are the two most
relevant excited Hund’s case (c) ungerade potentials, 0+𝑢 and 1𝑢, corresponding to
atomic 1S0-3P1 dissociation energy. Models of these excited potentials are fit near-
threshold to experimental data of weakly bound binding energies [20]. Adapted
from [25]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Simplified schematic of the process of forming 88Sr2 from cooled 88Sr atoms,
chronologically from left to right. 88Sr atoms are first laser cooled using a con-
ventional two-stage MOT scheme. The blue MOT addresses the 1S0-1P1 transi-
tion, while the red MOT addresses the narrow-line 1S0-3P1 transition. We perform
repumping on the 3-P states. The atoms are subsequently trapped in a 1D optical
lattice. Trapped atoms are photoassociated to weakly bound molecules by coupling
the atoms to the 1𝑢(-1,1) state in the excited molecular potential. This state pref-
erentially decays to the least bound, 𝑋𝑔 (62, 0) or 𝑋𝑔 (−1, 0), state in the molecular
ground, 𝑋𝑔 potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
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2.3 Our operational experimental protocol. Shown above is a cartoon representation of
our sequence including two-stage blue and red MOT cooling and trapping, photoas-
sociation (PA) of atoms to molecules, photodissociation (PD) of molecules back to
atoms, and absorption imaging of atomic fragments on the 461 nm atomic transi-
tion. Shown below are examples of our absorption images after photodissociation
of molecules in 𝑋𝑔 (−1, 𝐽 = 0, 2). Ordinarily both 𝐽 = 0 and 𝐽 = 2 molecules are
visible (left). 𝐽 = 2 molecules, with larger momentum, appear as a ring around
𝐽 = 0 molecules due to the finite time of flight during imaging. We can selectively
remove 𝐽 = 2 molecules from our sample (right). . . . . . . . . . . . . . . . . . . 16

2.4 The resonance width of a Raman transition, a 2-photon transition via an interme-
diate state, at various lattice frequencies. The linewidth shrinks dramatically near
magic, where lattice-induced and thermal asymmetric broadening are minimized
(above). A sample set of the transition spectra at various lattice wavelengths (be-
low). At magic, we find a trace showing a 32(3) Hz linewidth, more than three
orders of magnitude narrower. Adapted from [32]. . . . . . . . . . . . . . . . . . . 17

2.5 Mechanism for magic trapping. We implement a magic wavelength lattice for our
Raman spectroscopy of two states in 𝑋𝑔 (green) by coupling our lattice (blue) be-
tween the deeply-bound state and an excited state in 1𝑢 (left). By tuning near reso-
nance, we induce a dispersive behaviour in the polarizability of the deeply-bound
clock state of the form Ω2/4𝛿 modeled here for Ω1, Ω2 = 2Ω1 and Ω3 = 3Ω1
(right). This dispersive change in polarizability facilitates a zero-crossing point
with the polarizability of the uncoupled, weakly-bound clock state. . . . . . . . . . 18

2.6 Finding magic lattice wavelength from transition peak centres at high and low lat-
tice intensities. Above we plot individual peak positions fitting a dispersive curve
(dashed) of the form 𝐴/(𝑥−𝑥0)+𝐵 to describe the polarizability behaviour (above).
The region where the two fits intersect corresponds to the region where the magic
condition is likely to be met. To quantify the magic wavelength, we plot the dif-
ferential light shift, as in the shift in peak position between the high lattice and
low lattice intensities (below). Sample datasets of individual peak traces show the
transition in a high intensity lattice (black) as compared to the transition in a low
intensity lattice (red) (right). We infer the magic wavelength by fitting a line to the
differential light shift and predicting where it crosses zero. . . . . . . . . . . . . . 20

2.7 Line strengths and corresponding magic detunings for pairs of states from 𝑋𝑔 (6, 0)
to different 1𝑢 (𝑣, 1) states. Larger transition strengths (S) are predictors for larger
magic detunings (green circles). We show experimental results obtained using two
different approaches to measure the lattice intensity: (1) using direct imaging of
beam waist (purple circles) and (2) calibrating to the 1𝑆0 Sr atomic polarizabil-
ity (green squares). Theoretical predictions from the Morse potential are shown
(yellow diamonds) and trends match behaviour in experiment [39]. . . . . . . . . . 25
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2.8 Transition strengths for pairs of vibrational states in the 𝑋𝑔 and 1𝑢 potentials. Be-
low, we zoom in on a particular region of interest to design magic wavelength traps
of possible deeply-bound clock states. Importantly, larger transition strengths of-
fer favourable clock configurations. Note that upper (lower) bounds on colorbars
represent the upper (lower) cutoffs for plotted transition strengths, and do not nec-
essarily correlate with global maximum (minimum) values. Adapted from [39]. . . 26

2.9 The first 37 (most deeply-bound) vibrational levels of the 0+𝑢 potential. A kink
in the trend near -1500 1/cm is the result of the avoided crossing in 0+𝑢 . Binding
energies of the deepest 11 states are fit to equation 2.14, from which we extract the
spectroscopic constants for the potential in table 2.1. Adapted from [47]. . . . . . . 29

2.10 Scheme for locating ground vibrational levels. The EIT trace shows recovery of
the 𝑋𝑔 (−1, 0) signal when the detuning of the pump laser is zero (left). This cor-
responds to the formation of a dark state and indicates that we have located the
transition. The two Raman beams are shown in purple (right), where the downleg
is fixed on resonance, and the upleg is scanned across the resonance. Adapted from
[47]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.11 A complete map of the ground state 𝑋𝑔 potential and rotational splittings between
𝐽 = 0 and 𝐽 = 2. Binding energies fit to equation 2.14 from which we extract the
spectroscopic constants for the potential in table 2.2. Adapted from [47]. . . . . . . 31

2.12 STIRAP transfer scheme. Red and blue arrows show the pump and anti-Stokes
transfer lasers via the 0+𝑢 (11, 1) intermediate state (left). We also show the STIRAP
transfer scheme, with the conventional time-dependent Rabi frequencies (above),
as well as a sample of the population of 𝑋𝑔 (−1, 0) as a function of this transfer
sequence (below). The one-way efficiency is 𝜂 = 89(2)%. . . . . . . . . . . . . . . 33

2.13 Efficiency of STIRAP transfer. As we detune away from resonance by Δ, we see
an increase in efficiency, 𝜂, because of scattering near resonance arising from ex-
perimental imperfections in controlling probe laser polarization (left). As we tune
the lattice to the magic wavelength (dashed line), we see an enhancement in the
efficiency of the transfer (right). Adapted from [47]. . . . . . . . . . . . . . . . . . 34

2.14 Two-photon Rabi oscillations between 𝑋𝑔 (−1, 0) and 𝑋𝑔 (4, 0) (black circles). Favourable
magic trapping is achieved by tuning the lattice near the 𝑋𝑔 (4, 0) to 1𝑢 (25, 1) tran-
sition. Also shown are the normalized population decay of 𝑋𝑔 (4, 0) (red squares)
and 𝑋𝑔 (−1, 0) (blue triangles). Adapted from [39]. . . . . . . . . . . . . . . . . . 36

2.15 The lifetime of our absolute ground state molecules, 𝑋𝑔 (0, 0). The red curve rep-
resents a fit to a two-body loss differential equation, whereas the blue dashed curve
represents a fit to a one-body, exponential decay. The decay behaviour clearly
favours two-body loss mechanisms, with a lifetime of about 200 ms. Adapted
from [47]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
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2.16 Two-body coefficients, 𝛽, for 𝑋𝑔 (0, 0) and 𝑋𝑔 (62, 0). We compare our results to
the calculated universal loss rate, 1.22 × 10−10 cm3s−1 (dashed line), and see that
our rovibrational ground state molecules collide with near unity probability after
a short-range collision. The higher 𝑋𝑔 (62, 0) loss rate is suggestive of additional
loss mechanisms. Adapted from [47]. . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Our vibrational molecular lattice clock scheme. Raman lasers (upleg, red arrow;
downleg, orange arrow) are detuned from an intermediate state, 0+𝑢 (11, 1) and
probe the two-photon vibrational clock transition between 𝑋𝑔 (62, 0) and 𝑋𝑔 (0, 0).
The optical lattice (brown arrow) is parked near resonance, addressing the 1𝑢 (9, 1)
transition to satisfy the magic condition. Adapted from [18]. . . . . . . . . . . . . 43

3.2 A scheme for fibre noise cancellation (FNC) of our probe beams. A laser beam is
initially divided on a 50:50 non polarizing beam splitter (BS) cube, and one beam
is retro-reflected as a reference, while the other is diffracted by an acousto-optic
modulator (AOM) driven by a voltage-controlled crystal oscillator (VCO). Then,
the diffracted order is injected into an optical fibre to the experiment. To combat
phase noise written by the fibre, we perform active FNC, by retro-reflecting a small
portion of the light back through the fibre and recombining it with the original
reference light. Beat detection on a low-noise photodiode produces a reference
error signal for active feedback on the VCO to preemptively cancel the fibre phase
noise. Adapted from [19]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Comparison of our local time standard to global reference time standard. Our
local time standard, a Rubidium microwave clock, acts as a flywheel oscillator,
linking the molecular clock to GPS time for the absolute frequency measurement.
Specifically, we compare our internal 1 pulse-per-second (PPS) from our lab to a
reference 1 PPS from GPS via dual-band global navigation satellite system receiver
on a time-interval counter. Our GPS time is steered by Coordinated Universal Time
(UTC) and International Atomic Time (TAI) giving us a way to locally reference
our clock measurements to absolute frequency standards. . . . . . . . . . . . . . . 47

3.4 Frequency stabilisation of our probe lasers. We utilize a ULE cavity as a reference
for our 793 nm upleg probe laser. The repetition rate ( 𝑓RR) of our frequency comb
is phase locked to the upleg probe laser at a beat frequency 𝑓𝑏↑, inheriting the
cavity stability. The downleg 732 nm probe laser is phase locked to the frequency
comb at a beat frequency 𝑓𝑏↓ relative to a higher comb tooth number. The offset of
the frequency comb ( 𝑓CEO) is referenced to the local 10 MHz reference from our
rubidium microwave clock standard. Adapted from [19]. . . . . . . . . . . . . . . 48
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3.5 Absolute frequency of our clock transition measured over ten trials (left) with all
known systematic frequency corrections and comparison to local Rb time base.
Blue error bars are 1𝜎 statistical uncertainties, dominated by determination of the
comb repetition rate (RR). Red error bars are 1𝜎 systematic uncertainties due to
the inherent molecular clock uncertainty (see table 3.1). Black error bars are 1𝜎
total uncertainties, where the uncertainties of the local time-base calibrations are
added in quadrature with the statistical and molecular clock systematic uncertain-
ties. The black horizontal line shows the weighted average, and the shaded gray
area shows the associated 1𝜎 standard error of the mean. Histogram (right) of all
clock frequency measurements in the ten trials, relative to the weighted average of
𝑓𝑐𝑙𝑜𝑐𝑘 . The solid red line is a Gaussian fit to the histogram. Adapted from [18]. . . 50

3.6 Light shifts from our Raman probe lasers as a function of the upleg laser intensity
(left), and the downleg laser intensity (right). The horizontal axes are normalized
to operational intensities, 𝐼↑,𝑜𝑝𝑡 and 𝐼↓,𝑜𝑝𝑡 . Solid lines are linear fits to the data.
Residuals are plotted in units of Hz. Adapted from [18]. . . . . . . . . . . . . . . . 52

3.7 Clock shifts due to the lattice light. We show nonlinear shifts of the molecular clock
frequency versus trap depth (above). For a given lattice frequency (color coded),
we make interleaved measurements of clock shifts (open circles) with respect to a
reference trap depth (∼ 500 𝐸𝑟), and fit the data to parabolas (solid lines) with a
global quadratic parameter, −𝛽. We plot the linear light shift coefficient, 𝛼, versus
lattice frequency (color code matches above), as extracted from the linear fit (black
solid line) (below). Adapted from [18]. . . . . . . . . . . . . . . . . . . . . . . . . 53

3.8 Chamber temperature logging scheme for BBR shift measurement. We measure
the temperature of the stainless steel chamber on four faces using high-precision
10 kΩ MC65F103A Amphemol negative temperature coefficient (NTC) thermis-
tors (below). We continuously record the temperature using a Keithley DAQ6510/7700
system and a home-built, python-based GUI for remote control (above). . . . . . . 57

3.9 Modeled blackbody radiation shift on 𝑋𝑔 (𝑣, 0) states at an effective environment
temperature 𝑇𝑟 = 300 K. For our current clock states, 𝑋𝑔 (0, 0) and 𝑋𝑔 (62, 0), the
net BBR shift on the observed clock frequency is 𝛿 𝑓𝐵𝐵𝑅 = 0.70(14) Hz. The
dynamic term 𝜂 (equations 3.15 and 3.16) at 𝑇𝑟 , included in 𝛿 𝑓𝐵𝐵𝑅, contributes less
than 0.5% to the measured shift. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.10 Differential BBR shift between 𝑋𝑔 (0, 0) and other 𝑋𝑔 (𝑣, 0) states in the ground
potential, as predicted by early theoretical models. These models show state pairs
that may exhibit near zero BBR shift corrections at 𝑇 = 300 K. . . . . . . . . . . . 59
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3.11 Evaluation of density-shift systematic. Clock shifts due to molecular collisions are
compared to operating conditions (left). We find a small, non-zero correction of
𝛿 𝑓𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = −0.20(10) Hz due to these density-dependent collisional shifts. In the
same dataset, the shift between successive resonances taken under identical exper-
imental settings serves as a control experiment to check for technical offsets. As
expected, this averages to zero, 0.03(20) Hz (right). Both insets show the histogram
of normalized residuals, and the solid red lines are Gaussian fits. Adapted from [18]. 60

4.1 Design for a new vertical lattice configuration. Probe (clock) and lattice beams
are combined along the vertical axis on dichroic beamsplitters (see main text for
details). Probes are fed from above, while the lattice is counter-propagated from
below. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Home-designed and machined mirror mount for vertical lattice construction. . . . . 65

4.3 Polarizability of the electronic ground vibrational states, as predicted by early the-
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These pairs of states may present favourable clock conditions with near zero BBR
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4.4 A comparison of two magic trapping schemes. Right axis (black) shows the dif-
ferential polarizability around conventional near-resonant magic wavelength. Left
axis (blue) shows the differential polarizability around predicted off-resonant magic
wavelengths. The slope of each curve describes the sensitivity of our system to
changes in the lattice frequency. Off-resonant magic wavelengths are 105 times
less sensitive than our conventional traps. Below, we zoom in to region just around
the magic condition, while, above, we show proximity to resonance [25]. . . . . . . 67

4.5 Differential polarizability of pairs of clock states in the telecom range (1450-1650 nm).
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every ∼ 15 nm [25]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 A scheme for probing the light shift on a clock transition from a auxiliary 1950 nm
light source. We perform spectroscopy of our molecular clock transition using a
two-photon Raman transition via an intermediate state in the 0+𝑢 (red arrows) in
a magic lattice that couples our deeply-bound clock state to an excited 1𝑢 state
(blue arrow). We induce Stark shifts to probe differential polarizabilities of ground
rovibrational states with 1950 nm light (orange arrow). . . . . . . . . . . . . . . . 70
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4.7 Light shift of the 𝑋𝑔 (0, 0) state with 1950 nm light. We measure the linear light
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Chapter 1: Introduction

1.1 Metrology as Precision Measurement

The primary aim of a precision measurement experiment is to utilize specialized tools to probe

new physics, or to refine our previous interpretation. By nature, precision measurement experi-

ments work hand-in-hand with theory: our experiments are motivated by ever-changing theoretical

pictures — whether they be new exotic particles, new forces or new physical interpretations —

and, likewise, precision measurements are integral to testing new avenues of theory.

Traditionally, physicists have probed new physics at energies on the order of 1 GeV or larger,

in particle accelerators or in exotic astrophysical events [1]. By contrast, precision measurement

in atomic, molecular and optical (AMO) physics operates at very low temperatures and energies,

on the order of ∼1 𝜇K or 10−12 eV, where the interactions are extremely weak and the effect of

any new, exotic physics will be extremely small. Nevertheless, we can leverage highly-controlled,

ultracold atoms and molecules to ask (and answer) these same questions. Given that the interac-

tions we hope to investigate are so weak, it is, therefore, imperative that we rely on state-of-the-art

technology to build precise machines. The advantage? We can develop these table-top experiments

at a fraction of the cost and with a limited footprint. What is more, atoms and molecules are an

incredibly flexible, lego-like platform with which to build tailor-made experiments.

At these low energies, we rely on precision measurement as we aim to answer increasingly

complex questions about the physical world around us. As we move ever further towards the fron-

tiers of our understanding, we need to continue to push the boundaries of technique. For years,

high-precision frequency standards have been the cornerstone of precision measurement. Among
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these frequency standards, atomic clocks have set records in both precision and accuracy [2], and

have redefined the second. By definition, any clock uses time-keeping as the essential standard for

a measurement. In particular, an atomic clock utilizes the optical transition between two electronic

states in the atom as the resonator. This characteristic frequency is fundamental to the atom and,

therefore, is a standard for measurement. Variations in this frequency might arise due to changes in

the environment or might signal new, anomalous forces beyond the Standard Model. The current

record precision of an atomic clock is on the order of one part in 1019 [3]. As we continue to push

these technical limits, it is also crucial to explore new scientific directions that may probe a new

part of the landscape.

Here, I consider a molecule-based lattice clock as a versatile platform for new physics beyond

the scope of current atomic lattice clocks [4, 5]. Even the simplest diatomic molecules could

provide new channels for fundamental physics research, including searches for extensions to the

Standard Model [6], dark matter candidates [7, 8], novel forces [9, 10] or corrections to gravity at

short distances [11, 12], and tests of the variation of fundamental constants [13, 14]. I discuss the

potential questions that we might investigate with our particular system, as well as the technical

challenges we face in building a molecular system. Ultimately, I will suggest pathways towards a

more precise clock.

1.2 A Recipe for a Molecular Clock

At its foundation, our experiment seeks to develop a high-precision tool for tests of fundamental

physics. This necessitates that our molecular clock be both highly precise and incredibly accurate.

To achieve this, our molecular clock should meet a number of requirements:

• The clock transition should have a very narrow linewidth.

• The clock transition should be insensitive to magnetic or electric fields.

• The clock transition should be accessible with available laser technology.
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• The molecules should be long-lived in these states.

• The molecules should be highly controlled and allow for precise state-selection.

• The technical system should allow for coherent transfer between clock states.

• The technical system should be well-controlled and understood.

In the following chapters, I will describe how we develop a molecular clock that meets each

of these conditions, as well as why they are imperative when building a precise and accurate

measuring tool.

1.3 Evaluating the Quality of our Clock

As we look towards designing and building a metrological system, it is important to understand

the technical and fundamental limitations of the precision we can achieve. Throughout this thesis,

we will discuss avenues to improve our clock precision by combating technical challenges and

mitigating inherent limitations. In clock systems, instability refers to the variation in the measured

clock frequency over a given averaging time. The instability of a clock is given by the Allan

deviation, 𝜎𝑦 (𝜏), which estimates the frequency stability due to noise processes

𝜎𝑦 (𝜏) ∼ 𝛿 𝑓

𝑓

1√
𝑁𝜏

(1.1)

where 𝛿 𝑓 is the observed linewidth of the clock transition with frequency 𝑓 , 𝑁 is the number of

atoms or molecules probed per second and 𝜏 is the total averaging time of the measurement. It is

convention to report clock precision in relation to the total interrogation (averaging) time of the

experiment.

Clock experiments will usually average over a certain period of time to reach a given reported

precision, but this total averaging time must be reasonable, in other words, must be feasible in a

real experimental setup over the course of hours and days. The requirements for what is reasonable
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may differ depending on a given precision measurement. For comparison, an atomic clock might

report fractional instabilities 𝜎𝑦 (𝜏) at the 10−18 level after a few hours of interrogation, assuming

fractional uncertainties 𝛿 𝑓 / 𝑓 = 10−14 and 𝑁 ∼ 103 atoms per run. Since current molecular clocks

probe fewer particles, we need comparatively better linewidths to achieve a competitive precision

in reasonable interrogation times.

1.3.1 Limitations to clock stability

Ultimately in clocks, the fundamental limit is set by the quantum projection noise (QPN), an

instability that emerges in population measurements [16]. In ideal cases, QPN should be the domi-

nant noise contribution [16], limiting the precision of your clock. QPN exists in any detection, that

is, for example, when the quantum superposition state of an atom or molecule is projected onto

the ground or excited state [17]. It arises from the fundamental indeterminate nature of a quantum

system measured in a particular state, in accordance with the Heisenberg uncertainty principle (see

figure 1.1). As we will see later, in addition to these fundamental noise limitations, we need to

Figure 1.1: Visual representation of quantum projection noise (QPN) associated with a measure-
ment along the 𝐽𝑧 axis of the Bloch sphere. The red arrow shows the state position, while the
rainbow shaded region shows the spread associated with the noise of the measurement (left). A
sample measurement of a projection along the 𝐽𝑧 component of the angular momentum is shown
(right). This figure is adapted from [15].
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carefully account for systematic errors and imperfections that cause frequency drifts in our system.

In large part, our clock stability is a reflection of the linewidth of the clock transition that we

are able to achieve. This linewidth is determined by a number of technical and atom/molecule

specific factors and is intimately related to the lifetime of atoms or molecules in a particular state:

Γclock =
1

𝜏clock
(1.2)

The lifetime depends first on the natural lifetime of the atoms or molecules in the clock states,

which determines how long we can interrogate our system. For instance, if the atomic or molec-

ular lifetime is 0.5 s, then the Fourier-limited linewidth is 2 Hz. On top of the natural lifetime

in a given state, other factors can decrease the lifetime of atoms and molecules and, therefore,

artificially broaden the linewidth. These factors, which I will discuss at length in the following

chapters, include light-induced scattering, thermal inhomogeneous broadening, and interactions

and collisions in the trap. Regardless, it is imperative that we preferentially select long-lived clock

states with long natural lifetimes to combat this inherent limit.

1.3.2 A note about Q factors

Fundamentally, a molecular clock is a system based on a consistent, robust and stable resonator

that is both precise and accurate. One of the ways in which we evaluate the precision of our

molecular clock is using the quality factor (𝑄 factor). The 𝑄 factor is defined as

𝑄 =
𝑓

𝛿 𝑓
(1.3)

where 𝑓 is the frequency of the clock transition and 𝛿 𝑓 is its linewidth. Throughout this thesis, I

refer to 𝛿 𝑓 as the linewidth of our clock transition interchangeably with the reported uncertainty

on our clock transition, depending on the context. We currently hold the record for a molecular

clock𝑄 factor of 3.03×1012 on a 31 825 183 207 601.1(3.3) Hz transition, achieving linewidths as
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narrow as 10.5(1.2) Hz (see figure 1.2) [18]. A full description of this record clock measurement

is available in KH Leung’s thesis [19], but a summary will be presented in chapter 3 of this thesis.

If we consider the fundamental limit set in equation (1.1), we can introduce the 𝑄 factor as

𝜎𝑦 (𝜏) ∼ 1
𝑄

1√
𝑁𝜏

(1.4)

In this way, the𝑄 factor, as in equation 1.3, is directly related to our ability to reduce the necessary

interrogation time of our system at a given precision, and to improve the overall precision of our

Figure 1.2: An example of a narrow molecular clock transition with 10.5(1.2) Hz linewidth 𝛿 𝑓 .
This transition is achieved by two-photon spectroscopy via an intermediate state (as shown in figure
1.3). The transition frequency 𝑓 is equal to 31 825 183 207 601.1(3.3) Hz, corresponding to a 𝑄
factor of 3.03 × 1012.
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clock. Throughout this thesis, I propose pathways towards a next-generation clock for precision

measurement. In many cases, I refer to the 𝑄 factor as one metric for our clock quality, and in

particular will point out potential trade-offs we need to consider when designing a future clock.

1.4 Why 88Sr2 is a good candidate

There are a number of reasons we select 88Sr2 as the basis of our molecular clock. One major

advantage of our particular experiment is that we exploit a new type of clock transition. Transitions

in our molecule are in the THz frequency range, as compared to atomic clocks, whose transitions

are in the optical range; these new clock frequencies allow us to probe new frontiers of physics

because they are based on nuclear vibrations rather than electronic transitions.

