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ABSTRACT

The Physics of Ultracold Sr2 Molecules: Optical
Production and Precision Measurement

Christopher Butler Osborn

Ultracold molecules provide an exciting testing ground for studies of fundamental inter-

actions, new states of matter, and metrology. Diatomic molecules based on two-electron

atoms are especially suitable for precise tests of interatomic interactions, molecular quantum

electrodynamics, electron-proton mass ratio variations, and other measurements in molec-

ular and fundamental physics. This thesis describes the construction of a new strontium

apparatus, from initial vacuum system setup through characterization of ultracold atom

samples, followed by a new method of efficient, all-optical production of ultracold 88Sr2

molecules in an optical lattice, with detection via optical fragmentation. High-Q spectra

of the weakly bound molecules in magnetic fields are studied, yielding precise binding en-

ergies, anomalously large molecular g factors resulting from large nonadiabatic effects, and

strongly enhanced magnetic susceptibility. The thesis then concludes with an outlook on

future experiments in our lab, including studies of forbidden molecular transitions, and

longer term studies of fundamental physics from deeply bound Sr2.
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Chapter 1

Introduction

1.1 Laser cooling and atomic physics

Laser cooling and trapping of atoms has inspired many new fields of physics [Phillips,

1998], including studies of degenerate quantum gases [Cornell and Wieman, 2002], quantum

simulation and information [Garcia-Ripoll et al., 2005], precision measurements [Peters

et al., 1999], optical time and frequency standards [Diddams et al., 2004], and ultracold

collisions. The success of the field hinges on the use of lasers to control atoms, and to cool

them to unprecedented temperatures. Trapping was achieved earlier than cooling - trapping

via the optical dipole force was first proposed by [Letokhov, 1968]. Indeed, laser light that

is red-detuned from an optical transition within an atom will induce an attractive force,

and blue-detuned will induce a repulsive one. Early experiments in optical dipole trapping

had limited success due to the large laser powers and small trapping volumes required to

produce sufficiently deep traps for atoms at room temperature.

Laser cooling of atoms was achieved when it was understood that the momentum transfer

of photon absorption could be used in conjunction with the Doppler shift. The momentum

kick of a photon absorbed by an atom is

∆p = h̄k, (1.1)

where h = 2πh̄ is the Planck constant and λ = 2π/k is the wavelength of light. Because

optical atomic transitions have finite linewidths, one can red-detune a laser from the atomic
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line center and still drive the excitation, assuming the laser linewidth does not exceed the

transition linewidth. The result is that photons reemitted during spontaneous decay are on

average higher in energy than those absorbed during excitation, resulting in a net energy loss

from the system, and therefore cooling. Since the reemission process is spatially isotropic,

the momentum kick to the atoms during reemission can be thought of as a random walk in

momentum space with a distribution determined by the linewidth of the transition. This

linewidth therefore determines the minimum temperature achievable for the given transition

[Metcalf and van der Straten, 2002], called the Doppler limit:

kBTD =
h̄Γ

2
, (1.2)

where kB is the Boltzmann constant. The Doppler limit is achieved for frequency detuning

equal to half the linewidth, Γ/2.

Many of the commonly studied atom species are solids at room temperature and must

be heated in an oven to create a diffuse vapor, which is then collimated into an atomic

beam (passively via narrow apertures, or actively via laser pumping). Laser deceleration

is then used to slow the atoms, and various techniques have been developed to keep the

continuously-Doppler shifting laser light on resonance with the atoms as they are slowed.

Such techniques include using broadband light, laser frequency sweeping (also called chirp-

ing), as well as Stark shifting or Zeeman shifting the atomic line [Metcalf and van der

Straten, 2002]. The slowed atomic beam is then fed into a vacuum chamber in which

the atoms will be trapped by additional laser beams. If one uses red-detuned, counter-

propagating laser beams along all three axes in space, then the Doppler effect due to an

atom’s velocity v will shift into resonance the beam whose orientation opposes the atom’s

movement, thus causing slowing. The laser cooling method described so far however does

not provide long-term trapping. Atoms that have been slowed in such a manner experience

a strongly viscous frictional force within the beam region which can give holding times on

the order of 100ms. Hence the effect was termed an optical molasses, first achieved with

Na atoms [Chu et al., 1985; Lett et al., 1989; Ungar et al., 1989].

Optical forces alone cannot provide true atom trapping and cooling at the same time. As

a result, the technique of incorporating magnetic fields in conjunction with the light fields

produced what is called the magneto-optical trap (MOT), first demonstrated by S. Chu, C.
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Cohen-Tannoudji, and W. Phillips [Chu, 1998; Phillips, 1998; Cohen-Tannoudji, 1998]. The

final temperature of the