In atomic clocks, strictly forbidden 1S0-3P0 transitions in 88Sr are addressed by applying a

small magnetic field [20]. For comparison, the natural linewidth of this transition in 87Sr is on the

order of mHz [21]. By contrast, in molecular clocks, we address a transition between vibrational

states in the ground electronic potential, which is strictly forbidden. The natural linewidth of such

a transition is effectively zero, but it is made accessible in our system by using a Raman transition,

a 2-photon (2-colour) transition via an intermediate excited state of two allowed transitions (see

figure 1.3). As such, ultranarrow, sub-mHz linewidths should be achievable in our system, if we

are able to overcome other technical limitations.

These special transitions emerge specifically in homonuclear dimers due to Laporte selection

rules [22]. For homonuclear, centrosymmetric dimers, such as 88Sr2, we can define whether a state

or potential is gerade (g) or ungerade (u) which indicates the parity with respect to inversion about

the centre. Gerade states have even parity, 𝜓(−𝑟) = 𝜓(𝑟), while ungerade states have odd parity,

𝜓(−𝑟) = −𝜓(𝑟) [22]. The Laporte rule forbids electronic transitions that conserve parity. Allowed

transitions in such molecules must involve a change in parity, in other words, either g → u or u →

g. Since all vibrational states in the electronic ground potential, X1Σ+
𝑔 of 88Sr2 are gerade, transi-
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Figure 1.3: A simplified cartoon of our molecular clock system. The clock resonator is a transition
between two vibrational states, |1⟩ and |2⟩, in the ground electronic potential X1Σ+

𝑔 . This transition
is strongly forbidden since g → g transitions, which do not involve a change in parity, are Laporte
forbidden. The transition is, therefore, accessed via an intermediate excited state |𝑒⟩ and two
allowed transitions.

tions between these are Laporte forbidden.

States in the ground electronic state have even total angular momentum, and, in particular, we

work with transitions between clock states that both have total angular momentum 𝐽 = 0; these

states are particularly desirable, since they are highly insensitive to magnetic fields. We know that

these transitions are generally accessible with current laser technology with the majority of the

clock probe laser and lattice wavelengths of interest found in the red or near-infrared range (be-
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tween ∼ 700 - 1100 nm).

It is important to note that Sr atoms have been studied extensively and are the basis for a

number of high-precision atomic clocks. The cooling and trapping schemes, as well as the atomic

structure, are well-studied and well-modelled with theory. This precedent provides a wealth of

useful information for our own work. All told, 88Sr2 presents a promising platform for a new type

of metrological system, whose technical limitations rival those of atomic clocks.

1.5 Searches for New Physics

There are a number of applications for precision measurement of 88Sr2 including tests for tem-

poral drift of fundamental constants, sometimes referred to as 𝜇-dot or 𝛼-dot tests, investigations

into ultracold collisions and ultracold quantum chemistry, and searches for a fifth force or cor-

rections to gravity. In this thesis, I focus primarily on proposed methods to place constraints on

non-Newtonian gravity at nanometer scales, although much of the work promises the potential

for other fundamental tests and provides a window into the quantum chemistry of our molecule.

In particular, much recent focus has been placed on using Yukawa-type corrections to Newtonian

gravity at short separations [11, 23], that is, the addition of a term 𝑉Yukawa(𝑟) to the conventional

Newtonian gravity 𝑉Newton(𝑟) such that the gravitational potential between two point masses is

𝑉 (𝑟) = 𝑉Newton(𝑟) +𝑉Yukawa(𝑟) = −𝐺𝑚1𝑚2
𝑟

(1 + 𝛼𝑒−𝑟/𝜆) (1.5)

where 𝜆 is called the range of the Yukawa potential, characterising the distance scale at which

the effects of the correction become important, and 𝛼 is an overall scale factor, the size of the

correction. This correction impacts the depth of our molecular potential, and, therefore, precision

measurements of this depth can provide insight into the size of this term.

Such corrections are a consequence of many extensions to the Standard Model, and arise due to
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hypothetical light elementary particles or in extra- and compactified dimensions [24]. In this way,

precision measurements of these constraints are integral to providing insight into these Beyond-

the-Standard-Model theories, and motivate the work we present here.

In this thesis, I will first lay the groundwork for a molecular clock experiment (Chapter 2),

describe the current state-of-the-art molecular clock (Chapter 3), and discuss scientific and tech-

nical directions for improved precision (Chapter 4). In the last chapter (Chapter 5), I project the

precision required for a meaningful fifth-force measurement as motivation for our push towards

a second-generation molecular clock. While there are benefits from pursuing ever-better quan-

tum and technical control of our molecules, in this thesis, I also discuss the motivations for these

improvements, specifically towards a high-precision measurement of constraints to Yukawa-type

corrections to gravity at nanometer scales.

10



Chapter 2: Laying the Groundwork for a Highly Controlled Metrological

System

When building a precise molecular clock, we need to have a thorough understanding of our

molecule and our system. Here, I introduce our experiment and describe previous work that led

to our first clock campaign. In particular, I focus on previous measurements, which allowed us to

achieve higher resolution spectroscopy, quantum control and precise state selection and long life-

times. Each of these milestones is crucial in laying the foundation for a high-precision frequency

measurement.

2.1 Making Ultracold 88Sr2

Theoretical modeling of the electronic potentials of 88Sr2 allows us to estimate and predict the

behaviour of our molecules. Much of the work in this thesis involves testing the validity of current

quantum chemistry models against experiment; these models, in turn, are crucial to inform our ex-

perimental direction and guide future decisions. A bulk of this theoretical work is produced through

collaborations with the Quantum Chemistry Laboratory at the University of Warsaw, specifically

under the guidance of Robert Moszyński1. The details of the theoretical work relevant to this the-

sis are primarily reported on in I. Majewska’s thesis [25]. Here, I will focus on the more relevant

information.

Strontium dimers are a relatively simple molecule from a quantum chemistry perspective. For

one, there is no hyperfine structure since the nuclear spin of 88Sr is 𝐼 = 0 [26]. Spin statistics

forces the molecular wave function to be even upon the exchange of the bosonic nuclei in 88Sr2. In

1robert.moszynski@gmail.com
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most of our work, we focus on transitions between the electronic ground state X1Σ+
𝑔 — referred to

throughout as 𝑋𝑔 — and the singly excited Hund’s case (c) potentials (1)0+𝑢 and (1)1𝑢 — referred

to throughout as 0+𝑢 and 1𝑢 — that correspond to the 1S0-3P1 dissociation limit in the 88Sr atom (see

figure 2.1) [27]. We refer to individual states of our molecules as 𝑋𝑔 (𝑣, 𝐽) (or in the corresponding

excited potential) using the vibrational quantum number, 𝑣, and the total angular momentum 𝐽.

Note that we interchangeably refer to weakly bound states by counting up from the ground state or

counting down from threshold; that is, the least-bound state in the ground potential can be written

as 𝑋𝑔 (62, 0) or by counting down as 𝑋𝑔 (−1, 0).

Our primary objective is to create a sample of ultracold 88Sr dimers, but direct laser cooling

of molecules can be incredibly challenging due to the complexity of their internal structure [28].

Therefore, in our lab, we opt to create molecules by laser cooling atoms as building blocks for our

molecules. We cool our atoms via a conventional two stage magneto-optical trap (MOT) sequence

to achieve a ∼2 𝜇K ultracold atomic sample. We first cool and trap on the primary 1S0-1P1 blue

MOT transition, with two additional repumps on the 3-P state, before transferring to the red MOT,

performing narrow-line cooling on the ∼7 kHz 1S0-3P1 transition. Once we have a red MOT, we

transfer our atoms into a horizontal, 1D optical lattice. This cooling and trapping scheme is well-

established and details can be found in C. Osborn’s thesis [29].

From these atoms trapped in a lattice, we create molecules in the electronic ground state via

photoassociation of atom pairs. Specifically, we address the 1𝑢 (−1, 1) state in the molecular excited

potential, which strongly spontaneously decays to 𝑋𝑔 (−1, 0/2), the least-bound state; as such, we

preferentially form weakly-bound molecules in the ground state. These weakly-bound molecules

are the starting point for any experiment we perform in our lab. A visual depiction of our scheme

for the cooling, trapping, and creation of our strontium dimers is shown in figure 2.2. A more

detailed description of our molecule production is available in C.-H. Lee’s thesis [30].

12



R [a0]

Figure 2.1: A subset of the molecular potentials in 88Sr2. The ground state potential, 𝑋1Σ+
𝑔 , is

taken from empirical data of the strontium dimer [31]. Also shown are the two most relevant ex-
cited Hund’s case (c) ungerade potentials, 0+𝑢 and 1𝑢, corresponding to atomic 1S0-3P1 dissociation
energy. Models of these excited potentials are fit near-threshold to experimental data of weakly
bound binding energies [20]. Adapted from [25].
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Figure 2.2: Simplified schematic of the process of forming 88Sr2 from cooled 88Sr atoms, chronologically from left to right. 88Sr
atoms are first laser cooled using a conventional two-stage MOT scheme. The blue MOT addresses the 1S0-1P1 transition, while the red
MOT addresses the narrow-line 1S0-3P1 transition. We perform repumping on the 3-P states. The atoms are subsequently trapped in
a 1D optical lattice. Trapped atoms are photoassociated to weakly bound molecules by coupling the atoms to the 1𝑢(-1,1) state in the
excited molecular potential. This state preferentially decays to the least bound, 𝑋𝑔 (62, 0) or 𝑋𝑔 (−1, 0), state in the molecular ground,
𝑋𝑔 potential.

14



From the least-bound state, we can address any number of vibrational states in the ground

potential, 𝑋𝑔, and in the excited potentials, primarily 1𝑢 and 0+𝑢 . Regardless of the particular

experimental run, for ease, we always measure the population in the least-bound state, 𝑋𝑔 (−1, 0).
Specifically, after completing a particular experiment of interest, we photodissociate our least-

bound molecules to atoms by coupling the 𝑋𝑔 (−1, 0) state to the 0+𝑢 (−1, 1) state. We perform

absorption imaging on the primary, blue MOT cooling transition of the atoms to measure the

number of molecules remaining in the least-bound state after our experiment (see figure 2.3). We

measure molecule fragments from both 𝑋𝑔 (−1, 0) and 𝑋𝑔 (−1, 2), with higher momentum states

spreading out more quickly on the camera after a finite time of flight. While we typically work with

nearly equal mixtures of 𝐽 = 0 and 𝐽 = 2 ground state molecules, we can perform a purification

step that removes the 𝐽 = 2 molecules from our sample. In this way, we demonstrate high levels of

specific quantum control of our system, which is crucial when building a reliable molecular clock.

2.2 State-Insensitive Trapping

2.2.1 Mechanism of magic trapping

State-insensitive trapping, also known as magic trapping, is essential for narrowing the linewidth

of our clock transition and, in so doing, increasing the overall Q factor of our clock [32]. Holding

atoms or molecules in a magic trap mitigates lattice induced light shift arising due to fluctuations

in both intensity and frequency, which can artificially broaden the line.2 State-insensitive trapping

relies on selecting a magic lattice wavelength where the two states of interest — in our case, our

two clock states — have the same polarizability. States at two different polarizabilities will expe-

rience different trap depths and, as a result, inhomogeneous broadening of the clock transition. By

contrast, in a magic lattice, the ac Stark shift has no effect on the transition frequency between the

two clock states [33, 34].

2I will further discuss in chapter 3 how, in our system, we cannot perfectly eliminate the effect of the lattice
because of higher-order hyperpolarizabilities. However, we can significantly suppress these effects with very-near-
magic lattices.
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Science

Figure 2.3: Our operational experimental protocol. Shown above is a cartoon representation of our sequence including two-stage blue
and red MOT cooling and trapping, photoassociation (PA) of atoms to molecules, photodissociation (PD) of molecules back to atoms,
and absorption imaging of atomic fragments on the 461 nm atomic transition. Shown below are examples of our absorption images after
photodissociation of molecules in 𝑋𝑔 (−1, 𝐽 = 0, 2). Ordinarily both 𝐽 = 0 and 𝐽 = 2 molecules are visible (left). 𝐽 = 2 molecules, with
larger momentum, appear as a ring around 𝐽 = 0 molecules due to the finite time of flight during imaging. We can selectively remove
𝐽 = 2 molecules from our sample (right).
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In a non-magic lattice, the two clock states will experience thermal broadening due to their

residual temperature and perceived trap differences. The linewidth is related to the temperature by

Γ𝑇 ∼
(√︁
𝛼1/𝛼2 − 1

) 𝑘𝐵𝑇

0.295ℎ
(2.1)

where 𝛼1 > 𝛼2 are the polarizabilities of the two clock states [35]. We can fit the functional form

(Γ𝑇 )2𝑒−𝑢Γ𝑇 , where 𝑢 = ℎ/𝑘𝐵𝑇
(√︁
𝛼1/𝛼2 − 1

)
, to this asymmetric line shape, in order to estimate

the temperature of our sample, or alternatively, to quantify the polarizability mismatch of our two

states. When we approach the magic wavelength, such that 𝛼1/𝛼2 → 1, this asymmetric broad-

ening is minimized. As we scan across the resonance, the width of the clock transition drops by a

over three orders of magnitude (see figure 2.4) [32], with potential to narrow the line even further.

Therefore, matching polarizabilities of clock states is essential as a first step towards achieving a

LETTERS NATURE PHYSICS

clock states. This shift can be strongly suppressed for a particular 
intensity ratio of the two beams. To the lowest order, which is eas-
ily resolved with the current clock precision, the differential light 
shift is nulled if the Rabi frequencies associated with the coupling 
of the clock states to the intermediate state by the two probe beams 
are equal. Figure 4a shows that the probe-beam power ratio cor-
responding to this balanced condition, R0, results in a differential 
light shift consistent with zero. For each Rabi frequency ratio, the 
probe intensities were varied by a factor of 27. At ratios of 0.5R0 and 
2R0, a substantial net clock shift of several hundred Hz is observed. 
To implement the probe light shift cancellation scheme we used 
Autler–Townes spectroscopy to precisely measure single-photon 
Rabi frequencies in the molecular clock. This method results in 
avoided-crossing curves described in the Methods and shown in 
Fig. 4b, where the Rabi frequency Ω2 is the distance between the 
hyperbola branches at the intermediate-state detuning Δ = 0. The 
measurements indicate that our 1% control of the probe intensity 
ratio should eliminate these light shifts at the 2 × 10−15 level for the 

25.1 THz clock transition. Substantial improvement can be achieved 
with lower probe intensities at longer molecule–light coherence 
times, or with additional cancellation methods.

The reported vibrational molecular lattice clock demonstrates 
that precision measurements and frequency metrology based on 
new types of quantum dynamics are possible when a high level 
of molecular quantum state control is attained. The long coher-
ence times observed here across a large vibrational energy gap are 
applicable to molecular qubits and quantum simulators1,6,7 where 
the long duration of information storage and the relatively small 
strength of dipolar interactions require extended observations. 
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Fig. 2 | Magic lattice for the molecular clock. a, The measured light 
shift of clock state |2〉 versus lattice light detuning shows a polarizability 
resonance originating from coupling to 1u (v′!=!20). The vertical axis 
refers to the detuning of the 689.4!nm probe (dashed red line, Fig. 
1b). The dispersive fitting function is described in the Methods. The 
polarizability of |2〉 equals that of |1〉 near the high-density points ~1!GHz 
above resonance. b, The clock transition linewidth drops by over 103 at 
the magic wavelength. Three clock-transition spectra are shown versus 
probe detuning, each connected to its linewidth measurement. The 
magic-wavelength resonance has a fitted Lorentzian width of 32(3)!Hz 
and signal-to-noise ratio of 10, while the resonances at non-magic 
wavelengths exhibit thermal broadening of ~0.1!MHz with an asymmetry 
determined by the relative magnitude of the clock-state trap depths 
as described in the Methods. The error bars in a and b correspond to 
the standard errors of Lorentzian fits to the clock spectra. Data points 
in the insets do not have associated error bars as they represent single 
experimental realizations.
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Fig. 3 | Coherent control of molecular clock states. a, Rabi oscillations 
exhibit two time constants: an overall molecule lifetime of 30!ms and a 
coherence time of 10!ms. Error bars are not shown because each point 
is an average of only three experimental realizations, and the fitted Rabi 
frequency is 388(1)!Hz. b, Molecular lifetimes for |2〉 are measured 
in a magic (magenta squares) and non-magic (green circles) lattice. 
In a non-magic lattice, the loss is dominated by two-body collisions, 
with the asymptotic molecule number per lattice site approaching 0.5, 
as expected. In a magic lattice, the single-body lifetime is 24(2)!ms 
from an exponential decay fit. Each point is an average of ~10 shots 
and error bars correspond to standard errors of the mean. c, Inverse 
quadratic dependence of the lifetime on lattice power as indicated by a 
parabolic fit, suggesting that a limit may be imposed by two-photon light 
scattering via photodissociation. d, Quadratic dependence of the lifetime 
on lattice detuning from the polarizability resonance for v′!=!22 and 
Pl!=!165!mW. Each point in c and d is obtained from a fit to an exponential 
loss curve and error bars are the standard fit errors. Fitting functions are 
described in the Methods.
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Figure 2.4: The resonance width of a Raman transition, a 2-photon transition via an intermediate
state, at various lattice frequencies. The linewidth shrinks dramatically near magic, where lattice-
induced and thermal asymmetric broadening are minimized (above). A sample set of the transition
spectra at various lattice wavelengths (below). At magic, we find a trace showing a 32(3) Hz
linewidth, more than three orders of magnitude narrower. Adapted from [32].
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narrow linewidth on our transition.

2.2.2 Finding magic wavelengths in our molecular clock

In our system, we implement state-insensitive trapping by using the lattice to couple our deeply-

bound clock state to a deeply bound 1𝑢 vibrational level. As we tune the lattice near a 1𝑢 resonance,

the polarizability of the deeply-bound state follows a dispersive behaviour and a zero-crossing

point with the weakly-bound clock state is induced (see figure 2.5). In order to determine the

magic wavelength, we record the location of the peak centre at high and low lattice intensity (see

figure 2.6) [32]. As we approach the magic wavelength, the location of the peak centre should be-

come less sensitive to changes in the lattice intensity. Any lattice induced light shifts are amplified

at larger trap intensities; when the difference between the two peak positions, or differential light

Figure 2.5: Mechanism for magic trapping. We implement a magic wavelength lattice for our
Raman spectroscopy of two states in 𝑋𝑔 (green) by coupling our lattice (blue) between the deeply-
bound state and an excited state in 1𝑢 (left). By tuning near resonance, we induce a dispersive
behaviour in the polarizability of the deeply-bound clock state of the form Ω2/4𝛿 modeled here
for Ω1, Ω2 = 2Ω1 and Ω3 = 3Ω1 (right). This dispersive change in polarizability facilitates a
zero-crossing point with the polarizability of the uncoupled, weakly-bound clock state.
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shift, is zero, we are at the magic wavelength.

It is important to note that, since we are working near trap-induced resonances, there is a steep

dependence of the differential light shift on lattice frequency, often many orders of magnitude

more sensitive to lattice frequency than for atomic lattice clocks. For our current clock scheme,

for instance, we expect ∼1 Hz differential light shift per ∼10 kHz lattice light shift, compared to

the expected ∼1 Hz differential light shift per ∼1 GHz expected in atoms [32, 36]. Since we have

much more restrictive constraints on lattice stability, it becomes increasingly imperative that we

have absolute control over lattice frequency in order to mitigate these effects. Regardless, we can

stabilise the frequency of our lattice at the magic wavelength by locking our lattice frequency either

to our wavemeter (High Finesse WS7-60) or to our frequency comb (Menlo FC1500-250-ULN).

While locking our lattice to the wavemeter as a reference, we can achieve linewidths on the order

of ∼kHz with the addition of other methods of frequency stabilisation (ie. of the probe lasers). We

can further narrow our clock transition down to the Hz-level by additionally locking our lattice to

the frequency comb.

2.3 Preferential State-Selection for Magic Trapping

2.3.1 Understanding magic detunings

By design, the magic wavelengths we use in our molecular clock are constructed by parking

the lattice near a transition between a deeply-bound clock state and a 1𝑢 state. These near-resonant

magic traps are, by nature, very sensitive to lattice detuning and frequency instability. Further-

more, the lifetime of molecules in this state is limited by lattice light-induced scattering near the

resonance. The scattering rate near a transition is given by [37]

𝑅𝑠𝑐 =
Γ
2

Ω2/2
Ω2/2 + 𝛿2 + (Γ/2)2 (2.2)
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Figure 2.6: Finding magic lattice wavelength from transition peak centres at high and low lattice
intensities. Above we plot individual peak positions fitting a dispersive curve (dashed) of the form
𝐴/(𝑥 − 𝑥0) + 𝐵 to describe the polarizability behaviour (above). The region where the two fits
intersect corresponds to the region where the magic condition is likely to be met. To quantify the
magic wavelength, we plot the differential light shift, as in the shift in peak position between the
high lattice and low lattice intensities (below). Sample datasets of individual peak traces show the
transition in a high intensity lattice (black) as compared to the transition in a low intensity lattice
(red) (right). We infer the magic wavelength by fitting a line to the differential light shift and
predicting where it crosses zero.
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where Γ is the natural linewidth, Ω is the Rabi frequency, and 𝛿 is the detuning from the transition.

If we assume that 𝛿 >> Γ,Ω, as is the case in our clock transitions, we can write [30]

𝜏𝑠𝑐 =
1
𝑅𝑠𝑐

∼ 4𝛿2

ΓΩ2 (2.3)

As described in section 1.3.1, the lifetime of our molecules dictates the minimum linewidth we can

achieve on our clock transition. The magic detuning, 𝛿, is correlated to the lifetime such that larger

detunings from resonance result in less scattering, and in longer-lived molecules.

The magic detuning can be seen as an indicator of how forgiving our system is to fluctuations of

the lattice. The steeper the slope of the light shift, or the closer we sit to a particular resonance, the

more susceptible we are to small frequency changes in the lattice. As such, we preferentially select

1𝑢 excited states whose corresponding magic detunings sit further from resonance. This reduces

the lattice-induced scattering of molecules, and scattering-related losses, extending the lifetime of

our molecules and increasing the overall 𝑄 factor of our clock.

2.3.2 Electric-dipole transition strengths in molecules

In order to preferentially select 1𝑢 states, we must first better understand how strongly these

states couple to clock states. In a two-level system, the electric dipole line strength, 𝑆, is defined

as

𝑆12 = | ⟨2|𝑒𝑟 |1⟩|2 (2.4)

It is important to note that transition strengths are inextricably linked to polarizabilities, such that

the baseline polarizability of a state, 𝛼base
𝑣 is perturbed near a transition

𝛼𝑣 = −1
ℎ

𝑆

𝛿
+ 𝛼base

𝑣 (2.5)
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As we will see later, any prediction of polarizabilities improves our understanding of molecular

structure, and vice versa. Line strengths are related to the Einstein coefficients, which describe

the probability for spontaneous emission and stimulated emission / absorption, 𝐴21, 𝐵21 and 𝐵12

respectively, as [38]

𝐴21 =
16𝜋3𝑣3

3𝜖0ℎ𝑐3
1
𝑔2
𝑆

𝐵21 =
2𝜋2

3𝜖0ℎ2
1
𝑔2
𝑆

𝐵12 =
2𝜋2

3𝜖0ℎ2
1
𝑔1
𝑆

(2.6)

These Einstein coefficients are intrinsic properties of an atom or molecule, which can be calculated

from the state wave functions. In the case of diatomic molecules, the wave function is a product

of the electronic and rovibrational components, in the Born-Oppenheimer approximation. For the

particular states relevant in our experiment, we are interested in the rovibrational part of the wave

function, which can be written as

Ψrovib(𝑅) =
���X𝑣,𝐽
𝑛,Θ(𝑅)

〉
(2.7)

where 𝑅 is the internuclear distance, 𝑛 is the electronic quantum number, 𝑣 is the vibrational

quantum number and 𝐽 is the total angular momentum [39]. The rovibrational wave function is

projected onto the internuclear axis in the molecule-fixed frame, Θ. It is important to recall that

the molecular electric-dipole moment is naturally described in the molecule-fixed frame, while any

applied electric field or probe light will naturally be described in the lab frame. We, therefore, must

transform our wave function between frames using a tensor rotation operator in order to calculate

the transition strengths between two states under an electric field [40]. In this way, the line strength,

or transition strength, for an electric-dipole transition between two rovibrational states described

by the wave functions
���X𝑣,𝐽
𝑛,Θ(𝑅)

〉
and

���X𝑣′,𝐽′
𝑛′,Θ′ (𝑅)

〉
is [39]

𝑆 ≡
���𝐻𝐽𝑀𝑄

𝐽′𝑀 ′Θ′

〈
X𝑣′,𝐽′
𝑛′,Θ′ (𝑅)

���𝑑Θ′−Θ(𝑅)
���X𝑣,𝐽
𝑛,Θ(𝑅)

〉���2 (2.8)
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where 𝑑Θ′−Θ(𝑅) is the electronic transition dipole moment, and 𝐻𝐽𝑀𝑄
𝐽′𝑀 ′Θ′ are the Hönl-London

factors associated with this transformation and are given by3

𝐻𝐽𝑀𝑄
𝐽′𝑀 ′Θ′ ≡ (−1)𝑀−Θ√︁

(2𝐽 + 1) (2𝐽′ + 1)

×
√︃

1 + 𝛿Θ0 + 𝛿Θ′
0
− 2𝛿Θ0𝛿Θ′

0

×
©­­«
𝐽 1 𝐽′

𝑀 0 −𝑀′

ª®®¬
©­­«
𝐽 1 𝐽′

Θ Θ′ − Θ Θ′

ª®®¬

(2.9)

We can, with the help of our quantum chemistry collaborators, model the wave functions of

each vibrational state in 𝑋𝑔, 1𝑢 and 0+𝑢 , and subsequently estimate the line strengths, or transition

moments, between pairs of states. These models are crucial for future experiment design and clock

state selection.

2.3.3 Using line strengths to predict magic detunings

As described in section 2.2, the polarizability of a state near resonance exhibits a dispersive

behaviour, where the shape is governed by the expression

Δ𝛼 ∝ Ω2

4𝛿
(2.10)

when 𝛿 >> Ω. Larger Rabi frequencies, Ω, push this dispersive behaviour further away from the

resonance as shown in figure 2.5. The Rabi frequency, Ω, is simply related to the dipole transition

moment, 𝑑 and the applied electric field, 𝐸

Ω =
𝑑 · 𝐸
ℎ

(2.11)

3The Kronecker deltas appear in this equation because it is convention to construct total parity states, that is to
construct pairs of states with opposite parity. The inclusion of the Kronecker deltas assures that we adequately double-
count these pairs of states [41].
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Since the dipole moment, d, can be expressed in terms of the line strength, S, we can rewrite

equation 2.11 as

Ω =
1
ℎ

√︄
2𝐼𝑆
𝜖0𝑐

(2.12)

where 𝐼 is the intensity of light coupling the transition, and 𝑆 is the line strength associated with

this transition. In other words, for a given clock state, by coupling it to an excited state with a larger

Rabi frequency at the same light intensity — that is to a state with a stronger transition strength

— we can engineer a magic condition at a larger magic detuning. If we can adequately model the

line strengths for pairs of states in our molecules, we can preferentially select states that allow for

these larger magic detunings and longer molecule lifetimes.

We experimentally measure a number of these transition strengths specifically between 𝑋𝑔 (6, 0)
(one of our first experimentally-accessible deeply-bound clock states) and a number of deeply-

bound 1𝑢 (𝑣, 1) states. In order to probe the shift in polarizability described by equation 2.10, we

perform two-photon Raman spectroscopy from 𝑋𝑔 (−1, 0) to 𝑋𝑔 (6, 0), detuned from the interme-

diate state by 20 MHz. We measure the two-photon resonance frequencies at various detunings, 𝛿,

which reproduce the expected dispersive behaviour. By fitting to this dispersive shape, we can ex-

tract the Rabi frequency and convert these to absolute values of line strength, 𝑆 [39]. As expected,

pairs of states with higher transition strengths give rise to larger magic detunings (see figure 2.7).

Most importantly, by leveraging quantum chemistry models, we can rely on calculated transi-

tion strengths alone to predict optimal pairs of states for future clock experiments; these stronger

transitions place less stringent constraints on the required frequency stability of the lattice, and al-

low us to achieve higher overall 𝑄 factors. A complete picture of 𝑋𝑔 to 1𝑢 transitions is described

in figure 2.8.
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Figure 2.7: Line strengths and corresponding magic detunings for pairs of states from 𝑋𝑔 (6, 0) to
different 1𝑢 (𝑣, 1) states. Larger transition strengths (S) are predictors for larger magic detunings
(green circles). We show experimental results obtained using two different approaches to measure
the lattice intensity: (1) using direct imaging of beam waist (purple circles) and (2) calibrating to
the 1𝑆0 Sr atomic polarizability (green squares). Theoretical predictions from the Morse potential
are shown (yellow diamonds) and trends match behaviour in experiment [39].
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Figure 2.8: Transition strengths for pairs of vibrational states in the 𝑋𝑔 and 1𝑢 potentials. Below,
we zoom in on a particular region of interest to design magic wavelength traps of possible deeply-
bound clock states. Importantly, larger transition strengths offer favourable clock configurations.
Note that upper (lower) bounds on colorbars represent the upper (lower) cutoffs for plotted transi-
tion strengths, and do not necessarily correlate with global maximum (minimum) values. Adapted
from [39].
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2.4 Quantum State Control

2.4.1 A complete map of the molecule

One of the other hallmarks of a high-precision clock is the ability to selectively populate spe-

cific states of the molecule. In order to achieve this level of control, we perform high-resolution

spectroscopy to measure the binding energies of individual vibrational states in the ground and

excited potentials.

The energy levels of a rotating vibrator — for a given vibrational state, 𝑣, with angular mo-

mentum, 𝐽, in a potential with electronic quantum number, 𝑛 — can be described by the Dunham

expansion [42, 43]

𝐸𝑣,𝐽 = Σ𝑘,𝑙𝑌𝑙𝑘

(√︂
𝜇0
𝜇𝑖

) (
𝑣 + 1

2

) 𝑙
[𝐽 (𝐽 + 1) − 𝑛2]𝑘 (2.13)

where 𝜇0 is the reduced mass of 88Sr2, 𝜇𝑖 is the reduced mass of another isotopologue, and 𝑌𝑙𝑘 are

the Dunham parameters for strontium diatoms. Conventionally, we can simplify this expression

by defining effective constants 𝜔𝑒, 𝜔𝑒𝑥𝑒, 𝐵𝑒, 𝛼𝑒, and 𝐷𝑒, known as the spectroscopic constants,

which correspond to these 𝑌𝑙𝑘s [44]. We can, in turn, fit experimental measurements of the energy

levels of the potential, particularly of the more deeply-bound states, as

𝐸 (𝑣, 𝐽) = −𝐷𝑒 + 𝜔𝑒
(
𝑣 + 1

2

)
− 𝜔𝑒𝑥𝑒

(
𝑣 + 1

2

)2
+

[
𝐵𝑒 − 𝛼𝑒

(
𝑣 + 1

2

)]
𝐽 (𝐽 + 1) (2.14)

where 𝐷𝑒 describes the total potential depth, 𝜔𝑒 describes vibrational splitting of a harmonic os-

cillator, 𝑥𝑒 corrects for the anharmonicity of the potential, and 𝐵𝑒 and 𝛼𝑒 represent the rotational

and vibration-rotation coupling, respectively [45].

Since our clock Raman transition couples two ground potential states to the 0+𝑢 potential, we

experimentally determine the binding energies of all 𝐽 = 0 vibrational states in the ground poten-

tial, and of the first 37 vibrational levels of 0+𝑢 . From this study, we determine the spectroscopic
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constants for both potentials, which can be found in tables 2.1 and 2.2. A complete evaluation of

these critical potentials provides insight into the quantum chemistry of our molecule.

Table 2.1: Extracted spectroscopic constants of 0+𝑢 in units of 𝑐𝑚−1. They are obtained by fitting
equation 2.14 to the 11 most deeply-bound states. Note that since we only measure states of the
same angular momentum (𝐽 = 1), we cannot separate the vibrational and rotational constants when
fitting. Theoretical comparisons are from [43].

Spectroscopic constant This work Theory [43]
−𝐷𝑒 + 2𝐵𝑒 -2791.21(11) -2790.90
𝜔𝑒 − 2𝛼𝑒 81.032(47) 80.713
𝜔𝑒𝑥𝑒 0.3327(42) 0.2296

Table 2.2: Spectroscopic constants for 𝑋𝑔 in units of cm−1. They are obtained by fitting equation
2.14 to the deepest 8 bound states. We measure binding energies of 𝐽 = 0 as well as rotational
splittings from 𝐽 = 2 states. Theoretical comparisons are taken from [31, 46].

Spectroscopic constant This work Theory [31, 46]
𝐷𝑒 1081.6395(2) 1081.64(2)
𝜔𝑒 40.3210(5) 40.328
𝜔𝑒𝑥𝑒 0.39788(7) 0.3994
𝐵𝑒 0.017577(6) 0.01758
𝛼𝑒 1.75(1)×10−4 1.68×10−4

We spectroscopically locate the most deeply-bound vibrational levels of 0+𝑢 , that is for 0+𝑢 (0, 1)
to 0+𝑢 (37, 1), via one-photon excitation of molecules in 𝑋𝑔 (−1, 0) state. Again, transitions ap-

pear as depletion of the recovered atom signal from 𝑋𝑔 (−1, 0). Most interestingly, when plotting

binding energy versus vibrational state, we observe a change in the trend of the measured binding

energies near -1500 1/cm with respect to the 1S0+3P1 threshold, which corresponds to the signature

of the spin-orbit perturbation and avoided crossing in 0+𝑢 (see figure 2.9). This is of particular in-

terest because it gives the 0+𝑢 potential mixed singlet-triplet character, which improves the chances

for large Franck-Condon overlap with both weakly- and deeply-bound vibrational levels. Large

Franck-Condon factors are essential for easy transfer of our molecules between states.
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Figure 2.9: The first 37 (most deeply-bound) vibrational levels of the 0+𝑢 potential. A kink in the
trend near -1500 1/cm is the result of the avoided crossing in 0+𝑢 . Binding energies of the deepest 11
states are fit to equation 2.14, from which we extract the spectroscopic constants for the potential
in table 2.1. Adapted from [47].

We leverage our measurement of the 0+𝑢 potential to perform a complete study of our ground

potential. Unlike 0+𝑢 states, the states in the ground potential cannot be directly accessed from

𝑋𝑔 (−1, 0). We probe these states with 2-photon Raman spectroscopy via an intermediate state in

the 0+𝑢 excited potential. Specifically, we fix the first leg, or upleg, of our Raman beams on res-

onance with 0+𝑢 (11, 1), which strongly couples to both legs of the Raman transition, and scan the

frequency of our second leg, or downleg, until we see electromagnetically-induced transparency

(EIT). EIT is a coherent process that relies on the formation of a dark state, a superposition of the

two states, which does not interact with either laser field. As a result, we no longer see depletion

of 𝑋𝑔 (−1, 0) molecules and, instead, observe a resurgence of the molecule signal. By fixing the
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Figure 2.10: Scheme for locating ground vibrational levels. The EIT trace shows recovery of
the 𝑋𝑔 (−1, 0) signal when the detuning of the pump laser is zero (left). This corresponds to the
formation of a dark state and indicates that we have located the transition. The two Raman beams
are shown in purple (right), where the downleg is fixed on resonance, and the upleg is scanned
across the resonance. Adapted from [47].

downleg at this frequency, and scanning the frequency of the upleg laser, we can confirm the EIT

signature (see figure 2.10) [47].

Using this technique, we spectroscopically locate all 63 vibrational states of the ground poten-

tial for both 𝐽 = 0 and 𝐽 = 2 to an accuracy of < 0.002 1/cm, which is limited by the accuracy of

the wavemeter used to determine the laser frequencies (see figure 2.11). By simultaneously fitting

the binding energies and the 𝐽 = 0, 2 rotational splittings of the first 8 vibrational levels, we extract

the spectroscopic constants. A complete set of binding energies for both 𝑋𝑔 and 0+𝑢 is listed in KH

Leung’s thesis [19]. From this mapping of the ground and excited potentials, we can select states

for future clock experiments.

2.4.2 Coherent transfer of molecules

The EIT signature confirms the formation of a dark state that is necessary for coherent transfer

of our molecules from one state to another. It is not enough that we can locate each of these states;

we want to be able to coherently and controllably transfer our weakly-bound 𝑋𝑔 (−1, 0) molecules

to any other state in 𝑋𝑔. To accomplish this in our experiment, we implement coherent transfer

30



Mdv I- Ogxr- 12 ’1/10( 004//1 J G Kdtmf ds Zk

Ehftpd 1- Svn,ognsnm Q‘l‘m rodbsqnrbnox ne U0Π�f - Gdqd) ansg sgd otlo ‘mc ‘msh,Rsnjdr k‘rdqr ‘ccqdrr lnkdbtk‘q rs‘sdr-
’‘( Ahmchmf dmdqfhdr ne ‘kk 52 uhaq‘shnm‘k kdudkr hm U0Π�f ’I + /() vhsg qdrodbs sn sgd 0R/ �0 R/ sgqdrgnkc- ’a( Qns‘shnm‘k rokhsshmfr
adsvddm I + 1 ‘mc I + / fqntmc rs‘sd lnkdbtkdr- Dqqnq a‘qr ‘qd rl‘kkdq sg‘m sgd rxlank rhyd- ’b( DHS rodbsqtl hm ‘ ∆,rxrsdl
enqldc ax U’51) /() U’/) /( ‘mc ’0(/�t ’00) 0(- D‘bg onhms hr ‘ rhmfkd dwodqhldms‘k rgns- Rnkhc khmd hr sgd }s sn sgd c‘s‘ trhmf sgd
‘m‘kxshb‘k dwoqdrrhnm hm dpt‘shnm ’02(- Sgd nmkx eqdd o‘q‘ldsdqr ‘qd γ1 ‘mc  dee ) rhmbd  ) γ0) Σ0) ‘mc Σ1 b‘m ad hmcdodmcdmskx
nas‘hmdc eqnl rodbsqnrbnox- ’c( Kdudk ch‘fq‘l ne sgd pt‘mstl rs‘sdr hm sgd mtldqhb‘k lncdk cdrbqhadc hm sgd sdws-

3- RSHP@O

3-0- KtldphbTk lncdk
Vd lncdk sgd cxm‘lhbr ne sgd }ud,kdudk ∆,rxrsdl ’}ftqd 1’c(( vhsg sgd Khmcak‘c l‘rsdq dpt‘shnm- Gdqd)
〉0〈) 〉1〈) 〉2〈) 〉3〈) 〉4〈 qdoqdrdms sgd rs‘sdr U’> + 51) I + /) lI + /() U’/) /) /() ’0(/�t ’00) 0) 0() ’0(/�t ’00) 0) /()
’0(/�t ’00) 0)%0( qdrodbshudkx) ‘mc lI hr sgd oqnidbshnm ne sgd sns‘k ‘mftk‘q lnldmstl nmsn sgd k‘a,eq‘ld

pt‘mshy‘shnm ‘whr =Y- Sgd otlo ‘mc ‘msh,Rsnjdr dkdbsqhb }dkcr ‘qd vDi +
Di
1

 
vδ’i( d h�is % vδ×’i( d�h�is

(
vgdqd �i

‘qd sgd k‘rdq ‘mftk‘q eqdptdmbhdr ‘mc i + L0) 1{ k‘adk sgd fqntmc rs‘sdr- Vd ohbj sgd bnmudmshnm sg‘s sgd
k‘rdqr oqno‘f‘sd ‘knmf sgd onrhshud =X chqdbshnm ‘mc vqhsd sgd onk‘qhy‘shnm udbsnqr ‘r

vδ’i( + =Y bnr ηi % =Udhσi rhm ηi) ’3(

vgdqd sgd hmbkhm‘shnm η vhsg qdrodbs sn =Y ‘mc sgd og‘rd σ ‘qd ‘mfkdr sg‘s o‘q‘ldsdqhyd sgd onk‘qhy‘shnm rs‘sd-
Sgd ‘mftk‘q Q‘ah eqdptdmbhdr bntokhmf sgd fqntmc rs‘sdr sn sgd dwbhsdc Yddl‘m rta,kdudkr ’j + L2) 3) 4{( ‘qd
Σi)j ∓ }j〉vc − vDi〉i〈<� vgdqd vc hr sgd chonkd lnldms nodq‘snq- Rhmbd sgd BkdarbgflFnqc‘m bnde}bhdmsr enq
I + / → 0 ‘qd hmcdodmcdms ne lI) vd b‘m vqhsd Σi)j + Σiδ’i()p vgdqd

δ’i()/ + bnr ηi) δ’i()∗0 + ±
0|
1

dhσi rhm ηiω ’4(

Rdkdbshnm qtkdr enqbd p +  0) /)%0 enq rs‘sd k‘adkr j + 2) 3) 4 qdrodbshudkx- Sghr hr sqtd enq ansg i + 0) 1 rhmbd
vd g‘ud ‘ ∆,rxrsdl- Sn l‘jd bnms‘bs vhsg sgd dwodqhldms) vd mnsd sg‘s sgd dwbhs‘shnm q‘sdr ‘mc
;tskdqflSnvmdr rokhsshmfr ‘qd ansg oqnonqshnm‘k sn


p 〉Σiδ’i()p〉1 + Σ1

i vghbg ‘qd hm stqm oqnonqshnm‘k sn sgd
qdrodbshud k‘rdq hmsdmrhshdr) rn sgd pt‘mshsx sg‘s vd ld‘rtqd hm sgd oqdbdchmf rdbshnm hr Σi dudm he sgd
onk‘qhy‘shnm hr dkkhoshb‘k- Ogxrhb‘kkx) sghr pt‘mshsx hr dpthu‘kdms sn sgd Q‘ah ‘mftk‘q eqdptdmbx enq sgd hcd‘k
b‘rd ne ‘ µ,sq‘mrhshnm ’I + / → 0) ΓlI + /( cqhudm vhsg otqd khmd‘q onk‘qhy‘shnm dw‘bskx o‘q‘kkdk sn sgd
pt‘mshy‘shnm ‘whr-

Hm sgd dkdbsqhb chonkd ‘mc qns‘shmf,v‘ud ‘ooqnwhl‘shnm) sgd G‘lhksnmh‘m fnudqmhmf sgd tmhs‘qx
dunktshnm hr Z87[

G +

]



γ0 / Σ0δ’0() 0<1 Σ0δ’0()/<1 Σ0δ’0()�0<1 /
/ γ1 Σ1δ’1() 0<1 Σ1δ’1()/<1 Σ1δ’1()�0<1 /

’Σ0δ’0() 0(×<1 ’Σ1δ’1() 0(×<1  Y / / /
’Σ0δ’0()/(×<1 ’Σ1δ’1()/(×<1 / / / /

’Σ0δ’0()�0(×<1 ’Σ1δ’1()�0(×<1 / / %Y /
/ / / / / /




) ’5(

4

Figure 2.11: A complete map of the ground state 𝑋𝑔 potential and rotational splittings between
𝐽 = 0 and 𝐽 = 2. Binding energies fit to equation 2.14 from which we extract the spectroscopic
constants for the potential in table 2.2. Adapted from [47].
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using a stimulated Raman adiabatic passage (STIRAP) scheme, and we successfully extend the

robust state control offered by STIRAP to the entire ground potential of 88Sr2.

STIRAP is a technique for efficiently transferring population between two discrete quantum

states by coupling them with two radiation fields via an intermediate state. The STIRAP proto-

col is advantageous to other transfer schemes because it can (1) reduce loss from spontaneous

emission through the intermediate state, and (2) be more robust against small variations in the ex-

periment [48, 49]. In its simplest form in a three-level system, STIRAP allows for transfer from

state |1⟩ to state |2⟩ via an intermediate state |𝑒⟩ by using two coherent-radiation fields, referred

to as the pump and anti-Stokes lasers, which couple |1⟩ and |𝑒⟩, and |2⟩ and |𝑒⟩, respectively. The

hallmark of STIRAP as compared to other transfer mechanisms is the time-dependence of the Rabi

frequency of both the pump and anti-Stokes lasers. This eliminates loss from the intermediate state

and facilitates smooth transfer of molecules (see figure 2.12) [47].

For coherent transfer within the singlet 𝑋𝑔 ground potential, we ideally require intermediate

states with marginal triplet admixture that favour strong Frank–Condon overlap with both the ini-

tial and final target states, and a narrow linewidth. We predict that these requirements can be

satisfied in the vicinity of the 0+𝑢 avoided crossing, where transition strengths with mid-to-low-

lying states of 𝑋𝑔 are predicted to be as large as 100 (𝑒𝑎0)2, while simultaneously maintaining

reasonable transition strengths with photoassociated weakly bound molecules [39]. 0+𝑢 (11, 1) of-

fers one of the strongest coupling strengths and is, therefore, chosen as our intermediate state.

In figure 2.12, we show a representative trace of the population of molecules in 𝑋𝑔 (−1, 0)
during a round-trip STIRAP run. If we assume that the forward and reverse transfer are equally ef-

ficient, we achieve one-way transfer efficiencies of 𝜂 = 89(2)%. The round-trip transfer efficiency

is quantified as

𝜂2 = (𝑁3 − 𝑁2)/𝑁1 (2.15)
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Xg(-1,0)

0u+(11,1)

Figure 2.12: STIRAP transfer scheme. Red and blue arrows show the pump and anti-Stokes trans-
fer lasers via the 0+𝑢 (11, 1) intermediate state (left). We also show the STIRAP transfer scheme,
with the conventional time-dependent Rabi frequencies (above), as well as a sample of the pop-
ulation of 𝑋𝑔 (−1, 0) as a function of this transfer sequence (below). The one-way efficiency is
𝜂 = 89(2)%.

where 𝑁1 and 𝑁3 are the initial and final molecule number in 𝑋𝑔 (−1, 0), respectively, and 𝑁2 is the

background molecule number in 𝑋𝑔 (−1, 0) after the forward transfer [39]. Given our typical Rabi

frequencies, we normally achieve full extinction such that 𝑁2 = 0, except when the detuning of the

pump laser is very large.

There are a few challenges in performing efficient STIRAP in our system. First of all, in our

current configuration, we do not resolve the Zeeman structure of 0+𝑢 (11, 1), making our setup sen-

sitive to any finite relative angle between the polarizations of each of the Raman lasers. In essence,

this will lead to an increase in the near-resonant scattering from 0+𝑢 (11, 1), which decreases the

overall transfer efficiency. We can, however, mitigate this issue by detuning away from the transi-

tion (see figure 2.13). STIRAP efficiency is also susceptible to the lattice wavelength and lattice-

induced scattering. We can perform STIRAP with molecules in free-flight by temporarily turning

off the lattice; the STIRAP protocol is reasonably short and we do not experience significant loss
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Figure 2.13: Efficiency of STIRAP transfer. As we detune away from resonance by Δ, we see an
increase in efficiency, 𝜂, because of scattering near resonance arising from experimental imperfec-
tions in controlling probe laser polarization (left). As we tune the lattice to the magic wavelength
(dashed line), we see an enhancement in the efficiency of the transfer (right). Adapted from [47].

of molecules during the transfer. We can alternatively perform STIRAP in a magic wavelength

lattice and we observe enhancement of STIRAP efficiency in a magic trap due to suppression of

thermal effects on the states (see figure 2.13) [39].

As a proof of concept, we perform STIRAP from the least-bound state 𝑋𝑔 (−1, 0) to the absolute

ground state 𝑋𝑔 (0, 0), spanning the entire depth of the ground state potential. This technique,

however, would allow us to prepare our sample in any vibrational ground state. State transfer

using STIRAP is imperative for the level of flexibility and control we would like to have for future

clock experiments and precision measurements of fundamental physics [50].
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2.5 Long-Lived Molecular States

2.5.1 Coherent Rabi oscillations between ground states

To demonstrate coherent quantum state control of the molecular clock, we induce Rabi oscilla-

tions between the two clock states, which we will call states |1⟩ and |2⟩. A Rabi oscillation occurs

when the population of a two level quantum system oscillates between the ground state |1⟩ and

an excited state |2⟩ due to a driving field [37]. These Rabi oscillations are hallmarks of coherent

quantum control and form a basis for metrological applications and precision measurements.

Since we ordinarily measure our molecules from the weakly-bound state, we monitor the time-

dependent population in this state, |1⟩, as we observe Rabi oscillations. We can more formally

quantify the population in state |1⟩ as

𝑃( |1⟩) = 𝐴𝑒−𝑡/𝜏1 [1 + 𝑒−𝑡/𝜏Rabi cos (𝜔𝑡 − 𝜙)] (2.16)

where 𝜏Rabi describes the lifetime of coherent Rabi oscillations, while 𝜏1 accounts for the overall

loss of molecules due to a variety of scattering processes [39]. Again, we can demonstrate coherent

Rabi oscillations in a specific pair of states, as a proof of principle. For example, we drive Rabi

oscillations between 𝑋𝑔 (−1, 0) and 𝑋𝑔 (4, 0). From figure 2.8, one of the largest predicted tran-

sition strengths is between 1𝑢 (25, 1) and 𝑋𝑔 (4, 0), which corresponds experimentally to a magic

detuning, Δ𝑚 = 2.298(41) GHz.

Using this pair of states as a test case, we demonstrate long-lived coherent two-photon Rabi

oscillations with 𝜏Rabi = 77(6) ms and 𝜏1 = 127(8) ms (see figure 2.14). While this represents a

significant improvement over previous work [32], there are still inherent limitations that affect the

overall lifetime of these molecules. Specifically, these oscillations are predominantly damped by

the one-body loss of 𝑋𝑔 (4, 0) molecules [39]. In particular, we note that this single-body loss is
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detunings are larger than the Zeeman structure, the mea-
sured S are insensitive to laser polarization and are
effectively between M ¼ M0 ¼ 0 states. The measured S
and corresponding predictions from the ab initio [32] and
MLR models are listed in Table I. For the weakly Coriolis-
mixed states, both models perform similarly well. However,
for the strongly Coriolis-mixed states, only the MLR model
gives the correct 0þu or 1u assignments and thus is more
accurate in its predictions for S.

Our findings directly inform the engineering of favorable
magic wavelength optical traps for a molecular clock, by
means of elucidating the quantum chemistry of the stron-
tium dimer. Just as in atomic lattice clocks, for a given
baseline polarizability mismatch between the clock states,
the required magic detuning Δm (relative to a resonance
between one of the clock states and an excited state)
monotonically increases with the line strength [see Fig. 2(c)
and Table SI [31] ]. The sensitivity of the clock transition to
lattice frequency inaccuracies is simply the slope of the
lattice-induced light shift at the magic detuning, −f2R=4Δ2

m,
and would decrease monotonically for larger S (and hence
larger Δm). Therefore, magic wavelengths based on
stronger transitions place less stringent constraints on the
required frequency stability of the lattice laser and on the
bandwidth of the spectral filter that suppresses the lattice
laser noise away from the carrier (such as amplified
spontaneous emission). To this end, we compute S between
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FIG. 3. (a) For a given detuning of the anti-Stokes laser from
the bound-to-bound molecular transition, the probe is scanned to
obtain an Autler-Townes doublet. (b) The locations of the blue-
side peak (blue circles) and the red-side peak (red circles) form an
avoided crossing. The square of the peak separations fit to a
parabola (solid red) when plotted against the anti-Stokes detun-
ing, the minimum of which is f2R. Error bars are propagated from
1σ uncertainties in the peak locations from the line shape fit.
Residuals are in units of MHz2.

TABLE I. Measured (Expt.) line strengths for weakly bound 0þu
and 1u states from X for various vibrational pairs. Also shown for
comparison are predictions from the ab initio (AI) and adjusted
MLR potential constructed in this Letter. Starred values are
strongly Coriolis-mixed states. Statistical uncertainties account
for the 1σ errors in the extracted Rabi frequencies as well as for
laser power fluctuations. The units are 10−3ðea0Þ2.

Xðv; J ¼ 0Þ State ðv0; J0 ¼ 1Þ AI MLR Expt.

−1 0þu −4 3.09 2.77 2.57(4)
−2 0þu −4 0.81 0.74 0.70(2)
−2 0þu −5 5.86 5.06 4.30(6)
−3 0þu −6 0.07% 8.89% 8.7ð4Þ%
−1 1u −1 5.44 4.56 5.53(8)
−1 1u −2 0.36 0.33 0.40(1)
−2 1u −1 1.71 1.68 1.74(3)
−2 1u −2 6.95 5.82 8.0(1)
−3 1u −3 13.2% 2.46% 2.10ð5Þ%
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FIG. 4. (a) Line strengths of deeply bound states of 1u to X.
Solid rectangle: the transition used for the magic wavelength in
this Letter. Dashed rectangle: our previous work [21]. (b) Two-
photon Rabi oscillations between Xð−1; 0Þ and Xð4; 0Þ
(black circles). Here, favorable magic trapping is achieved by
tuning the lattice near the Xð4; 0Þ → 1uð25; 1Þ transition.
Also shown are the normalized population decay of Xð4; 0Þ
(red squares) and Xð−1; 0Þ (blue triangles). Black line: fit to
A expð−t=T1Þ½1þ expð−t=TRabi

2 Þ cosðωt − ϕÞ'. Red and blue
lines are fits to the rate equation _N ¼ −kγNγ for the molecular
number N with γ ¼ 1 and 2, respectively, and kγ as a free
parameter. Error bars are 1σ uncertainties.
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Figure 2.14: Two-photon Rabi oscillations between 𝑋𝑔 (−1, 0) and 𝑋𝑔 (4, 0) (black circles).
Favourable magic trapping is achieved by tuning the lattice near the 𝑋𝑔 (4, 0) to 1𝑢 (25, 1) tran-
sition. Also shown are the normalized population decay of 𝑋𝑔 (4, 0) (red squares) and 𝑋𝑔 (−1, 0)
(blue triangles). Adapted from [39].

faster for deeper traps, which indicates that the large scattering originates from the lattice. These

effects can be mitigated in other clock configurations by further detuning from 1𝑢 transitions or

by decreasing the lattice light intensity. Much of the later discussion in this thesis, in particular in

chapter 4, will focus on ways to mitigate lattice-induced losses while balancing other contributions

to the overall clock 𝑄 factor.

2.5.2 Lifetime of the absolute ground state

As we saw from our study of 𝑋𝑔 (4, 0) molecules, in these deeply-bound ground vibrational

states there are both one-body (light-assisted) and two-body mechanisms for fast loss. Specifically,

these processes include scattering through excited states and collisional losses. Loss rates are

quantified as
𝑑𝑁

𝑑𝑡
= −𝑘𝛾𝑁𝛾 (2.17)
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with 𝛾 = 1 and 2, respectively, for one- and two-body loss mechanisms, and where 𝑘𝛾 is a free

parameter related to the loss rate coefficient. Near-resonance light-induced loss rates are given by

equation 2.3, but in practice are much larger and non-linear in lattice intensity. In order to have

a large 𝑄 factor clock, we want to have long-lived, narrow clock transitions. We are particularly

interested in the behaviour of 𝑋𝑔 (0, 0) since it is an attractive candidate for a clock state in our

system.

To obtain a sample of 88Sr2 in the rovibrational ground state, we first prepare a purified 𝑣 = −1

sample containing only 𝐽 = 0 molecules, removing any 𝐽 = 2 molecules from the initial pho-

toassociated mixture. We transfer our 𝑋𝑔 (−1, 0) molecules to 𝑋𝑔 (0, 0) using a forward STIRAP

sequence, holding them in the rovibrational ground state before reversing STIRAP to photodisso-

ciate and detect weakly-bound molecules again. As usual, we monitor 𝑋𝑔 (−1, 0) population via

recovered atoms in order to gain information about the population of 𝑋𝑔 (0, 0). Knowing our STI-

RAP transfer efficiency, we can infer population in 𝑋𝑔 (0, 0) from population in 𝑋𝑔 (−1, 0).

In order to study the lifetime of molecules in 𝑋𝑔 (0, 0), we vary the hold time in a non-magic

(non-scattering) lattice. To ascertain the loss mechanism, we can fit both a one body- and two-body

loss function, 𝑁1(𝑡) = 𝑁0𝑒
𝑘𝑡 and 𝑁2(𝑡) = 𝑁0/(𝐴 − 𝑘𝑡), solving equation 2.17. We find that the

lifetime is dominated by two-body collisional loss mechanisms, and that molecules in the rovibra-

tional ground state survive for ∼200 ms before they are lost (see figure 2.15) [47]. In a sense, this

sets an upper limit on the lifetime of molecules in our current experimental configuration since

two-body losses are unavoidable in our high-density lattice trap.

Nevertheless, there are methods to mitigate these losses, and in particular the two-body loss

mechanisms are strongly density dependent. Proposals to extend the lifetime primarily rely on

reducing the current trap density; specifically, implementation of lower-density (larger) or 3D lat-

tices can strongly suppress these types of collisional losses and enable much longer interrogation
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Figure 4.8: (a) Collisional losses of -1⌃+
6 molecules. The number of - (0, 0) molecules (black

open circles) decays as they are held in the 1D optical lattice. Fits with the rate equation
d#mol/site/dC = �:W#Wmol/site with W = 1 (dashed blue line) and W = 2 (solid red line) suggest
that the decay is predominantly two-body. The data levels off at around #mol/site ⇡ 1/2, which we
ascribe to the equal probability for a given site to be initially populated by an even or odd number
of molecules. (b) Molecular temperature versus the power in the forward lattice beam, under the
experimental conditions of the :2 loss rate measurements described in this chapter. Black stars,
temperature measurement extracted from the thermal broadening of the carrier. Orange circles,
auxiliary temperature measurements from the ratio of the axial sideband areas.

96] and the best approximation XCCSD4 method [97]. The calculations yield ⇠mol
6 = 15685 a.u.

at the equilibrium distance '4 = 8.829 00, which as expected, is approximately four times that

of the corresponding coefficient between two atoms. Using Eq. (4.13), we obtain :univ
2 = 1.22 ⇥

10�10 cm3 s�1. Note that to convert ⇠6 from atomic units (a.u.) to units of cm�1Å
6
, the value of ⇠6

in a.u. will have to be multiplied by ⇢h00/(⌘2), where ⇢h = \2/(00<4) is the Hartree energy.

4.4.1 Collisions of ultracold 88Sr2 molecules in the absolute ground state

We start by preparing a purified sample of - (62, 0) molecules by wiping away the � = 2

molecules from the initial photoassociated mixture. Then, after a forward STIRAP sequence, we

hold the - (0, 0) ground state molecules in a non-magic optical lattice (_latt = 914.0(1) nm) for a

variable amount of time, before reversing the STIRAP sequence to recover and detect - (62, 0).

108

Figure 2.15: The lifetime of our absolute ground state molecules, 𝑋𝑔 (0, 0). The red curve repre-
sents a fit to a two-body loss differential equation, whereas the blue dashed curve represents a fit to
a one-body, exponential decay. The decay behaviour clearly favours two-body loss mechanisms,
with a lifetime of about 200 ms. Adapted from [47].

times [34, 51].

2.5.3 Understanding collisional losses

There has been a fair amount of work done with many other molecules to understand the origin

of relatively fast loss in the rovibrational ground state. In fact, these kinds of inelastic collisional

(loss) rates have been measured in many molecules, including in many bi-alkalis [52, 53]. There-

fore, we hope to better understand the origin of the loss of our 88Sr2 ground state molecules, and,

specifically, how it does or does not fit into the body of other research done on ultracold chemistry

of atoms and molecules.

In its simplest form, two-body collisional loss occurs when two atoms or molecules collide and

one is effectively kicked out of the trap or becomes dark to imaging. The likelihood of colliding

is related to the effective cross-section of the molecules. The decrease in molecule population, 𝑁 ,
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is accompanied by an increase in the temperature, 𝑇 , of the sample, since any collisions are more

likely to occur at the centre of the trap, where the density is higher; these molecules are usually

colder and any process that preferentially kicks out these molecules, raises the overall temperature

of the sample [54]. We can, therefore, quantitatively describe the rate of two-body loss as

𝑑𝑁

𝑑𝑡
= −𝛽𝐴 𝑁2

𝑇3/2 (2.18)

where 𝐴 = (𝑚𝜔̄/4𝜋𝑘𝐵)3/2 is a constant that depends primarily on the mean trap frequency

𝜔̄ = (𝜔ax𝜔
2
rad)1/3, and 𝛽 is the two-body loss coefficient [55]. For the sake of simplifying our

analysis, we assume that the temperature remains the same at a given hold time [47].

We can extract the two-body loss parameter, 𝛽, by calibrating the density of our sample and

fitting experimental measurements of the 𝑋𝑔 (−1, 0) population of our molecules to the two-body

loss model (equation 2.18) [47]. Previous experiments have reported loss rates within a factor of

unity of that predicted by universal loss models, where two molecules have unit probability of be-

ing lost when they are within a short range [52]. As with previous experiments, we are interested

in comparing our measurements with predictions from universal loss models.

Universal loss models look to understand the basic aspects of ultracold chemistry. These mod-

els assume the special case where two interacting molecules have a unit probability of a chemical

reaction or an inelastic collision if they approach one another within typical chemical interaction

distances (usually ∼1 nm or less) [56]. If we specifically consider two molecules interacting in the

rovibrational and electronic ground state, then the elastic and inelastic collision rate constants, K𝑒𝑙

and K𝑖𝑠, are given by

K𝑒𝑙
𝑙=0 = 4𝑔

ℎ

𝜇
𝑘𝑎̄2

K𝑖𝑠
𝑙=0 = 2𝑔

ℎ

𝜇
𝑎̄

(2.19)
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with 𝑎̄ = 4𝜋𝑅6
Γ(1/4)2 , where 𝑅6 = 1

2

(
2𝜇𝐶6
ℏ2

)1/4
, 𝜇 is the reduced mass, and 𝑘 is the mean relative wave

number. For our specific case, we assume that we have identical bosons (𝑙 = even) and that our

identical species are in identical states, such that 𝑔 = 2 [56]. Assuming that 𝑝 = ℏ𝑘 , and that the

velocity is roughly related to the temperature of our molecules, that is 𝑣 =
√︃

2𝑘𝐵𝑇
𝑚 , we can write that

𝑘 = 1
ℏ

√
2𝑘𝐵𝑇𝑚. For our molecule, we use 𝑚 = 87.905 619 a.u. and we find 𝐶6 = 15 685 a.u. for

88Sr2 [47]. Our estimate for the isotropic van der Waals coefficient, 𝐶6, relies on a coupled-cluster

computation [57, 58] and the best approximation XCCSD4 method [59, 60].

Overall, we predict the universal loss rate to be 1.22 × 10−10 cm3s−1, in agreement with the

measured loss rate for 𝑋𝑔 (0, 0), which is 0.98(28) × 10−10 cm3s−1, and is unaffected by the ab-

sence or presence of 𝐽 = 2 molecules in the sample (see figure 2.16) [47]. This suggests that our

molecules react with near unity probability after a short-range collision. There are a number of

possible mechanisms for this loss including the formation of stable trimers, or the formation of

‘sticky’ four-body complexes [61, 62].

We also measure two-body loss rates for our weakly-bound molecules in 𝑋𝑔 (62, 0). We find

that the two-body coefficient, 𝛽, is 2.2(0.3) × 10−10 cm3s−1, slightly larger than the predicted uni-

versal rate. This further emphasizes that vibrational relaxation effects are non-negligible for the

weakly-bound state.

All told, we have successfully demonstrated some key features necessary to build a high-

precision metrological system. This includes achieving narrow clock linewidths, facilitated, in

part, through state-insensitive trapping, precise quantum state control and specific state transfer

via STIRAP, and, finally, long-lived molecules. These ingredients will be key as we move toward

our first full clock systematic measurement with record precision.
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Figure 2.16: Two-body coefficients, 𝛽, for 𝑋𝑔 (0, 0) and 𝑋𝑔 (62, 0). We compare our results to the
calculated universal loss rate, 1.22 × 10−10 cm3s−1 (dashed line), and see that our rovibrational
ground state molecules collide with near unity probability after a short-range collision. The higher
𝑋𝑔 (62, 0) loss rate is suggestive of additional loss mechanisms. Adapted from [47].

41



Chapter 3: A Systematic Evaluation of Our First Generation Clock

The work presented in this chapter is primarily led by previous graduate student, KH Leung. I

present this work here in order to contextualize our current work on this project, by highlighting

important aspects of our previous work. A more complete description of this work is elaborated on

in KH Leung’s thesis [19] and in the publication of our clock campaign [18].

3.1 A High-Precision Frequency Measurement in 88Sr2

3.1.1 An overview of the clock scheme

Our current, first-generation molecular clock is based on the transition between 𝑋𝑔 (−1, 0) and

𝑋𝑔 (0, 0) (see figure 3.1). Leveraging our work in chapter 2, we preferentially select favourable

magic wavelength lattice configurations, which minimize the impact of lattice-induced light shifts

on our molecules, and choose intermediate states that strongly couple to our clock states. These

states are preferred for Raman spectroscopy as they possess favourable Rabi frequencies. In par-

ticular, we couple our upleg and downleg lasers via 0+𝑢 (11, 1), which boasts large Franck-Condon

factors, or large coupling strength, for each clock state. Moreover, we preferentially drive the tran-

sition at relatively large Raman detunings to the intermediate 0+𝑢 (11, 1) state in order to minimize

any off-resonant scattering from the probes. We operate at a Raman detuning of +14.973 GHz,

which is over 3 orders of magnitude greater than the 5 MHz natural linewidth of the intermediate

state.

In our molecular clock, we require high levels of frequency control over our probe lasers. As

such, the upleg clock laser at 793 nm is stabilized to a high finesse ultra-low expansion (ULE)

reference cavity, which serves as a reference for stabilising all other lasers. The phase coherence
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Summing the uncertainties of all contributors in quadrature,
we report a total systematic uncertainty of 4.6 × 10−14.
We leverage the short-term frequency stability of our

reference cavity to average down the uncertainty of a given
systematic. Most frequency corrections in Table I are
determined by probing the clock transition in an interleaved
fashion; i.e., we alternate an experimental parameter
between two values and record the corresponding pair of
line centers [71]. This is repeated to gather statistics, and
the shift in the line center is computed as a weighted
average. The clock shift Δfclock is defined as the frequency
shift relative to the unperturbed clock. The clock shifts are

extrapolated to determine the frequency correction for the
clock at the operational parameter value. We quote the
revised (or scale-corrected) standard errors for all fit
parameters obtained from weighted fitting or averaging;
i.e., we scale up the statistical uncertainties of the fit
parameters by the square root of the reduced chi-square
statistic (χ2red) if χ

2
red > 1, which indicates an overscattered

dataset relative to the fitted model.

1. Lattice light shift

Magic—or state-insensitive—trapping conditions can be
engineered for the vibrational clock states by off-resonantly
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FIG. 1. Vibrational molecular lattice clock. (a) Raman lasers (upleg, red arrow; downleg, orange arrow) detuned from an intermediate
state in ð1Þ0þu probe the two-photon vibrational clock transition between ðv ¼ 62; J ¼ 0Þ and ðv ¼ 0; J ¼ 0Þ in the X1Σþ

g ground
potential. The optical lattice (brown arrow) off-resonantly addresses an isolated rovibronic state in ð1Þ1u to induce magic trapping
conditions. (b) Experimental setup. The upleg master laser is stabilized to a reference cavity using the Pound-Drever-Hall (PDH)
technique, and its phase coherence is transferred to the downleg laser via a frequency comb. The molecules are held in the 1D optical
lattice. Copropagating clock lasers are delivered to the molecules via an optical fiber with active fiber noise cancellation (FNC). The
spectroscopic signal derives from absorption imaging of Xð62; 0Þ photofragments at a slight grazing angle relative to the lattice. A Rb
microwave standard acts as a flywheel oscillator linking the molecular clock to GPS time for the absolute frequency measurement.
Further information is given in the main text and Appendices A and B. (c) Two-photon Rabi oscillations between the clock states driven
at the operational probe intensities (filled circles, experimental data averaged over eight consecutive runs, error bars represent 1σ
uncertainties; solid red line, analytical fit to an exponentially decaying sinusoid). We observe lines as narrow as 11(1) Hz (inset, green
squares). For clock operation, we perform Rabi spectroscopy with a 30-ms π-pulse duration (indicated by the black arrow), resolving
30(2)-Hz linewidths consistent with the expected Fourier limit (inset, black open circles). Each point in the inset is a single shot of the
experiment, and solid lines are Lorentzian fits.
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Figure 3.1: Our vibrational molecular lattice clock scheme. Raman lasers (upleg, red arrow; down-
leg, orange arrow) are detuned from an intermediate state, 0+𝑢 (11, 1) and probe the two-photon
vibrational clock transition between 𝑋𝑔 (62, 0) and 𝑋𝑔 (0, 0). The optical lattice (brown arrow) is
parked near resonance, addressing the 1𝑢 (9, 1) transition to satisfy the magic condition. Adapted
from [18].

of the upleg is transferred to the teeth of our frequency comb by using the ULE as a reference for

the repetition rate (RR). The carrier-envelope offset (CEO) frequency of the comb is stabilized to

a rubidium standard that also serves as the laboratory local timebase. In turn, the downleg clock

laser at 731 nm is phase locked to the comb, inheriting phase stability from the upleg.

For our optical lattice, we select a magic wavelength that leads to one of the largest magic de-

tunings (measured to be Δ = 4.494(1) GHz) as predicted by our previous work [39] (see figure 2.8).

This magic lattice at 1004.7723(1) nm is blue detuned from the 𝑋𝑔 (0, 0) to 1𝑢 (9, 1) transition, a

transition with a relatively high measured transition strength of 1.335(35) × 10−4 (𝑒𝑎0)2, leading
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to a large detuning and favourable magic lattice condition.

In order to mitigate any lattice-induced broadening of our linewidth, we ensure that we limit all

extraneous scattering effects from the lattice. Specifically, since neighbouring 1𝑢 (𝑣, 1) rovibronic

resonances are spaced at intervals of ∼ 2 THz, we minimize any additional scattering through

these states due to lattice light impurity such as amplified spontaneous emission (ASE), by using

spectrally clean light derived from a Ti:sapphire laser. To suppress any additional ASE impurity

at the magic detuning, the lattice light is filtered through a linear cavity with a finesse of 50, and

free spectral range of 2.9 GHz, before reaching our experiment. Just like our probe lasers, the

lattice light that is delivered to the molecules is phase-stabilized to the optical frequency comb by

actuating on a voltage-controlled oscillator (VCO) that modulates the frequency of the lattice.

The experiment relies on dual-purpose acousto-optical modulators (AOMs) for both shuttering

the light from our different laser sources and for modulation of our laser frequencies. Both the

upleg and downleg lasers, as well as lattice, pass through AOMs, which help us set and stabilise

desired frequencies while maintaining flexible control over the frequency during our measurement

sequence. This is crucial in allowing us to repeatedly and consistently scan over the clock reso-

nance, and fast AOM shuttering also allows us to control the total interrogation time of our clock.

3.1.2 Methods for technical stabilization of our system

It is imperative that we have high levels of technical control over our probe and lattice lasers,

as these are the primary sources of light that interrogate our molecules. Specifically, we need to

ensure control over their frequency, intensity and polarization.

The clock lasers are directed to our experiment via the same polarization-maintaining (PM),

single-mode (SM) optical fibre. A laser will experience linewidth broadening due to fibre phase

noise of up to ∼ 100 Hz [18]. In order to combat this phase noise, we perform active fibre noise
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cancellation (FNC); since the clock laser wavelengths are sufficiently different and laser beams

likely follow non-identical paths in the fibre, we implement FNC on each laser, independently [63,

64].

A full scheme for FNC is shown in figure 3.2. Specifically, the laser beam is initially divided by

a 50:50 non polarizing beam splitter; one beam path is retro-reflected on a reference surface toward

a low-noise photodiode, while the other passes through an AOM driven by a VCO. The diffracted

AOM order of interest is fed to the experiment via an optical fibre, which writes phase noise 𝜙noise

on to the laser. We can detect this phase noise, by retro-reflecting part of the light back through the

fibre and recombining it with the initial reference light on the beam splitter. Specifically, we expect

to detect 2𝜙noise at a beat frequency shifted by 2𝜔𝐴𝑂𝑀 [18]. We mix down this beat frequency to

create a reference error signal; a servo controller uses this error signal to actuate on the VCO and

compensate for this phase noise preemptively by adding an additional phase, −𝜙𝑛𝑜𝑖𝑠𝑒, to the AOM.

The laser light after the reference surface is, therefore, fibre noise canceled. When addressing the

clock states it is imperative that we also have clean polarization. We use a Glan-Thompson prism

to clean up the polarization of each probe beam after the phase reference surface.

In addition to stabilising the frequency of our lasers, we must adequately stabilise the intensity

of light at our molecules. We do so by separating our clock beams on a (long-pass) dichroic, after

which a small fraction of the light is picked off and its intensity is measured on a photodiode.

Independent intensity stabilisation of each clock laser is performed by actuating on the RF power

to the relevant AOMs. As for our lattice, a stable, weak reflection from the vacuum window is used

for lattice intensity stabilization. After the pickoffs for intensity stabilisation, the clock lasers are

recombined on another dichroic and further combined with the lattice before passing through the

chamber to our molecules.
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Figure 3.2: A scheme for fibre noise cancellation (FNC) of our probe beams. A laser beam is
initially divided on a 50:50 non polarizing beam splitter (BS) cube, and one beam is retro-reflected
as a reference, while the other is diffracted by an acousto-optic modulator (AOM) driven by a
voltage-controlled crystal oscillator (VCO). Then, the diffracted order is injected into an optical
fibre to the experiment. To combat phase noise written by the fibre, we perform active FNC,
by retro-reflecting a small portion of the light back through the fibre and recombining it with the
original reference light. Beat detection on a low-noise photodiode produces a reference error signal
for active feedback on the VCO to preemptively cancel the fibre phase noise. Adapted from [19].

3.1.3 Comparison to local time standard

In order to directly compare any relative or measured frequency in our experiment to other fre-

quency measurements, we reference all frequency counters and direct digital frequency synthesiz-

ers (DDSs) in our experiment to a free-running rubidium (Rb) microwave standard. The Rb clock

standard is in turn calibrated by comparing an internal 1 pulse-per-second (PPS) output to that of a

dual-band global navigation satellite system receiver on a time-interval counter (TIC) [18]. The Rb

clock serves as a flywheel oscillator to access Global Positioning System (GPS) time [65]. In turn,

GPS time is steered Coordinated Universal Time (UTC) in the United States (see figure 3.3) [66].

Any timing differences between UTC, International Atomic Time (TAI) and the standard (SI)

second are routinely published, providing a global comparable standard for our clock measure-
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Figure 3.3: Comparison of our local time standard to global reference time standard. Our local
time standard, a Rubidium microwave clock, acts as a flywheel oscillator, linking the molecular
clock to GPS time for the absolute frequency measurement. Specifically, we compare our internal
1 pulse-per-second (PPS) from our lab to a reference 1 PPS from GPS via dual-band global navi-
gation satellite system receiver on a time-interval counter. Our GPS time is steered by Coordinated
Universal Time (UTC) and International Atomic Time (TAI) giving us a way to locally reference
our clock measurements to absolute frequency standards.

ments [67]. We compare our local frequency measurement to the standard SI second as

𝑓𝑐𝑙𝑜𝑐𝑘
𝑓SI

=
𝑓𝑐𝑙𝑜𝑐𝑘
𝑓Rb

× 𝑓Rb
𝑓GPS

× 𝑓GPS
𝑓UTC

× 𝑓UTC
𝑓TAI

× 𝑓TAI
𝑓SI

(3.1)

It is important to note that the fractional uncertainty of the Rb standard is limited to 3× 10−13 after

∼ 5 × 103 s of averaging time; this stability worsens for longer periods over 24 hours.

While our fractional uncertainty from systematic effects of our clock — after averaging —

is 4.6 × 10−14 for relative frequency measurements [18], any absolute frequency measurement

referenced to the Rb time base will inevitably be limited to fractional stabilities on the order of

10−13. This proves a technical limitation on the absolute frequency measurement of our clock as

a standard for the second. Any effort to push absolute frequency measurements beyond this level

would require a different local time standard, such as a Cs fountain clock or hydrogen maser [68],

as a comparison to our clock. Nevertheless, many precision measurements require only relative,

internal comparisons, and, therefore, can still benefit from the higher levels of stability inherent in

our clock.
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Figure 3.4: Frequency stabilisation of our probe lasers. We utilize a ULE cavity as a reference for
our 793 nm upleg probe laser. The repetition rate ( 𝑓RR) of our frequency comb is phase locked to
the upleg probe laser at a beat frequency 𝑓𝑏↑, inheriting the cavity stability. The downleg 732 nm
probe laser is phase locked to the frequency comb at a beat frequency 𝑓𝑏↓ relative to a higher comb
tooth number. The offset of the frequency comb ( 𝑓CEO) is referenced to the local 10 MHz reference
from our rubidium microwave clock standard. Adapted from [19].

3.1.4 An absolute frequency measurement

Given our current clock scheme, the frequency of our transition is determined by precisely

measuring the frequencies of the two probe lasers. Very simply, we measure the clock frequency

as a difference between the frequency of the upleg Raman probe and the frequency of the downleg

Raman probe. That is,

𝑓𝑚𝑒𝑎𝑠 = 𝑓↑ − 𝑓↓ (3.2)

Each of 𝑓↑ and 𝑓↓ are determined in reference to the frequency comb and any frequency modulation

by AOMs. Specifically, as an example, we determine the frequency of the upleg to be

𝑓↑ = 𝑁↑ 𝑓RR + 2 𝑓CEO + 𝑓𝑏↑ + 𝑓AOM (3.3)
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where 𝑁↑ is the comb tooth number of the frequency comb, 𝑓RR is the repetition rate of the fre-

quency comb, 𝑓CEO is the offset of the frequency comb and 𝑓𝑏↑ is the locking beat frequency

difference between the laser and the nearest comb tooth. Any additional AOMs add a term 𝑓AOM

to the overall frequency of the probe light (figure 3.4).

In addition to the measured frequency of the individual probe lasers, we must account for

the effect of any systematic shifts in the system (detailed in section 3.2). These shifts introduce

a necessary frequency correction, 𝑓𝑐𝑜𝑟𝑟 , to the measured frequency, 𝑓𝑚𝑒𝑎𝑠, in order to determine

the true frequency, 𝑓𝑐𝑙𝑜𝑐𝑘 . The true clock frequency is given by adding these corrections to the

measured clock frequency, as in

𝑓𝑐𝑙𝑜𝑐𝑘 = 𝑓𝑚𝑒𝑎𝑠 + 𝑓𝑐𝑜𝑟𝑟 (3.4)

In table 3.1, we show a budget for the largest contributions to the systematic correction of the

measured frequency. Summing the uncertainties of all contributions to systematic corrections in

quadrature, we report a total systematic uncertainty of 4.6× 10−14 after ∼ 3 hours of averaging per

systematic effect [18]. Accounting appropriately for these systematic shifts is crucial for achiev-

ing high overall accuracy for our clock and for any future precision measurements. Since by far

Table 3.1: A systematic uncertainty budget for the strontium molecular clock. Frequency correc-
tions ( 𝑓𝑐𝑜𝑟𝑟), with corresponding uncertainties (𝜎 𝑓𝑐𝑜𝑟𝑟 ), are listed for the primary contributions to
the clock uncertainty. The true clock frequency 𝑓𝑐𝑙𝑜𝑐𝑘 is given by adding these corrections to the
measured clock frequency ( 𝑓𝑚𝑒𝑎𝑠) (as shown in equation 3.4). All values are expressed in fractional
units (×10−14).

Systematic (𝛿 𝑓 ) Correction ( 𝑓𝑐𝑜𝑟𝑟) Uncertainty (𝜎 𝑓𝑐𝑜𝑟𝑟 )
Lattice Linear Stark Shift 100.1 3.4
Lattice Quadratic Stark Shift -50.8 1.9
Probe Stark Shift 31.5 2.2
Black-body Radiation Shift -2.2 0.4
Density Shift -0.6 0.3
Total Shift 77.9 4.6
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the largest contribution to the uncertainty in our measurement is due to the lattice, we focus on

improvements we can make in the lattice for our next generation clock.

In sum, we measure the absolute frequency of the transition between 𝑋𝑔 (62, 0) and 𝑋𝑔 (0, 0) in

88Sr2 as [18]

𝑓𝑐𝑙𝑜𝑐𝑘 = 31 825 183 207 592.8(5.1) Hz (3.5)

This result is the weighted average of 10 trials with an averaging time of ∼ 103 s per trial (fig-

ure 3.5). Given a record clock linewidth of 10.5(1.2) Hz, we obtain a corresponding 𝑄 factor

𝑄𝑐𝑙𝑜𝑐𝑘 = (3.0 ± 0.4) × 1012 (3.6)

of the 88Sr2 vibrational clock to be fclock ¼
31 825 183 207 592.8ð5.1Þ Hz, with a fractional uncer-
tainty of 1.6 × 10−13.

IV. CONCLUSION

Few frequency standards currently exist in the THz band
[38,61]. Our molecular clock serves as a THz reference and
can generate stable radiation at 9.4 μm via photomixing
[86,87]. Alternatively, transitions in heteronuclear isotopo-
logues could be driven directly with quantum cascade
lasers [88,89]. To our knowledge, fclock represents one of
the most accurately measured pure molecular vibrational
frequencies to date. The fractional uncertainty is on par
with that of the unidentified rovibrational interval in
OsO4 near the Rð10Þð0001Þ − ð1000Þ emission line of
the 12C16O2 laser. This absorption line in OsO4 is a
secondary representation of the SI second [61], and was
compared directly against a primary cesium standard by
stabilizing a CO2 laser to the specific saturated absorption
feature of OsO4 in a high-finesse cavity [90,91]. We
expect to reduce the uncertainty of our local time-base
calibration to the same level as the molecular clock
systematics (or better) by upgrading to a standard with
intrinsically lower instability and utilizing two-way time-
transfer schemes.

Molecular spectroscopy is increasingly appreciated as a
fertile ground in the search for new physics. The reported
Hz-level molecular clock is a starting point for elucidating
the bonding of the Sr2 dimer across a large range of
internuclear distances. The isotopologues of Sr2 have
different nucleon numbers, and comparison of their vibra-
tional spectra may permit the investigation of hypothesized
hadron-hadron interactions [32].
The sum of fclock with the binding energy of the

least bound state Xð62; 0Þ yields the dissociation energy
(D0) of our molecule with respect to the 1S0 þ 1S0 thresh-
old. While the analogous least bound vibrational
states of 84Sr2 and 86Sr2 are known with sub-kHz uncer-
tainties [92,93], the current best measurement for 88Sr2
is at the kHz level [94]. Nevertheless, taking the binding
energy of Xð62; 0Þ to be 136.6447(50) MHz from
Ref. [94], which was determined using two-photon dis-
sociation, we find D0ð88Sr2Þ ¼ 31 825 319 852ð5Þ kHz, or
1061.578 402 09ð17Þ cm−1. This is an improvement by 5
orders of magnitude over the previously reported value for
Sr2 in available literature [95], and sets a new accuracy
record for the determination of a molecular dissociation
energy (1.6 × 10−10 fractional uncertainty). To list a few
competitive results, dissociation energies have been
reported with fractional uncertainties of 4.4 × 10−10 for
87Rb133Cs [54], 6.9 × 10−10 for ortho-H2 [55], 8.6 × 10−10

for para-H2 [56], and 7.1 × 10−10 for ortho-D2 [57].
Gaining access to longer coherence times is a general

strategy for improving the systematic uncertainty. It would
enable the excitation of narrower molecular resonances,
expediting the evaluation of a systematic shift. Operating at
lower trap depths would considerably suppress the lattice
light-induced one-body losses of the deeply bound vibra-
tional state, Xð0; 0Þ. To this end, we plan to reorient the
lattice in a future upgrade such that its tighter axial
dimension is along gravity to permit the confinement of
molecules in a shallower trap. Notably, atomic lattice
clocks have entered the approximately 10Er regime [96],
and adopting these recent techniques should further mit-
igate the lattice light-induced losses. This strategy may be
supplemented by deeper atomic cooling [97,98] prior to
photoassociation. Moreover, given that the lattice light shift
is the most significant systematic in this work, operation at
shallower trap depths would directly improve the clock
accuracy. Longer Rabi interrogation times imply smaller
effective Rabi frequencies; thus, the operational probe laser
intensities can be reduced, which lowers the total probe
light shift. Future work may circumvent collisional shifts
and losses by preparing samples with single-molecule
occupancy in a three-dimensional lattice [99–102], or an
optical tweezer array [103–106].
In summary, we demonstrate a vibrational molecular

clock with a total systematic uncertainty of 4.6 × 10−14,
entering a new domain in high-resolution molecular spec-
troscopy. Our results are enabled by merging the key

(a) (b)

FIG. 5. (a) Absolute frequency of the clock transition measured
over ten trials (filled black circles) with all known frequency
offsets corrected, including that of the local Rb time base (see
main text for details). Blue error bars are 1σ statistical uncer-
tainties, dominated by the determination of the comb repetition
rate rather than the stability of the scanned molecular clock lines.
Red error bars are 1σ systematic uncertainties due to the
molecular clock only (see Table I). Black error bars are 1σ total
uncertainties, where the uncertainties of the local time-base
calibrations are added in quadrature with the statistical and
molecular clock systematic uncertainties. The black horizontal
line shows the weighted average (χ2red ¼ 0.5), and the shaded gray
area shows the associated %1σ standard error of the mean.
(b) Histogram of all clock frequency measurements in the ten
trials, relative to the weighted average of fclock. The solid red line
is a Gaussian fit to the histogram.
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Figure 3.5: Absolute frequency of our clock transition measured over ten trials (left) with all known
systematic frequency corrections and comparison to local Rb time base. Blue error bars are 1𝜎
statistical uncertainties, dominated by determination of the comb repetition rate (RR). Red error
bars are 1𝜎 systematic uncertainties due to the inherent molecular clock uncertainty (see table 3.1).
Black error bars are 1𝜎 total uncertainties, where the uncertainties of the local time-base calibra-
tions are added in quadrature with the statistical and molecular clock systematic uncertainties. The
black horizontal line shows the weighted average, and the shaded gray area shows the associated
1𝜎 standard error of the mean. Histogram (right) of all clock frequency measurements in the ten
trials, relative to the weighted average of 𝑓𝑐𝑙𝑜𝑐𝑘 . The solid red line is a Gaussian fit to the his-
togram. Adapted from [18].
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3.2 Systematic Corrections of our Clock Frequency

3.2.1 Systematic shifts from light sources

Any source of light will produce a Stark shift proportional to the intensity of the light. In our

clock, the two primary sources of light, which are relevant to the measured frequency of the clock

transition, are the probe (clock) lasers and the lattice. We measure and extrapolate the systematic

shift imparted on the measured frequency in normal clock operation by each source of light.

Probe light shifts are an inherent aspect of any two-photon spectroscopy. The light shifts from

our clock lasers scale linearly at low intensities and are directly related to the differential polariz-

ability at the respective probe wavelength, that is

𝛿 𝑓𝑝𝑟𝑜𝑏𝑒 =
𝐼

2ℎ𝜖0𝑐
(𝛼0(𝜔) − 𝛼62(𝜔)) (3.7)

where 𝛼𝑣 (𝜔) is the E1 polarizability for vibrational state 𝑣 in the 𝑋𝑔 potential, 𝜔 is the probe fre-

quency and 𝐼 is the probe laser intensity [69]. We can minimize the total probe light shift system-

atic by using so-called balanced intensity ratios satisfying the condition 𝐼↑[𝛼0(𝜔↑) − 𝛼62(𝜔↑)] =
−𝐼↓[𝛼0(𝜔↓) − 𝛼62(𝜔↓)] [70]. We demonstrate this condition in our clock for blue detunings of the

probes relative to the transition, where the baseline polarizability differences at the probe wave-

lengths have opposite signs as shown in figure 3.6.

We evaluate the probe shift, 𝛿 𝑓𝑝𝑟𝑜𝑏𝑒, for each leg of the Raman transition independently. Using

a motorized neutral density (ND) filter, we alternate between high and low intensity values for one

leg, while keeping the intensity of the other leg fixed at its operational value. These measured

shifts are then scaled by the intensity difference to obtain the clock corrections at the operational

intensity, 𝐼𝑜𝑝; that is, for each probe laser, we calculate

𝛿 𝑓𝑝𝑟𝑜𝑏𝑒 =
𝛿 𝑓

𝛿𝐼
𝐼𝑜𝑝 (3.8)
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Figure 5.16: Clock shifts at the operational Raman detuning as a function of (a) the upleg laser
intensity, and (b) the downleg laser intensity. The horizontal axes are normalized by the respective
operational intensities, �",0 and �#,0. Solid lines are linear fits to the data. Residuals are plotted in
units of Hz. Error bars represent 1f uncertainties.

between two intensity values for one leg while keeping that of the other leg constant at its opera-

tional value [Fig. 5.17]. The c-pulse durations are adjusted accordingly. Typical settings for the

interleaved measurements are (%",0, 9%",0), and (%#,0, 3.5%#,0) where %?,0 = �?,0(cF2
?/2) are the

operational powers measured with a calibrated power meter immediately before the vacuum win-

dow. These shifts are scaled by the measurement lever arms to obtain the clock corrections at the

operational settings: �(� 5clock/�%?) ⇥%?,0. We find the corrections to be �277.5(1.4) ⇥10�14 for

the upleg, and 309.0(1.7) ⇥10�14 for the downleg. The uncertainties in probe intensities have been

propagated into those of the quoted frequency corrections. Drifts in �%? are at the sub-percent

(⇠ 0.5%) level over the ⇠2000 s duration for each probe light shift evaluation, and the weighted

averages typically have j2
red ⇠ 1.

We observe the beam profiles of the clock lasers on a camera and estimate the 1/42 beam

waists of the upleg and downleg at the molecules to be 89(5) `m and 114(20) `m, respectively.

The uncertainties are large due to the technical difficulty in determining beam waists accurately.

However, accurate knowledge of the beam waists F? is not necessary as they are robust during an

evaluation, and are common factors that drop out in calculations. Long-term intensity drifts (e.g.,

159

Figure 3.6: Light shifts from our Raman probe lasers as a function of the upleg laser intensity
(left), and the downleg laser intensity (right). The horizontal axes are normalized to operational
intensities, 𝐼↑,𝑜𝑝𝑡 and 𝐼↓,𝑜𝑝𝑡 . Solid lines are linear fits to the data. Residuals are plotted in units of
Hz. Adapted from [18].

Using this scheme, we find fractional corrections for the upleg to be −277.5(1.4) × 10−14 and for

the downleg to be 309.0(1.7) ×10−14 (see figure 3.6). This leads to an overall fractional correction

of 31.5(2.2) × 10−14 as reported in our uncertainty budget at operational intensities [18].

We investigate the lattice light shift for a range of lattice frequencies at several trap depths

from 300 to 1100 𝐸𝑟 . We again use a motorized ND filter to alternate between high and low

intensities during a clock run. Most importantly, we find non-linear light shifts due to molecular

hyperpolarizabilities, a feature which may help explain quadratic lattice scattering rates and fast

loss near resonance. We use a thermal model [71], which assumes a linear scaling of atomic

temperature with trap depth, to characterise these lattice light shifts as

𝛿 𝑓𝑙𝑎𝑡𝑡𝑖𝑐𝑒 = −𝛼𝑈0 − 𝛽𝑈2
0 (3.9)
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where 𝛼 and 𝛽 are obtained empirically from parabolic fits to the measured differential shifts, such

that 𝛼 is related to lower-order electric-dipole (E1), magnetic-dipole (M1) and electric-quadropole

(E2) polarizabilities, while 𝛽 is related to high-order hyperpolarizability effects (see figure 3.7).
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Figure 5.14: Clock shifts due to the lattice light. (a) Nonlinear shifts of the molecular clock
frequency versus trap depth. For a given lattice frequency (color coded), we make interleaved
measurements of clock shifts (open circles) with respect to a reference trap depth (⇠ 500 ⇢r), and
fit the data to parabolas (solid lines) with a global quadratic parameter, �V⇤. (b) Linear light shift
coefficient, U⇤, versus lattice frequency (color code matches (a)), and the linear fit (black solid
line). U⇤ is predominantly due to the ⇢1 differential polarizability and is nulled at 5zero. By tuning
U⇤, we can find conditions where the sensitivity of � 5clock to fluctuations in *0 is minimal at our
operational trap depth of 487(4) ⇢r (dark green points). Error bars represent 1f uncertainties.

156

Figure 3.7: Clock shifts due to the lattice light. We show nonlinear shifts of the molecular clock
frequency versus trap depth (above). For a given lattice frequency (color coded), we make inter-
leaved measurements of clock shifts (open circles) with respect to a reference trap depth (∼ 500
𝐸𝑟), and fit the data to parabolas (solid lines) with a global quadratic parameter, −𝛽. We plot the
linear light shift coefficient, 𝛼, versus lattice frequency (color code matches above), as extracted
from the linear fit (black solid line) (below). Adapted from [18].
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The evaluation of hyperpolarizabilities using this quadratic fit approximation hinges on a lin-

ear scaling of the sample temperature with 𝑈0, which we can verify using carrier thermometry

(as in section 2.2.1) [71, 72]. Using the operating trap depth for our molecular clock, 𝑈𝑜𝑝𝑡 =

487(4) 𝐸𝑟 , we find that the systematic correction for 𝛼𝑈𝑜𝑝𝑡 = 31.8(1.1) Hz, a fractional correction

of 100.1(3.4) × 10−14, and find that the hyperpolarizability, non-linear component, contributes a

correction 𝛽𝑈2
𝑜𝑝𝑡 = −16.2(6) Hz, a fractional correction of −50.8(1.9) × 10−14 [18].

3.2.2 Temperature effects

As previously described, our molecules experience a Stark shift in the presence of any electric

field, which depends on the particular state polarizability and the field intensity. More generally,

the frequency shift between the states |1⟩ and |2⟩ of an atom or molecule is given by

Δ𝜈12 =
−1
2ℎ

∫ ∞

0
Δ𝛼12(𝜔)𝐸2(𝜔)𝑑𝜔 (3.10)

where Δ𝛼12(𝜔) is the frequency-dependent differential polarizability between the two states.

In particular, since our chamber is opaque to long-wavelength light (𝜆 > 2 microns), we can

effectively treat it as a blackbody radiator near room temperature, where the peak blackbody radi-

ation (BBR) wavelength is ∼ 10 microns. This inherent BBR electric field causes a temperature-

dependent shift in the transition frequency of our molecules [16]. Therefore, we need to exper-

imentally measure the effective temperature of the hardware surrounding the molecular cloud to

appropriately characterise and correct for a BBR-induced Stark shift.

Given that the chamber temperature is normally 𝑇 ∼ 300 K, we can assume that our peak BBR

frequency 𝜔𝑝𝑒𝑎𝑘 << 𝜔𝑖 𝑗 allowing us to simplify equation 3.10 as [73]

Δ𝜈𝑒𝑔 = −Δ𝛼𝑒𝑔 (0)
2ℎ

⟨𝐸2(𝑡)⟩[1 + 𝜂(𝑇)] (3.11)
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We know that a blackbody at a given temperature has the following spectral radiance, 𝐵(𝜆, 𝑇), for

a given wavelength, 𝜆, and a given temperature, 𝑇 [74]

𝐵(𝜆, 𝑇) = 2ℎ𝑐
𝜆5

1

𝑒
ℎ𝑐

𝜆𝑘𝐵𝑇 − 1
(3.12)

If we assume that this intensity is normal to the surface, we obtain the energy density of the

blackbody as

𝑢(𝑇) =
∫ ∞

0
𝐵(𝜆, 𝑇)𝑑𝜆

∫
cos 𝜃𝑑Ω = 𝜎𝑇4 (3.13)

Since we know that electromagnetic energy density is related to the RMS electric field by 𝑢 =

𝜖0𝐸
2
𝑅𝑀𝑆, we can, therefore, write

⟨𝐸2(𝑡)⟩ = 4𝜎𝑇4

𝑐𝜖0
(3.14)

In this way, we can completely describe the BBR electric field by measuring the effective temper-

ature at the molecular cloud.

In order to simplify our evaluation of the BBR shift, we consider primarily the E1 component

to the BBR shift, which contributes most significantly [73]. Specifically, we define the E1 BBR

shift on a given state 𝑣 as

𝑓 𝐸1
𝐵𝐵𝑅 (𝑣) = − 2

15
𝛼3
𝑓 𝑠𝜋

3𝑇4𝛼𝐸1
𝑣 (0) (1 + 𝜂) (3.15)

where 𝛼 𝑓 𝑠 is the fine structure constant and 𝜂 is defined as the first order correction [73]

𝜂 =
80𝜋2

63𝛼𝐸1
𝑣 (0)𝑇

2
∑︁
𝑓

��𝑑𝑖 𝑗 ��2
𝜔3
𝑓 𝑖

(
1 + 21𝜋2𝑇2

5𝜔2
𝑓 𝑖

+ 336𝜋4𝑇4

11𝜔4
𝑓 𝑖

)
(3.16)

where 𝛼𝐸1
𝑣 (0) is the static dipole polarizability. Here, every quantity is defined in atomic units,

such that 1 K = 3.16683 × 10−6 a.u. and 1 a.u. = 1.51983 × 10−16 Hz (see Appendix E in [75] for
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a more complete list). In this way, the BBR shift on our clock transition is

𝛿 𝑓𝐵𝐵𝑅 = 𝑓 𝐸1
𝐵𝐵𝑅 (62) − 𝑓 𝐸1

𝐵𝐵𝑅 (0) (3.17)

Notably, the BBR shift depends on the temperature of the chamber. While the thermal en-

vironment surrounding the molecules is complex, we use a simplified model to determine the

temperature at the centre of the chamber; we locate the areas with maximum (𝑇𝑚𝑎𝑥) and minimum

(𝑇𝑚𝑖𝑛) temperature, and assume a rectangular (uniform) probability distribution between these tem-

peratures [76]. We define the average, or rather representative, temperature, 𝑇𝑟 , as

𝑇𝑟 =
𝑇𝑚𝑖𝑛 + 𝑇𝑚𝑎𝑥

2
(3.18)

with an uncertainty given by1

𝜎𝑇𝑟 =
𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛√

12
(3.19)

In order to measure the BBR shift with adequate precision, we use high-precision tools to

continuously record the temperature of our chamber throughout a clock run. We measure the

temperature to a precision of ±0.05°C using negative temperature coefficient (NTC) thermistors

[10 kΩ MC65F103A Amphemol] and a Keithley DAQ6510/7700 model for fast switching, contin-

uous temperature measurements of up to 20 individual channels. We implement remote control of

our Keithley via a home-designed, python-based GUI which continuously records the temperature

along the four primary faces of our chamber during a experiment run (see figure 3.8).

1https://www.bipm.org/en/committees/jc/jcgm
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Figure 3.8: Chamber temperature logging scheme for BBR shift measurement. We measure the
temperature of the stainless steel chamber on four faces using high-precision 10 kΩ MC65F103A
Amphemol negative temperature coefficient (NTC) thermistors (below). We continuously record
the temperature using a Keithley DAQ6510/7700 system and a home-built, python-based GUI for
remote control (above).
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Using this min-max method, we estimate an effective temperature at the molecules of 𝑇 =

303(5) K, which corresponds to a correction from the BBR shift on our specified clock states of

𝛿 𝑓𝐵𝐵𝑅 = −0.70(14) Hz, a fractional shift of −2.2(0.4) × 10−14 (see figure 3.9). The uncertainty is

dominated by ab initio calculations of the dc polarizabilities of the clock states [25]. Predictions of

these polarizabilities show a non-monotonic behaviour, which suggests an attractive opportunity

to design a near-zero BBR shifted clock (see figure 3.10) [25]. These predictions would, in theory,

allow us to engineer a BBR-insensitive clock and have consequences for how we engineer our

magic wavelength traps; they are largely the impetus for our most recent work and the subject of

the following chapter.
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Figure 3.9: Modeled blackbody radiation shift on 𝑋𝑔 (𝑣, 0) states at an effective environment tem-
perature 𝑇𝑟 = 300 K. For our current clock states, 𝑋𝑔 (0, 0) and 𝑋𝑔 (62, 0), the net BBR shift on the
observed clock frequency is 𝛿 𝑓𝐵𝐵𝑅 = 0.70(14) Hz. The dynamic term 𝜂 (equations 3.15 and 3.16)
at 𝑇𝑟 , included in 𝛿 𝑓𝐵𝐵𝑅, contributes less than 0.5% to the measured shift.
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Figure 3.10: Differential BBR shift between 𝑋𝑔 (0, 0) and other 𝑋𝑔 (𝑣, 0) states in the ground po-
tential, as predicted by early theoretical models. These models show state pairs that may exhibit
near zero BBR shift corrections at 𝑇 = 300 K.

3.2.3 The impact of sample density

As in atomic clocks, we are also interested in investigating and characterising any density-

dependent shifts arising from dimer-dimer collisions in our lattice [77]. As we saw in section

2.5.3, our 88Sr2 molecules are highly susceptible to collisions. We probe the density shift by mod-

ulating the average number of molecules per lattice site (𝑁𝑚𝑜𝑙 /site) at the beginning of the clock

pulse.
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Figure 5.19: Density shift evaluation. (a) Clock shifts due to molecular collisions extrapolated
to operating conditions (1 molecule per lattice site, averaged over filled sites), plotted versus the
change in molecule number per site used for the interleaved measurement. A single constant suf-
fices to fit the data (0.20(10) Hz, j2

red = 1.7). (b) In the same dataset, the shift between successive
resonances taken under identical experimental settings serves as a control experiment to check for
technical offsets. As expected, this averages to zero (0.03(20) Hz, j2

red = 2.0). All statistical errors

are scaled up by
q
j2

red. Error bars represent 1f uncertainties. Both insets show the histogram of
normalized residuals, and the solid red lines are Gaussian fits.
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Figure 5.19: Density shift evaluation. (a) Clock shifts due to molecular collisions extrapolated
to operating conditions (1 molecule per lattice site, averaged over filled sites), plotted versus the
change in molecule number per site used for the interleaved measurement. A single constant suf-
fices to fit the data (0.20(10) Hz, j2

red = 1.7). (b) In the same dataset, the shift between successive
resonances taken under identical experimental settings serves as a control experiment to check for
technical offsets. As expected, this averages to zero (0.03(20) Hz, j2

red = 2.0). All statistical errors

are scaled up by
q
j2

red. Error bars represent 1f uncertainties. Both insets show the histogram of
normalized residuals, and the solid red lines are Gaussian fits.
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Figure 3.11: Evaluation of density-shift systematic. Clock shifts due to molecular collisions
are compared to operating conditions (left). We find a small, non-zero correction of 𝛿 𝑓𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
−0.20(10) Hz due to these density-dependent collisional shifts. In the same dataset, the shift
between successive resonances taken under identical experimental settings serves as a control ex-
periment to check for technical offsets. As expected, this averages to zero, 0.03(20) Hz (right).
Both insets show the histogram of normalized residuals, and the solid red lines are Gaussian fits.
Adapted from [18].

We find a correction of 𝛿 𝑓𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = −0.20(10) Hz, or a fractional correction of −0.63(31) ×
10−14, due to these density-dependent, collisional shifts (see figure 3.11). The magnitude of this

shift is similar to analogous strontium optical atomic clocks [78]. In the future, we can suppress

or eliminate collisional shifts by preparing our molecules in 3D or tweezer traps with low- or

single-occupancy. Nevertheless, in this campaign, we already demonstrate clock measurements

near 1 𝑁𝑚𝑜𝑙 /site densities, suggesting this pathway towards collisional shielding. It is important to

recall that lower-density traps, and fewer test molecules, result in a lower overall signal, a trade-off

we must consider when designing a future clock.

3.3 Limitations of Our Current Clock

The nature of our molecular clock states promise long natural lifetimes and a corresponding

high precision. Even still there exist technical challenges in the current iteration of the molecu-

lar clock that prevent us from achieving 𝑄 factors that are much better than our current 𝑄𝑐𝑙𝑜𝑐𝑘 =

(3.0 ± 0.4) × 1012.
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In particular, our clock 𝑄 factor is primarily limited by fast two-body losses and large light-

induced scattering that scales quadratically with trap depth. At our current operational densities

and trap intensities, these effects have significant ramifications on the spectroscopic signal for clock

pulses as fast as ∼ 60 ms. If we consider a conservative 30 ms pulse, we can expect to achieve

Fourier-limited peaks of ∼30 Hz linewidth. If we overcome these technical limitations, collisions

in the ground state still limit our linewidths to 5 Hz, corresponding to a 200 ms molecular lifetime.

Strategies to address these effects rely on both structural, technical and scientific changes to

our current system. On the technical side, we can implement different trapping schemes, namely

moving towards a vertical lattice configuration, which naturally decreases the necessary trapping

intensity, and, therefore, trap depth. We can further reduce collisional effects in the lattice by re-

ducing the density of our sample; to do so, we can implement a larger trap beam or additional

confinement such as in a 2D or 3D lattice, or tweezer-like trap.

By contrast, we can also leverage improved models and better understanding of the underlying

quantum chemistry of our strontium dimers to design a fundamentally better clock. In particular,

we can search for states which are naturally magic or near-magic, such that inherent BBR effects

are nearly cancelled and the lattice-induced systematic effects are greatly reduced. Possible states

like these are predicted in some early versions of our theoretical models [25].

In the following chapter, we consider practical ways to address both collisional losses and

lattice-induced light shifts in our molecular clock. We suggest and quantify the advantages of

each, in particular, highlighting potential trade-offs for a given experimental design, as we set the

stage for a second-generation clock.
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Chapter 4: Pathways Towards an Improved Clock

In our previous work, we demonstrated a record-breaking precision for our 88Sr2 molecular

clock, ushering in a new era for precision measurement with clocks. As described in the previous

chapter, borrowing techniques from earlier atomic clock architectures, we measure a ∼ 32 THz

clock transition between two vibrational levels in the electronic ground state, achieving a 𝑄 factor

of 3×1012 and a fractional uncertainty, after averaging, of 4.6×10−14, in this new frequency regime.

This precision is comparable to the earliest realizations of optical atomic lattice clocks [79–81],

which have since seen extensive technical improvement. Given that the Sr2 vibrational transitions

have very long natural lifetimes, we could expect to achieve higher 𝑄 factors in the long-term

once we overcome many of these same technical challenges. Losses due to two-body collisions

and lattice light scattering remain central impediments to better spectroscopic resolution in our

molecular clock. Even in ultra-precise atomic clocks, BBR is a major contributor to the systematic

error budget of conventional atomic clocks and is notoriously difficult to characterise and control.

In this chapter, I discuss avenues towards overcoming these.

4.1 Combating Lattice-Induced Scattering

4.1.1 A new lattice configuration

Currently, the largest contribution to the systematic uncertainty of our molecular clock is the

Stark shift from our optical lattice [18]. These large systematic effects arise in part due to the high

trapping intensity of our current horizontal lattice, which is necessary to confine our molecules in

the trap against gravity. Unfortunately, this high-intensity trap imparts a large systematic uncer-

tainty on our current clock configuration.
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One simple way to combat this issue is to move towards a vertical lattice geometry. Since

confinement is tighter along the axial, rather than radial, direction of the lattice, we would benefit

from orienting our lattice such that gravity points in the axial direction, reducing the overall inten-

sity necessary in the trap [82]. A vertically oriented 1D lattice tightly confines along the axis of

gravity and has the added advantage of suppressing tunneling due to the difference in gravitational

potential energy between lattice sites [83].

Given the existing orientation of our MOT beams, we must find a way to combine our vertical

MOT beams with other critical lasers along the same axis. These include the photoassociation (PA)

and photodissociation (PD) beams, probe (clock) beams and the lattice. In this design, we opt to

use dichroic beamsplitters to combine the light, as opposed to polarizing or non-polarizing beam

splitters, so as to minimize any loss of power and maintain flexible control over the polarization

of each distinct source of light. In order to combine each beam along the vertical axis, we need

two pairs of dichroics, one which combines the probe beams (732 nm and 793 nm) with the lattice

at 1005 nm1, and another which combines the MOT light (461 nm and 689 nm) with the probe

and lattice beams2. We preferentially choose dichroics that transmit, rather than reflect, the probe

beams in order to maintain cleaner polarization of these critical lasers (see figure 4.1). The PA and

PD beams are combined with the MOT beams using polarizing beamsplitters and, therefore, care

must be taken to ensure that we have sufficient power in each of these lasers prior to combining

them. All common mirrors along the vertical axis must also be replaced with broadband coated

mirrors3, which are highly reflective at all wavelengths of interest.

In order to accommodate this new design into our existing setup, in particular given the tight

1Thorlabs DMSP820B 820 nm cutoff shortpass dichroic mirrors.
2We order Semrock 733.95 nm BrightLine single-edge image-splitting dichroic beamsplitters with custom high-

temperature annealing; the cutoff band needs to be quite sharp, ∼ 30 nm wide.
3Newport dielectric mirrors 20Q620BB.HR2 are high reflectors, broadband coated for 350-1100 nm.
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space (∼ 3 inches) below our chamber, we design and machine4 custom mounts for mirrors and

dichroics as shown in figure 4.2). The challenges of constructing a vertical lattice such as this

are primarily engineering in nature, and rely on technical improvements and remodeling of our

experiment. These changes, however, are beneficial in the long term, since they result in a more

stable and robust setup overall.

z

x

Figure 4.1: Design for a new vertical lattice configuration. Probe (clock) and lattice beams are
combined along the vertical axis on dichroic beamsplitters (see main text for details). Probes are
fed from above, while the lattice is counter-propagated from below.

4We have a lot of help and guidance from Clara Wilson in the Physics Design Lab, who consults and helps machine
many of these custom parts.
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Figure 4.2: Home-designed and machined mirror mount for vertical lattice construction.

4.1.2 A search for a new kind of magic wavelength

In addition to larger systematic light shifts due to the lattice, we suspect that near resonant

magic traps are responsible in part for large scattering rates, decreasing the lifetime of our molecules

and limiting our fractional uncertainty [32]. In the past, we have seen evidence of nonlinear lat-

tice scattering with intensity, which may suggest two-photon excitation loss of molecules from the

lattice through nearby resonant states. This lattice scattering emerges primarily due to our current

method for engineering magic-wavelength trapping. As described in section 2.2, we engineer a

magic lattice by capitalising on the dispersive change in polarizability near a resonance to match

polarizabilities and reduce lattice-induced broadening of the clock transition. As a result, however,

our molecules are very sensitive to lattice frequency and intensity stability; since the polarizabil-

ity changes very quickly near resonance, small changes in lattice intensity or frequency introduce

a polarizability mismatch, which artifically broadens the clock transition linewidth [35]. While

lower intensity traps begin to mitigate these issues, our reliance on resonant magic wavelengths in

our current molecular clock remains a problem.
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As noted in the previous chapter (3.2.2), early theories and quantum chemical models predict

what we refer to as off-resonant magic polarizabilities (see figure 4.3) [25]. These off-resonant

magic polarizabilities are much more similar in nature to those used in atomic systems and would

relax our current constraints on lattice stability [84]. In this prediction, pairs of ground potential

clock states have naturally occurring equal polarizabilities at lattice wavelengths 𝜆 > 1000 nm.
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Figure 4.3: Polarizability of the electronic ground vibrational states, as predicted by early theoret-
ical models. These models show potential preferable state pairs for vibrational states 𝑣 < 28 with
naturally occurring equal DC polarizabilities, 𝛼0(𝑣) (above). These pairs of states may present
favourable clock conditions with near zero BBR shift corrections and significant suppression of
lattice-induced scattering. This non-monotonic behaviour emerges at wavelengths longer than
1000 nm, and may offer alternative constructions of a magic IR trap (below).
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Figure 4.4: A comparison of two magic trapping schemes. Right axis (black) shows the differential
polarizability around conventional near-resonant magic wavelength. Left axis (blue) shows the
differential polarizability around predicted off-resonant magic wavelengths. The slope of each
curve describes the sensitivity of our system to changes in the lattice frequency. Off-resonant
magic wavelengths are 105 times less sensitive than our conventional traps. Below, we zoom in to
region just around the magic condition, while, above, we show proximity to resonance [25].
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We are particularly interested in investigating the dynamic polarizability behaviour of our

molecules for lattices at 𝜆 > 1200 nm, wavelengths which probe below the 1𝑢 potential and,

therefore, do not address any single-photon excited resonances. These near- to mid-IR lattices are

attractive candidates for future clock generations since they would strongly mitigate lattice induced

scattering through these excited resonances. In particular, if we compare the differential polariz-

ability of two representative examples in both magic wavelength schemes, we find that these new,

off-resonant magic states are predicted to be over 105 times less sensitive than our conventional

magic traps (see figure 4.4).

If we consider, for example, the telecom range (1450-1650 nm) — accessible with current laser

technology — we find an array of clock states between 𝑋𝑔 (0, 0) and 𝑋𝑔 (21, 0) that offer potential

attractive clock candidates, whose differential polarizability is naturally zero (see figure 4.5). In

fact, our model predicts a potential magic condition to be satisfied every ∼ 15 nm, which makes

Figure 4.5: Differential polarizability of pairs of clock states in the telecom range (1450-1650 nm).
Theory predicts an array of states between 𝑋𝑔 (0, 0) and 𝑋𝑔 (21, 0), whose differential polarizability
is naturally zero. The magic condition is predicted to be satisfied every ∼ 15 nm [25].
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this region a rich area of study. Should this behaviour be real, it would present an entirely new

avenue for a better molecular clock.

These predictions motivate an in-depth study of the polarizability behaviour of our ground

state molecules, which I will describe in the following sections. While we ultimately find that

these predictions do not match experiment, the results of this study are still important as we make

future clock design choices, as well as lay the groundwork for techniques and strategies for more

complex measurements. In particular, an improved picture of the polarizabilities leads to a deeper

understanding of BBR shifts and uncertainties in the molecule. As we will see later, these future

design decisions rely primarily on balancing the fractional uncertainty imposed by a mismatch in

polarizability and resulting BBR shift, with the instability introduced by the near-resonant lattice.

4.1.3 A precise measurement of the dynamic polarizabilities of strontium dimers

In order to evaluate the polarizability behaviour of our ground state molecules, we use Stark

shift spectroscopy to measure differential light shifts of narrow clock-like transitions in the pres-

ence of auxiliary high-intensity 1950 nm light. Specifically, we employ a simplified clock spec-

troscopy scheme [18] to probe the differential polarizabilities of rovibrational levels, 𝑋𝑔 (𝑣, 0),
relative to the most weakly-bound, 𝑋𝑔 (62, 0), state (see figure 4.6). At 1950 nm, we predict in-

duced light shifts > 1 kHz/100 mW, which is definitively resolvable with our current clock.

As before, our clock-like transitions are two-photon transitions from the least bound vibra-

tional state in the ground electronic potential, 𝑋𝑔 (−1, 0), to a more deeply bound vibrational state,

𝑋𝑔 (𝑣, 0), via an intermediate state in the electronically excited 0+𝑢 potential. The particular 0+𝑢 state

is selected based on favourable Franck-Condon factors with both the weakly-bound and deeply-

bound clock states near the 𝐴1Σ+
𝑢 and 𝐶3Π𝑢 avoided crossing [39]. Both clock lasers are stabilized

in reference to a high-finesse cavity and the frequency comb, while the lattice is locked to the

wavemeter. As discussed in section 2.2.2, we can achieve ∼ 1 kHz linewidths with this locking
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Figure 4.6: A scheme for probing the light shift on a clock transition from a auxiliary 1950 nm light
source. We perform spectroscopy of our molecular clock transition using a two-photon Raman
transition via an intermediate state in the 0+𝑢 (red arrows) in a magic lattice that couples our deeply-
bound clock state to an excited 1𝑢 state (blue arrow). We induce Stark shifts to probe differential
polarizabilities of ground rovibrational states with 1950 nm light (orange arrow).
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scheme, which is sufficient for this investigation.

Our experiment design is fairly simple. We measure the light shift of a transition between

𝑋𝑔 (62, 0) and another ground state 𝑋𝑔 (𝑣, 0) in a magic lattice at various intensities of 1950 nm

light. For each state, we measure the light shift at three powers of the 1950 nm probe light. At

each power, we scan our clock-like resonance, interrogating with our 1950 nm light for ∼ 2 ms;

to determine the shift at a given power, we interleave measurements of the transition position with

the 1950 nm light on and the 1950 nm light shuttered, and average each peak position over 5 runs

(see figure 4.7). Over the course of a light shift measurement, we find 1950 nm power drift up to

∼10 mW, since we do not actively stabilise the frequency or power of this laser. This drift, how-

ever, does not contribute significantly to artificial broadening of our transition linewidth, which

remains dominated by frequency instabilities of the lattice around the magic wavelength.

Since we do not have a reliable method for measuring the beam waist and power of 1950 nm

Figure 4.7: Light shift of the 𝑋𝑔 (0, 0) state with 1950 nm light. We measure the linear light shift
as a function of 1950 nm laser power (left). Each point is measured by interleaving scans of the
resonance with the 1950 nm light on and off, and averaging over five runs. An example scan at
1.1 W is shown (right).
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light in the chamber, we calibrate the intensity of 1950 nm light at the molecules by measuring

the light shift of a reference transition, namely 𝑋𝑔 (62, 0) to 𝑋𝑔 (27, 0). This transition is, in turn,

calibrated to a known atomic line. We reference our light shift measurements to the intercombi-

nation line of 88Sr, the 1S0 →3P1 transition, whose polarizability is 326.16(3.59) a.u. [85]. By

directly comparing the light shift on the intercombination line to that of the 𝑋𝑔 (62, 0) to 𝑋𝑔 (27, 0),
we calibrate the effective intensity of 1950 nm light at the molecules (see figure 4.8). In this way,

we perform a frequency-only measurement of the differential polarizability of our ground state

molecules.

Figure 4.8: Calibration of the 1950 nm light intensity to polarizability of the 88Sr 1S0 to 3P1
transition. We calibrate the light intensity by referencing the light shift on the intercombination
line (right, blue) to the 𝑋𝑔 (62, 0) to 𝑋𝑔 (27, 0) transition (left, red).
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Table 4.1: Probing the dynamic polarizabilities throughout the electronic ground state. Relevant
states, 𝑋𝑔 (𝑣, 0), with corresponding binding energies relative to 𝑋𝑔 (62, 0), intermediate transition,
0+𝑢 (𝑣′, 1) and magic wavelengths and corresponding 1𝑢 states are listed.

𝑋𝑔 (𝑣, 0) (𝐸62 − 𝐸𝑣)/ℎ (MHz) 0+𝑢 (𝑣′, 1) 𝜆magic (nm) 1𝑢 (𝑣′, 1)𝑚𝑎𝑔𝑖𝑐
61 1 263.680(76) 15 – –
55 108 214.221(78) 15 – –
41 2 177 876.735(88) 11 996.4379 23
27 8 075 406.28(10) 11 1006.5787 19
12 19 176 451.65(11) 16 1007.7634 14
7 24 031 492.42(12) 15 1007.1334 12
1 30 640 159.75(12) 11 1016.9714 8
0 31 825 183.17(13) 11 1004.7720 9

We probe a host of vibrational levels sampling the entire electronic ground state potential (see

table 4.1). This flexibility requires us to build several different probe lasers, spanning 730-800 nm,

and leverage various intermediate states in 0+𝑢 excited potential. Additionally, we measured all

binding energies to ∼100 kHz precision, which improves on the precision previously set by our

experiment for several of the vibrational states. All told, these measurements span all regimes of

the ground potential and help paint a complete picture of dynamic polarizabilities of our molecule.

In order to perform this measurement, we must first spectroscopically locate our states of in-

terest and demonstrate two-photon Raman spectroscopy via a favourable intermediate state. To

do so, we use EIT spectroscopy to initially locate the Raman transition frequencies to ∼100 kHz

precision (see section 2.4.1), and then detune both of our clock lasers by +30 MHz to scan our nar-

row Raman transition. We engineer magic traps by selecting preferable 1𝑢 transitions (see section

2.3.3), and by measuring the lattice light shift near this 1𝑢 transition. We scan the transition at high

and low lattice intensities to locate the magic wavelength, which we stabilise to our wavemeter

(∼100 MHz precision). In order to have long enough clock interrogation times, we require transi-

tion strengths ≳ 10−5 a.u., such that scattering lifetimes are long enough to reach Fourier-limited

∼1 kHz linewidths.
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Probing these dynamic polarizabilities to ∼ kHz precision, we find that the results do not agree

with the predictions of this early theory [25], but rather show a monotonic behaviour as a function

of binding energy (see figure 4.9). As a consequence, we find that these predicted off-resonant

magic wavelength conditions cannot be satisfied at 1950 nm, and suggests that these types of

naturally-occuring, atom-like polarizability crossings do not exist in our molecule in the IR regime.

As I will discuss next, the experimental values are well described by a new, simpler ab initio theory.
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Figure 4.9: Differential polarizability of a set of 𝑋𝑔 (𝑣, 0) states with respect to 𝑋𝑔 (−1, 0). The
states in the ground state show a monotonic behaviour with binding energy, contrary to previous
theoretical predictions (orange), which largely overestimate the polarizability difference in our
ground state molecule. Comparisons to ab initio theory (blue) are in good agreement with experi-
ment (see section 4.1.4 for details).
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4.1.4 An improved theoretical picture

The previous polarizability model was derived from a sum-over-states calculation. Conven-

tionally, the polarizability of a state 𝑖 can be calculated from

𝛼𝑖 (𝜔) = 2
ℏ

∑︁
𝑖≠ 𝑗

��𝑑𝑖 𝑗 ��2 𝜔𝑖 𝑗

𝜔2
𝑖 𝑗 − 𝜔2

(4.1)

where 𝑑𝑖 𝑗 is the dipole-moment matrix element and 𝜔𝑖 𝑗 is the transition frequency between state 𝑖

and state 𝑗 [86]. The previous model performs the summation over all electronic, vibrational, and

rotational quantum numbers, including the rovibrational continua of different, higher-lying excited

electronic potentials, and including the spin-orbit coupling contribution between the lowest elec-

tronic potentials [25]. In this way, it is a fairly complete study, but it, crucially, relies on precise

calculations of excited state binding energies. Contributions of the non-monotonic behaviour come

primarily from higher-lying excited potentials, which are notoriously difficult to describe [25].

This may partially explain why the predictions do not adequately reproduce experimental data.

We instead use ab initio models5 to calculate the dynamic polarizabilities of 88Sr2. While this

model does not incorporate any vibrational state-specific information, in homonuclear molecules,

the polarizability behaviour is inherited from the electronic structure of the molecule. For any given

lattice light frequency 𝜔, we first calculate the interaction-induced polarizability of Sr2 molecules,

𝛼int
𝑖 𝑗 (𝜔; 𝑅) = 𝛼𝑖 𝑗 (𝜔; 𝑅) − 2𝛼atom(𝜔) (4.2)

where 𝛼𝑖 𝑗 (𝜔) are tensor components of the total molecular polarizability and 𝛼atom(𝜔) is the

atomic polarizability at frequency 𝜔. Since we are working only with isotropic 𝐽 = 0 states,

we take the trace polarizability 𝛼int(𝜔; 𝑅) = [𝛼int
𝑧𝑧 (𝜔; 𝑅) + 2𝛼int

𝑥𝑥 (𝜔; 𝑅)]/3 [90, 91]. We extend the

5The ab initio model we employ is based on asymmetric analytical derivative of the coupled-cluster energy with
single and double excitations (CCSD) [87], as implemented in the Q-Chem 5 package [88]. We use the ECP28MDF
pseudopotential together with its dedicated valence basis set [89].
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model for large 𝑅 using a fitted long-range form [92]

𝛼int(𝜔; 𝑅) ∼ 𝐴6(𝜔)𝑅−6 + 𝐴8(𝜔)𝑅−8 + 𝐴10(𝜔)𝑅−10 (4.3)

Figure 4.10 shows the isotropic component 𝛼int(𝜔; 𝑅) at 1.95 µm as a function of 𝑅. The results

are in excellent agreement with the experimental values and show that the induced polarizability

is dependent on the wavefunction and chemistry of the particular vibrational state. The R-centroid

approximation allows us to estimate the interaction-induced polarizability at the mean internuclear

distance 𝑅̃𝑣 of state 𝑣 using the differential polarizability of a 𝑣 ↔ 62 transition:

𝛼int(𝜔; 𝑅̃𝑣) ≈ −Δ𝛼𝑣↔62(𝜔), (4.4)

where 𝑅̃𝑣 =
∫ ∞

0 |Ψ𝑣 (𝑅) |2 𝑅𝑑𝑅. This formula neglects the small interaction-induced polarizability

of the 𝑣′ = 62 state. Thus, different vibrational transitions effectively serve as probes of polariz-

abilities, each at a different internuclear separation, as shown in figure 4.10.

Interestingly, we find a sharp increase in the polarizability as we move towards smaller in-

ternuclear separations, which can be interpreted as corresponding to some global change in the

molecular structure or chemistry. Upon closer inspection, we find that the onset in the sudden

change in polarizability corresponds to the LeRoy radius [93, 94], which is defined as

𝑅𝐿𝑅 = 2[⟨𝑟2
𝐴⟩1/2 + ⟨𝑟2

𝐵⟩1/2], (4.5)

where 𝑟𝐴 and 𝑟𝐵 denote the radii of the two atoms. In this way, for 𝑟 > 𝑅LR, the molecular poten-

tial can be reasonably approximated by the component atomic distributions, while for 𝑟 < 𝑅LR, a

classical or semi-classical picture is no longer valid, and we must consider a full molecular model

[93, 95, 96]. More generally, we can interpret the LeRoy radius as corresponding to the formation

of a molecular bond and the onset of molecular chemistry.
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Figure 4.10: Interaction-induced ac polarizability at 𝜆 = 1.95 µm. In addition to the ab initio
result we show absolute experimental polarizabilities in relation to mean internuclear distances 𝑅̃.
Horizontal bars indicate the range [𝑅̃𝑣 − 𝑆𝑅𝑣

, 𝑅̃𝑣 + 𝑆𝑅𝑣
] of internuclear distances probed by the

vibrational wavefunctions shown in the lower panel. Here 𝑅̃𝑣 and 𝑆𝑅𝑣
are the mean and standard

deviation internuclear distances for wavefunction squared treated as a probability distribution. 𝑅𝑒
and 𝑅LR are, respectively, the equlibrium distance and the LeRoy radius [93, 94].

To model the polarizability of each vibrational level 𝑣 and extend this picture to all infrared

wavelengths (see figure 4.11), we average the electronic polarizability 𝛼int(𝑅) over the level’s

vibrational wavefunction Ψ𝑣 (𝑅):

𝛼int
𝑣 (𝜔) =

∫ ∞

0
|Ψ𝑣 (𝑅) |2 𝛼int(𝜔; 𝑅)𝑑𝑅 (4.6)
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where the differential polarizability for a transition 𝑣 ↔ 𝑣′ is

Δ𝛼𝑣↔𝑣′ (𝜔) = 𝛼int
𝑣′ (𝜔) − 𝛼int

𝑣 (𝜔) (4.7)

We obtain the vibrational wavefunctions by solving the radial Schrödinger equation, [− ℏ2

2𝜇
𝑑2

𝑑𝑅2 +
𝑉 (𝑅)]Ψ𝑣 (𝑅) = 𝐸𝑣Ψ𝑣 (𝑅) using a matrix discrete variable representation (DVR) method [97, 98].

We use an accurate molecular potential 𝑉 (𝑅) derived from Fourier-transform spectroscopy [31],

and the reduced mass 𝜇 equals half the mass of a Sr atom.
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Figure 4.11: Differential polarizability with respect to the least-bound 𝑣 = 62 state in ground state
Sr2. Points denote experimentally measured ac polarizabilities at 𝜆 = 1.95 µm. Lines are ab initio
polarizabilities from dc to 𝜆 = 1.25 µm.
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Again, the calculated differential dc and ac polarizabilities for 𝑣 ↔ 62 transitions match experi-

mental values at 1950 nm (figure 4.11). Importantly, the monotonic behaviour seen experimentally

persists at all IR wavelengths. It should be noted that this approach to theoretically extend our

model is valid only when the adiabaticity condition is maintained, that is, that the ground-state

potential does not cross any of the excited-state potentials if shifted upwards by the lattice photon

energy. In Sr2, the adiabaticity requirement limits the photon wavenumber to about 8000 cm−1

(1.25 µm). Both our ac Stark shift measurements 5128 cm−1 (1.95 µm) and the dominant spectral

energy density of room temperature BBR are well within this margin.

This model provides us with two complementary descriptions of the ground state dynamic po-

larizabilities: (1) as a function of vibrational state, and (2) as a function of internuclear separation,

or effective bond length. As we experimentally probe various vibrational states, we explore var-

ious depths of the ground potential. While this new picture does not predict off-resonant magic

lattices, it reproduces our experimental data remarkably well (see table 4.2) and, as a consequence,

we have gained a more complete understanding of our molecule through this study. In particu-

lar, we can more definitively predict the size of the fractional uncertainty, or broadening, of the

clock linewidth that we expect in a non-magic lattice. Since it is technically simpler to confine

our molecules in a non-magic trap, depending on the size of this fractional uncertainty and the

particular experiment of interest, we may still benefit from leveraging this strategy. I will further

discuss these implications in the final section of this chapter.

Table 4.2: A comparison of experimental differential polarizabilities to ab initio theory.
𝑋𝑔 (𝑣, 0) Δ𝛼exp

𝑣,62 Δ𝛼th
𝑣,62

61 -0.41(0.52) -0.13
55 -3.68(0.38) -3.01
41 -21.67(0.88) -19.10
27 -40.4(1.8) -39.3
12 -60.1(4.0) -61.3
7 -66.0(2.5) -68.3
1 -75.7(3.3) -76.0
0 -76.4(3.6) -77.2
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4.2 Suppressing BBR Shifts in Homonuclear Molecules

The overwhelming majority of the BBR spectral energy density, the light radiation that con-

tributes to the BBR shift, falls below 2 µm. As such, in order to determine the corresponding BBR

shifts of our molecule, we leverage this model of the differential polarizabilities at all wavelengths

from dc to infrared. While we cannot experimentally probe this entire range of wavelengths, we

rely on close agreement between theory and experiment at 1.95 µm to validate and extend theoret-

ical models to provide a full description of the BBR shift.

The key test of our model relies on a direct comparison and strong agreement of measured

molecular differential polarizability at 1.95 µm with the calculated values (see table 4.2). For ex-

ample, the theoretical differential polarizability for the 0 ↔ 62 clock transition, Δ𝛼0↔62(𝜔), is

−77.2 a.u. compared to the experimental value of −76.4(3.6) a.u.. As we move to more deeply

bound target states, the differential polarizabilities increase monotonically as they pick up addi-

tional polarizability induced my molecular interactions and chemistry.

The range of investigated target levels from the ground 𝑣 = 0 state to the second-to-least bound

𝑣 = 61 state spans internuclear distances from 8.86 𝑎0 (approximately the equilibrium distance 𝑅𝑒)

to 43.6 𝑎0. To estimate the relative uncertainty of our theoretical model, we fit it to the experi-

mental data by simple scaling. The best least-squares fit is achieved by scaling the model up by

+1.8(2.4)%. This, however, is compatible with zero, implying that no model scaling is necessary.6

Nevertheless, to estimate the accuracy of our theoretical model, we combine the 2.4% uncertainty

from the scaling factor with an additional 1.8% possible systematic error to obtain a “Type B”

uncertainty [99] of 2.6%.

In order to adequately characterise the BBR shift on our clock line, we need to fully consider

6In fact, the reduced chi-square 𝜒2/dof = 1.78 for the scaled model (dof = 7) is worse than 𝜒2/dof = 1.69
(dof = 8) for the original, unscaled model.
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the shift induced at all wavelengths of the BBR spectrum. The BBR-induced shift Δ 𝑓𝑣↔𝑣′ can be

expressed as an ac Stark shift integrated over the BBR spectrum [73, 100, 101]:

Δ 𝑓𝑣↔𝑣′ = − 1
2ℎ

∫ ∞

0

4𝜋
𝜖0𝑐

𝐵𝜔 (𝑇)Δ𝛼𝑣↔𝑣′ (𝜔)𝑑𝜔, (4.8)

where the spectral radiance of the BBR field at temperature 𝑇 is

𝐵𝜔 (𝑇) = ℏ𝜔3

4𝜋3𝑐2
1

exp(ℏ𝜔/𝑘𝐵𝑇) − 1
. (4.9)

Typically, BBR shifts for atomic clocks are determined using a sum-over-states approach to

calculate the static and dynamic terms [36, 86, 100–102], but here we already have computed

the dynamic polarizabilities, so we can directly integrate the BBR shift. Since most of the BBR

spectral energy density falls below any resonance frequencies in our system, we expand the polar-

izability in terms of Cauchy coefficients [86]: Δ𝛼𝑣↔𝑣′ (𝜔) = Δ𝛼(0)
𝑣↔𝑣′ +Δ𝛼(2)

𝑣↔𝑣′𝜔
2 +Δ𝛼(4)

𝑣↔𝑣′𝜔
4 + . . .

that we fit to tenth order to numerically calculated polarizabilities [figure 4.12(a)]. This allows us

to express the BBR shift as a series:

Δ 𝑓𝑣↔𝑣′ =
∑︁

𝑛=0,2,...
Δ 𝑓 (𝑛)𝑣 =

∑︁
𝑛=0,2,...

−𝑐𝑛Δ𝛼
(𝑛)
𝑣↔𝑣′

4𝜋3𝜖0𝑐3

(
𝑘𝐵𝑇

ℏ

)4+𝑛
, (4.10)

where the Planck integrals 𝑐𝑛 =
∫ ∞

0 𝑢3+𝑛/(𝑒𝑢 − 1)𝑑𝑢 are given in table 4.3. The leading term is the

well known static contribution to the BBR shift [36, 73], while further terms constitute a dynamic

correction 𝜂 on the order of 0.5–0.6 % (table 4.3). Terms beyond the second order are negligible.

Table 4.3: Contributions to the BBR shift at 300 K for the 0 ↔ 1 and 0 ↔ 62 transitions.
𝑛 𝑐𝑛 Δ 𝑓 (𝑛)0↔1 (Hz) Δ 𝑓 (𝑛)0↔1/ 𝑓0↔1 Δ 𝑓 (𝑛)0↔62 (Hz) Δ 𝑓 (𝑛)0↔62/ 𝑓0↔62
0 𝜋4/15 +0.0081 +6.8 × 10−15 +0.53 +1.7 × 10−14

2 8𝜋6/63 +6.1 × 10−5 +5.1 × 10−17 +0.0033 +1.0 × 10−16

4 8𝜋8/15 +6.5 × 10−7 +5.5 × 10−19 +6.3 × 10−5 +2.0 × 10−18

𝜂 (%) 0.54 0.62
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Since the molecular clock uniquely provides an array of available clock states, we calculate

the BBR shift for other clock transitions. In figure 4.12(b), we plot the BBR shift for 𝑣 ↔ 62

transitions, Δ 𝑓𝑣↔62 (red line). The BBR shift for our previously measured clock transition [18],

Δ 𝑓0↔62, is +538 mHz with a fractional uncertainty of 4.7×10−16. We further find that the fractional

uncertainty of the BBR shift can be reduced by strategically selecting 0 ↔ 𝑣′ clock transitions (blue

line) between deeply bound vibrational states [figure 4.12(c)]. This configuration could allow the

fractional uncertainty to be as low as 1.8×10−16, a factor of ∼2.5 lower than the 0 ↔ 62 transition.

This provides a promising pathway toward a BBR-suppressed clock configuration.
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4.3 Shielding Against Collisional losses

In addition to constructing a new vertical lattice and suppressing the BBR effect, we still need

to contend with the inherent two-body losses from molecular collisions in the trap. Currently, our

linewidths are Fourier-limited to 5 Hz due to our ∼ 200 ms lifetime in the ground state [47]. The

key to mitigating shortened molecular lifetimes from collisions is to reduce the density or increase

confinement volume of molecules in our experiment. We, however, must consider methods to re-

duce trap density, while still maintaining large enough signal-to-noise to make a compelling clock

measurement.

In our previous clock experiment, we already demonstrated a near 1 𝑁𝑚𝑜𝑙 /site measurement [18].

We can further shield our molecules from collisions by implementing a wider 1D vertical lattice,

that is, by expanding the lattice beam width, such that we have larger, less dense pancakes of

molecules. This can be easily implemented in conjunction with the construction of a new vertical

lattice. Future iterations of the clock may implement even tighter confinement to shield against

collisions, including 3D lattices or tweezer-like traps.

Many other groups have implemented these strategies with success. For instance, by directly

loading molecules into a deep 3D optical lattice, two-body losses are suppressed resulting in trap-

ping lifetime of nearly 25 s in a low filling lattice [51]. This suggests that we could easily improve

our lifetimes by an order of magnitude, which would allow us to access sub-Hz precision on our

molecular clock.

4.4 A Proposal for an Improved Molecular Clock

As we seek to combat these issues in our current clock system, we turn our focus primarily to

the design of our lattice and our choice of clock states. One crucial limitation to this magic wave-

length configuration is that our clock state lifetimes are limited due to lattice-induced scattering,
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which imposes a Fourier limit on the clock linewidths [18]. In order to increase our clock state

lifetimes, we hope to engineer our lattice further away from excited transitions, while, additionally,

lowering the overall intensity and density of the trap.

While we cannot perfectly satisfy a magic condition with an off-resonant lattice, one approach

is to build magic wavelength traps away from resonances between deeply bound vibrational states

with similar enough polarizabilities in an IR lattice, such as a 1550 nm or 1950 nm lattice. Again,

this wavelength sits well below any vibrational states in excited electronic potentials, and so, at this

wavelength, the lattice-induced scattering would be greatly reduced. Nevertheless, the clock will

suffer thermal broadening in this non-magic trap due to the mismatch in polarizability of the two

states, given that there are no natural polarizability crossings at this wavelength. Previously, we

demonstrated that, if molecules can be trapped and probed in the Lamb-Dicke (LD) and resolved-

sideband (RSB) regimes of an optical lattice, the temperature, 𝑇 , is determined from the linewidth

of the main carrier transition [35]. Assuming the temperature of our sample, we can, in turn, infer

the resulting inhomogeneous broadening of the linewidth of our transition, given the polarizabili-

ties of the two states.

A deeply bound 𝑋𝑔 (0, 0) to 𝑋𝑔 (𝑣, 0) clock requires us to initialise the population in the ab-

solute ground state, 𝑋𝑔 (0, 0), via STIRAP [47], and then scan the two-photon transition to an

excited vibrational state, 𝑋𝑔 (𝑣, 0). The 𝑋𝑔 (0, 0) → 𝑋𝑔 (1, 0) transition is the best candidate for this

clock configuration since it has the smallest natural polarizability mismatch, Δ𝛼 ∼ 0.7(0.1) a.u.

We simulate the expected lineshape of such a clock transition, accounting for the inhomogeneous

broadening due to the difference in polarizability to gain insight into the precision of this clock.

Specifically, we are interested in probing whether this inhomogeneous thermal broadening is more

significant than near-resonance effects in our conventional clock.

Using the results from ab initio theory for the polarizabilities of the 𝑋𝑔 (0, 0) and the 𝑋𝑔 (1, 0)
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states, as given in table 4.2, we predict the size of this inhomogeneous broadening. At our opera-

tional temperature of 2 𝜇K, the projected linewidth of an 𝑋𝑔 (0, 0) → 𝑋𝑔 (1, 0) clock in a non-magic

lattice would be ∼100 Hz. Given a transition frequency of 1.185 THz between these two states, the

fractional uncertainty of the clock transition (1/𝑄) is 8.439 × 10−11. We compare this precision to

the current record for the 𝑋𝑔 (62, 0) to 𝑋𝑔 (0, 0) transition at near-magic condition (as configured in

[18]), which gives a fractional uncertainty of 3.39927 × 10−13 before averaging. In fact, this new

clock only outperforms our current clock at very low, ∼ nK, temperatures, which are inaccessible

in our system (see figure 4.13).

Figure 4.13: Projected Q factor for a non-magic deeply-bound clock construction. We compare the
Q factor of a non-magic 𝑋𝑔 (0, 0) to 𝑋𝑔 (1, 0) with our current record clock at various temperatures
(above). This new clock only outperforms our current clock at very low temperature, ∼ nK. At
2 𝜇K, the 𝑋𝑔 (0, 0) to 𝑋𝑔 (1, 0) clock, which has minimum polarizability mismatch, offers the best
Q factor, still orders of magnitude lower than our current clock. We conclude that non-magic
clocks are not a viable option for the highest-precision experiments.
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Additionally, we can extend this study to all other 𝑋𝑔 (0, 0) to 𝑋𝑔 (𝑣, 0) clock transitions. We

calculate the Q factor for a range of possible pairs of states in the off-magic configuration assuming

molecules at 2 𝜇K, and find that the fractional uncertainty is significantly worse than that for our

current configuration. This indicates that the increase in inhomogeneous broadening of the line-

shape due to the difference in polarizability is greater than the linewidth narrowing due to longer

scattering lifetimes (see figure 4.13).

While these results may seem dire, clocks with a non-magic, off-resonant lattice can still allow

for sub-kHz spectroscopy, but at a fraction of the technical challenges. In fact, many complex

clock measurements that probe interesting concepts or aspects of our molecules can be carried out

at this level. The polarizability measurement already described is just one example of this type of

measurement, which did not require the level of technical control described in chapter 3. In some

cases, the gain in technical simplicity outweighs the loss in precision from the instability and inho-

mogeneous broadening introduced by the non-magic trap. Particular experiments may, therefore,

favour this approach, at least at a first pass.

Finally, we leverage our new theoretical picture to consider alternative resonant magic clock

configurations. Using a fairly naive picture as an extension of our 1950 nm model at 1000 nm, we

can infer the behaviour of the polarizabilities and predict magic wavelengths and corresponding

scattering rates. Specifically, we estimate the polarizability of other clock states in this region by

using our measured differential polarizability, 𝛿𝛼62,0, between 𝑋𝑔 (0, 0) and 𝑋𝑔 (62, 0) at 1000 nm,

and assume a linear dependence on polarizability with vibrational quantum number, 𝛿𝛼/𝛿𝑣 (see

figure 4.14). This decision is motivated by our measurements at 1950 nm, where the polarizability

of vibrational states shows a hockey-stick-like behaviour (see figure 4.11), but which can be ade-

quately approximated by a line, especially for weakly-bound states.
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Figure 4.14: Modeling the polarizability behaviour of 𝑋𝑔 (0, 0) and 𝑋𝑔 (𝑣, 0) in near-resonant magic
traps. We plot the resonant behaviour of 𝑋𝑔 (0, 0) polarizability around the 1𝑢 (9, 1) excited reso-
nance and fit a line to model the background polarizability (above) [25]. The intersection with
the 𝑋𝑔 (62, 0) occurs at 4.49 GHz detuned from resonance as measured in our experiment [18].
We estimate the polarizability of other clock states in this region using 𝛿𝛼62,0 and assume a linear
𝛿𝛼/𝛿𝑣. Since 𝑅𝑠𝑐𝑎𝑡𝑡 ∼ 1/Δ2, we predict magic detunings for other clock states in order to capitalise
on improvement in molecular lifetime.
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As described in section 2.3.1, since 𝑅𝑠𝑐𝑎𝑡𝑡 ∼ 1/Δ2, if we simply double the size of our magic

detuning, Δ, we should expect a factor of 4 improvement in the scattering rates. There is a lot

of potential stability to be gained by using more deeply bound states, despite the tradeoff in the

overall size of the transition. In fact, we find two orders of magnitude improvement in the 𝑄 factor

of a resonant magic 𝑋𝑔 (0, 0) to 𝑋𝑔 (1, 0) clock (see figure 4.15). This clock configuration has the

added advantage of the smallest overall BBR shift and smallest corresponding fractional uncer-

tainty. What is more, a variety of deeply bound state pairs promise an order of magnitude better

𝑄 factors due to these larger magic detunings that mitigate lattice scattering. This construction, in

combination with other proposed improvements, serves as a promising pathway forward towards

our second generation molecular clock.
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Figure 4.15: Projected Q factor of 𝑋𝑔 (0, 0) to 𝑋𝑔 (𝑣, 0) in near-resonant magic traps. We find two
orders of magnitude improvement in the 𝑄 factor of a resonant magic 𝑋𝑔 (0, 0) to 𝑋𝑔 (1, 0) clock
over our current clock.
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Chapter 5: Improving Constraints on Non-Newtonian Gravity

5.1 Probing Mass-Dependent Interactions

5.1.1 Isotopologues of strontium as a testbed for ultrashort-range gravity

In our entire discussion, we have focused on methods to better understand the spectroscopic

landscape of our molecule. These spectra are, in a way, the characteristic signature of each atom

and molecule. We use spectroscopy, and changes in the spectra, as a way to probe fundamental

physics because they are highly sensitive testbeds for the environment or any changes in it. What

is more, atoms and molecules offer a flexible lego-like platform for tailor-made and designed ex-

periments to investigate new physics at low energies.

When searching for extensions or corrections to mass-dependent forces, such as gravity, lever-

aging different isotopes or isotopologues, that is atoms or molecules with a different number of

neutrons and a different mass, is a natural solution. Specifically, since these isotopes all have the

same number of electrons and, therefore, share a similar electronic structure, different isotopes

exhibit nearly identical chemical and spectroscopic features. Of course, changes in the neutron

number of an atom affects both the nuclear size and mass of a particular isotope. These changes

result in shifts in the spectra of the atom, although these shifts can be quite subtle, particularly for

heavier elements. Regardless, we can quantify the isotope shift for two isotopes of an atom with

total atomic mass 𝐴′ and 𝐴 as

𝛿𝜈𝐴𝐴
′

𝐼𝑆 = 𝛿𝜈𝐴𝐴
′

𝐹𝑆 + 𝛿𝜈𝐴𝐴′𝑀𝑆 (5.1)

where the overall isotope shift (IS) is comprised of a field shift (FS), a shift that arises due to the
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volume change and resulting change in charge distribution, and a mass shift (MS), which arises

from the additional mass in heavier isotopes [103]. We conventionally write this as

𝛿𝜈𝐴𝐴
′

𝐼𝑆 = 𝐹𝛿⟨𝑟2⟩𝐴𝐴′ + 𝐾 𝑀𝐴′ − 𝑀𝐴

𝑀𝐴′𝑀𝐴
(5.2)

where 𝐹 and 𝐾 are the field shift and mass shift factors, where these factors are related to the

change in atomic radius and the relative mass difference [104]. In reality, it is difficult to separate

these terms from one another and isolate or quantify extra shifts due solely to mass-dependent

forces on an atom or molecule. King linearity, or King plot analysis, is one proposed method to

quantify non-linear isotope shifts that could indicate new forces [105].

In our case, we plan to begin with a different approach to understand these extra shifts in the

spectra of our molecules. We will treat these corrections to gravity as small perturbations in the

potential energy component of the Hamiltonian that governs the system. We can, therefore, de-

scribe small changes in the energy of specific eigenstates of the Hamiltonian, which arise from

this perturbation. As mentioned previously, there is particular interest currently on Yukawa-type

corrections to Newtonian gravity at short separations [11, 23], wherein the gravitational potential

between two point masses experiences an additional large exponential term at short ranges (as in

equation 1.5).

In order to quantify the energy shift that results from this perturbation, we consider a Hamilto-

nian H governing the overall behaviour of the system and add a perturbative potential due to the

Yukawa-type correction, H1, where

H1 = 𝑉Yukawa = −𝐺𝑚1𝑚2
𝑟

𝛼𝑒−𝑟/𝜆 (5.3)

In our specific system, we have robust theoretical models, as previously shown, that describe the

wavefunctions of the ground rovibrational states of our molecules to a good approximation [57].
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These models can provide the wavefunctions for all bosonic isotopologues of strontium, which we

would be interested in studying in our system. Given these state wavefunctions, we can define the

first-order perturbation of the energies of each vibrational state, 𝑣, as

Δ𝐸𝑣 = ⟨𝑣 |H1 |𝑣⟩ = ⟨𝑣 |𝑉Yukawa |𝑣⟩ (5.4)

This state-specific change in energy imparts an overall shift in the clock frequency measured be-

tween two vibrational ground states. If we consider two states, 𝑣 and 𝑣′, the overall shift in the

measured clock frequency from a Yukawa-type correction is

𝛿 𝑓Yukawa = (Δ𝐸𝑣 − Δ𝐸′
𝑣)/ℎ (5.5)

In this way, we define the extra shift — that is, any anomalous shift in addition to the expected

isotope shift — between two isotopologues of strontium with total atomic mass 𝐴′ and 𝐴 as the

frequency difference of the shift between the same clock transitions in the two isotopologues

𝛿𝜈Yukawa
𝐼𝑆 = 𝛿 𝑓 𝐴Yukawa − 𝛿 𝑓 𝐴

′
Yukawa (5.6)

In other words, by performing a clock measurement for two or more different isotopologues of

strontium, we can search for any additional shifts as indicators of a fifth-force or correction to

gravity. In so doing, we can continue to constrain the size of such corrections by pushing the limits

of the precision and accuracy of our molecular clock.

5.1.2 Making 86Sr2 molecules

Before we can measure the isotope shift in strontium, we need an ultracold sample of 86Sr2. In

our system, we have already successfully demonstrated high levels of quantum control over 88Sr

dimers, have measured a molecular clock transition to record precision and have described avenues

for improved precision in subsequent clock constructions. With this established architecture, we
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can now design a protocol for cooling and trapping 86Sr, the next most abundant bosonic isotope,

as we move towards making an isotope shift measurement of our clock transition as a mechanism

towards improving the constraints set on Yukawa-type corrections to gravity.

First and foremost, we need to establish a new cooling and trapping scheme that accounts for

isotope shifts in the atomic spectra. As described in section 5.1.1, the spectrum of the atom will

change as a result of both field and mass shifts from the change in neutron number. The spectrum

of bosonic isotopes of strontium has been extensively studied [106–108], which provides a starting

point for our experiment design. We are particularly interested in quantifying the isotope shifts

for the main and narrow-line cooling transitions, corresponding to the formation of the blue and

red MOTs. Isotope shifts on repump transitions are ∼ 100 MHz, but are less of a concern for our

experiment design, since our blue MOT capture number is relatively insensitive to the frequency

of the repumps. These shifts, listed in table 5.1, are accessible by conventional AOMs [106, 107].

We have already observed successful trapping of 86Sr in a blue MOT, although the overall MOT

size is significantly reduced due to the relative abundance of 88Sr versus 86Sr. There are methods

to increase the number of atoms in the MOT, which include switching our strontium source out for

an isotopically enriched sample of strontium and implementing additional transverse cooling in

order to capture a larger fraction of hot atoms in our MOT (see figure 5.1). Regardless, there exist

defined pathways towards achieving a sample of ultracold 86Sr, as has already been demonstrated

in many other experiments [109, 110].

Transition 88Sr (nm) 86Sr (nm) 𝛿𝜈𝐼𝑆 (MHz)
1S0-1P1 460.862369 460.862457 -124.80
1S0-3P1 689.449098 689.449357 -163.81

Table 5.1: Isotope shifts between 88Sr and 86Sr for the primary cooling and trapping transitions.
Shifts on repump lines are ∼ 100 MHz, but are not listed here since the blue MOT capture number
is relatively insensitive to frequency changes in the repumps at the level of the isotope shift [106,
107].
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Figure 5.1: A scheme for transverse cooling in our molecular clock. We pick off a small amount
of light from our Zeeman slower for additional cooling along the transverse direction, just after
our strontium oven. Our current apparatus accommodates transverse cooling through two existing
windows. We can achieve adequate trapping of 86Sr and 84Sr in the blue MOT with a 10 cm
interaction region.

Once we have cooled and trapped 86Sr, we are again interested in photoassociating atoms to

form molecules. In order to create 86Sr2 molecules with high efficiency, we will need to find a

favourable pathway for photoassociation, just as in 88Sr2. As already mentioned, our existing theo-

retical models of strontium atoms and bosonic dimers can be adapted to predict the wavefunctions

and corresponding Franck-Condon factors between states in the ground potential and low-lying

excited potentials of the molecule.

Theoretical models can predict preferable states for molecule preparation. For instance, early

work with 88Sr2 used the 0+𝑢 (−4, 1) state to photoassociate atoms to 𝑋𝑔 (−1, 0/2) molecules with

high efficiency [39], while later work increased the photoassociative efficiency using the 1𝑢 (−1, 1)
state, whose Franck-Condon overlap to the molecular ground state is significantly larger [18].
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These favourable states are informed by theory. Adequate theory is, therefore, crucial when it

comes to future experiment design [39]. Our theoretical models are a useful tool when developing

a strategy towards making ultracold 86Sr2. Our current models predict that favourable transitions

are ∼ 1 GHz detuned from current PA and PD lines [111]. If we plan to interleave our measure-

ments between isotopologues, these isotope shifts are no longer accessible via AOMs and will

require additional, phase-locked lasers.

As a first step, we can demonstrate successful formation of 86Sr2 molecules in our experiment,

and perform the same spectroscopy of the ground potential and coherent transfer to the rovibra-

tional ground state as we have previously demonstrated in 88Sr2. These studies would be integral

to our work towards developing a competitive molecular clock based on 86Sr2 for comparative pre-

cision measurements across isotopologues.

Ultimately, to perform a measurement that would allow us to constrain the Yukawa term, we

would ideally like to interleave clock measurements between 86Sr2 and 88Sr2. Given our current

sequence, which is built using Cicero and Atticus [112], we can design a protocol for interleaving

measurements of both isotopologues with relative ease. In particular, we can alternatively cool

and trap 88Sr and 86Sr using TTL-controlled AOMs and 5V TTL fibre switches1, to selectively

send light of a given frequency to our experiment (see figure 5.2). Using both the 0 and -1 order

deflected light from the AOM, we can span the isotope shift for both the 1S0-1P1 and 1S0-3P1 tran-

sitions. In order to selectively photoassociate (and photodissociate) 86Sr and 88Sr atoms, we add

two additional 689 nm lasers since, in this case, the isotope shift is too large to bridge with AOMs.

We phase-lock the 86Sr PA (PD) laser to our 88Sr PA (PD) laser and again selectively direct light via

TTL-enabled fibre switches to our chamber to create isotopologues of strontium (see figure 5.3).

1e.g. OSW12-633E from Thorlabs or OS-2-1-C-55 from Brimrose
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Figure 5.2: A protocol for interleaved cooling and trapping of 86Sr and 88Sr atoms in our system. We use TTL-enabled AOMs to
selectively modulate light at a frequency matching the isotope shift for a given transition. An additional AOM (AOMO 3200-125) is
included in the red MOT optical path to shift the frequency of light by ∼ 164 MHz and another AOM (AOMO 3110-120) is included in
the blue MOT optical system to shift the frequency of blue light by ∼ 125 MHz before it is distributed to the Zeeman slower and 3 MOT
arms. We can switch between input from modulated (-1 order) light and unmodulated (0 order) light using a TTL-enabled fibre switch.
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∅ ∅

Figure 5.3: A protocol for interleaved creation of weakly-bound 86Sr2 and 88Sr2 molecules. We use a TTL-enabled fibre switch to
selectively send photoassociation light to the experiment from two separate, phase-locked lasers. We phase lock the two lasers at ∼ 1
GHz, a frequency which matches the isotope shift of the PA line relative to 88Sr2.
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In this way, we demonstrate a clear pathway towards selectively and controllably creating 86Sr2

molecules for high-precision spectroscopy and tests of fundamental physics. We propose an in-

terleaved clock measurement at the precision of our current record clock (or better) to probe extra

frequency shifts in our molecular spectra corresponding to a Yukawa-type correction to gravity,

and, in particular, aim to improve constraints on the size of this correction by a few orders of

magnitude.

5.2 Setting New Constraints on the Yukawa Term

5.2.1 Current constraints on 𝛼

We are particularly interested in constraining 𝛼 in equation 5.3, effectively the size of this

correction, for a given range, 𝜆. Some experiments prefer to define and constrain the quantity gauge

coupling constant, 𝑔2, which is a dimensionless parameter that describes the coupling strength

between nucleons and the new particle field; 𝑔2 is related to 𝛼 by [113]

𝛼 ∼
(

ℏ𝑐

4𝜋𝐺𝑚2
𝑝

)
𝑔2 ∼ 1.347 × 1037𝑔2 (5.7)

Historically, there have been many experiments interested in precision measurements of grav-

ity at these short distances. Different experiments are suited for particular range, 𝜆, regimes; for

instance, astrophysical observations constrain 𝛼 at length scales ∼ 𝜆 > 1 cm [114, 115]. We are

most interested in the region probed by our molecules (roughly the internuclear separation, ∼ 0.1

to 10 nm). In the sub-mm range, many of these experiments rely on mechanical setups; some early

examples include Eötvos- and Cavendish-type torsion experiments [116], more recent microelec-

tromechanical systems that focus on measuring the Casimir interaction at short distances [115]

and experiments with Au-coated spheres in a torsion oscillator [117]. Atoms and molecules are a

natural complement to other experiments in this range. There are a number of existing examples

of these kinds of measurements using atomic force microscopy, and neutron scattering on a neutral

atom target [118–122].
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Recent work has set constraints on Yukawa type forces to 𝛼 < 1 × 1025 for 𝜆 ∼ 0.1 nm,

𝛼 < 1.7 × 1020 for 𝜆 ∼ 1 nm and 𝛼 < 1.7 × 1018 for 𝜆 ∼ 10 nm [119, 122–124]. Other comple-

mentary work has constrained 𝛼 on the order of 𝛼 ∼ 1021 for ranges near 𝜆 ∼ 1 nm and 𝛼 ∼ 1010

for ranges near 𝜆 ∼ 100 nm [117] (see figure 5.4). Still these bounds are extremely large, leaving

the door open for novel experimental strategies that can further bound this Yukawa-type correction.

In the following sections, I extend our record-precision molecular spectroscopy to different

strontium isotopologues and project the expected isotope shift due to Yukawa-type corrections to

[Kamiya et al, 2015]

[Haddock et al, 2018]

[M
ohideen et al, 1998]

[Pokotilovski et al, 2006]

[Heacock et al, 2021]

Figure 5.4: The current constraints on the interaction constant, 𝛼, and interaction range, 𝜆, of
the Yukawa-type interaction from various experiments. Previous measurements include micro-
mechanical measurements of the effective Casimir pressure, measurements of the Casimir force
using a torsion pendulum, Cavendish-type experiments and neutron scattering experiments [119,
122–125]. The regions above each line are excluded, and those below each line are allowed.
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gravity. For the purposes of this proposal, we refer to the above constraints to project the expected

mass-dependent shift in strontium. We then leverage our record clock precision to project new

limits on 𝛼(𝜆).

5.2.2 Projected mass-dependent shift in strontium

From the theoretical perspective, the most reliable model of the ground state of 88Sr2 comes

from the RKR analysis of the spectrum obtained in the hot pipe Fourier-transform experiment [31,

46]. Ab initio theories of the ground state of 88Sr2 exist using both the local spin-density functional

formalism and pseudopotential formalism [126, 127], however, improved models of the ground po-

tential are informed by high-precision experimental spectroscopy. Specifically, we need a method

to determine the energy levels of the rovibrational states in the ground potential and their corre-

sponding wavefunctions in order to make predictions about the size of the Yukawa corrections for

our particular ground state molecules. In order to do so, we use the discrete variable representation

(DVR) method to solve the Schrödinger equation (as in [97]), using a non-linear coordinate trans-

formation on the grid to better sample the potential.

Ultimately, we are interested in probing the isotope shift of clock transitions so as to take

advantage of the high levels of precision and accuracy achieved in our molecular system. For each

vibrational state in our clock transition, we find the corresponding additional isotope shift due to a

Yukawa-type correction (from equation 5.6) to be

𝛿 𝑓 Yukawa
𝐼𝑆 (𝑣) = 𝑓 𝐴Yukawa(𝑣) − 𝑓 𝐴

′
Yukawa(𝑣) (5.8)

and find the overall extra isotope shift for the clock transition to be

𝛿𝜈Yukawa
𝐼𝑆 = 𝛿 𝑓 Yukawa

𝐼𝑆 (𝑣) − 𝛿 𝑓 Yukawa
𝐼𝑆 (𝑣′) (5.9)

for our two clock states 𝑣 and 𝑣′.
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Using the above described model, we calculate the overall frequency shift that emerges from

the addition of a Yukawa-type term to the potential by constraining the size of our perturbation to

the current limits. Consequently, we project the expected size of the shift under these conditions in

our molecular system for each vibrational state, in order to demonstrate the feasibility of probing

this new physics with our state-of-the-art molecular clock. We find that we are best suited to probe

shifts for Yukawa interactions at 2 nm or shorter (see figure 5.5). Moreover, weakly-bound states

exhibit a steep drop off in sensitivity near threshold suggestion that this region will be of particular

interest for future experimental studies.

Figure 5.5: Projected shift from the additional Yukawa-type potential. We treat the additional
Yukawa term as a perturbation to the Hamiltonian as in equation 5.3 and calculate the projected
isotope shift between 86Sr2 and 88Sr2 as a function of vibrational state for a series of ranges, 𝜆. 𝛼
for each range is set at the current limit. Different vibrational states probe different internuclear
separations, and deeply-bound states are more sensitive overall to the Yukawa force. The shaded
region corresponds to current absolute clock resolution [18].
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We investigate the 𝜆-dependent behaviour of particular states, for a generic 𝛼 = 1021, to fur-

ther probe the dynamics of the system. We consider specifically 𝑋𝑔 (0, 0), 𝑋𝑔 (1, 0), 𝑋𝑔 (61, 0) and

𝑋𝑔 (62, 0). The response of a given state to a Yukawa-like force correlates to its corresponding

wavefunction of that state (figure 5.6). It is important to note that 𝑋𝑔 (62, 0) state in 86Sr2, referred

to as the halo state, has a very small binding energy, -83.00 kHz [128], and very long mean bond

length; it experiences a small shift by comparison to the other states studied. Overall, we find extra

isotope shifts, 𝛿𝜈Yukawa
𝐼𝑆 , on these clock transitions on the order of ∼ 100 Hz, resolvable with our

current clock precision (see figure 5.7 and 5.8).
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Figure 5.6: Projected shift from the additional Yukawa-type potential as a function of 𝜆. Different
vibrational states probe different internuclear separations, and deeply-bound states are more sensi-
tive overall to the Yukawa force. The onset of response corresponds to the particular wavefunction
of the state.
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Figure 5.7: Isotope shift of the 𝑋𝑔 (62, 0) and 𝑋𝑔 (61, 0) to 𝑋𝑔 (0, 0) clock transitions in 86Sr2 and 88Sr2. Isotope shifts are calculated
by constraining 𝛼 = 1021 for the Yukawa-type potential as in equation 5.3. We show individual frequency shifts introduced by the
perturbation for each of 𝑋𝑔 (0, 0), 𝑋𝑔 (62, 0) and 𝑋𝑔 (61, 0) as a function of the range, 𝜆 (above). Note that 𝑋𝑔 (62, 0) state in 86Sr2 has a
very small binding energy, -83 kHz, and very long mean bond length, 4436.70 𝑎0; it experiences a small shift by comparison to the other
states studied. We consider pairs of states corresponding to potential clock transitions of interest and predict the corresponding isotope
shift, 𝛿𝜈𝑌𝑢𝑘𝑎𝑤𝑎𝐼𝑆 (below). We find overall isotope shifts on these clock transitions on the order of ∼ 100 Hz, which is resolvable with our
current clock precision.
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Figure 5.8: Isotope shift of the 𝑋𝑔 (62, 0) and 𝑋𝑔 (1, 0) to 𝑋𝑔 (0, 0) proposed clock transitions in 86Sr2 and 88Sr2. Isotope shifts are
calculated by constraining 𝛼 = 1021 for the Yukawa-type potential as in equation 5.3. We show individual frequency shifts introduced
by the perturbation for each of 𝑋𝑔 (0, 0), 𝑋𝑔 (1, 0) and 𝑋𝑔 (62, 0) as a function of the range, 𝜆 (above). We consider pairs of states
corresponding to clock transitions of interest and predict the corresponding isotope shift, 𝛿𝜈𝑌𝑢𝑘𝑎𝑤𝑎𝐼𝑆 (below). The 𝑋𝑔 (1, 0) to 𝑋𝑔 (0, 0)
transition is relatively insensitive to the Yukawa term.
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In this way, we demonstrate unequivocally that our system can compete with current bench-

mark experiments to set constraints on Yukawa-type corrections to non-Newtonian gravity. We

consider several candidate clock transitions in order to preferentially design an isotope shift exper-

iment. For example, while the 𝑋𝑔 (62, 0) to 𝑋𝑔 (0, 0) transition is very sensitive to Yukawa term,

𝑋𝑔 (0, 0) to 𝑋𝑔 (1, 0) is not very sensitive at all. A measurement that compares both could help us

reduce some systematic uncertainties in our experiment. In the following section, we use our cur-

rent record precision clock, and extensions to other isotopes, to consider the new limits we could

impose on Yukawa-type constraints to gravity.

5.2.3 Projected new limits on 𝛼

Given our current clock precision, we project new limits on 𝛼(𝜆) as a complement to exist-

ing experiments. In the following calculation, we assume that theory can fit experimental data to

within 1 Hz and, therefore, our resolution is determined only by our clock precision. We have

already demonstrated precision spectroscopy on the order of Hz [18], and have proposed several

avenues to achieve a sub-Hz level clock in the near future.

For this case study, we consider an isotope shift measurement with our current molecular clock

resolution, that is ∼ 5 Hz for absolute frequency measurements. We demonstrate improvement by

an order of magnitude on constraints on 𝛼 in the range 𝜆 = 0.1 nm to 10 nm. In this range, we

would constrain alpha to below 𝛼 = 2.1 × 1019 for 𝜆 = 10 nm, below 𝛼 = 5.5 × 1019 for 𝜆 = 1 nm

and below 𝛼 = 2.6× 1021 for 𝜆 = 0.1 nm (see figure 5.9). We contextualize limits from our current

clock precision within other experimental methods for probing Yukawa-type forces and find that

our system places tighter constraints than other experiments for short ranges 𝜆 < 1.3 nm, prob-

ing a region that has not been well-studied to date. Moreover, this proposal acts as a framework

to motivate similar measurements in other molecular systems and demonstrates the potential for

molecules to complement other experiments in probing this physics.
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[Borkowski, 2019]

Figure 5.9: Projected constraints on the interaction constant, 𝛼, and interaction range, 𝜆, of the
Yukawa-type interaction from our clock experiment. We demonstrate improvement by an order of
magnitude on constraints on 𝛼 in the range 𝜆 < 1.3 nm. In this range, we constrain alpha to below
below 𝛼 = 5.5 × 1019 for 𝜆 = 1 nm and below 𝛼 = 2.6 × 1021 for 𝜆 = 0.1 nm. Current limits are
included [122] and other molecular experiments are shown [113, 129].

Overall, we find that our molecular clock can probe these types of short-range, mass-dependent

new forces with competitive precision as compared to similar molecular experiments as well as

other experimental strategies. By leveraging our precise clock in two isotopic species, we can

tighten the constraints on the size of the Yukawa interaction in the short range region ∼nm. Given

that atomic clocks currently have achieved a relative accuracy up to 10−19, it is reasonable to

imagine mHz-level measurements in a molecular clock in the future. Nevertheless, we demonstrate

an improved description of the Yukawa corrections by ad order of magnitude, even with our current

clock.
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Outlook

Our state-of-the-art experiment sits at the cutting edge of metrology with molecules. Molecular

systems, such as ours, are of interest because they provide abundant avenues for searches of new

physics. In these early stages, our experiment has already demonstrated high levels of precision,

with potential for further improvement in the future. To realize a vibrational lattice clock with a

fractional uncertainty below 10−15 will require a number of technical and scientific changes that

can combat the current limitations in our system. Nevertheless, these pathways towards a second-

generation clock are well-defined and achievable in the near future.

In our molecular clock, we have the advantage of complete and flexible quantum control that

allows us to probe interesting physics throughout the ground potential of our molecule, and at a

variety of internuclear separations and sensitivities. Even at lower precision than is achieved in

atoms, we can compete with other state-of-the-art experiments to constrain new physics. Given

the foundation we have laid out thus far, our experiment can continue to push both the limits of

precision for a molecular metrological system and our fundamental understanding at the frontiers

of physics. Along the way, this experiment will necessarily lead to new innovations in technol-

ogy, insights into the fundamental nature of molecules and deepen our understanding of quantum

chemistry, quantum control and atomic and molecular physics.
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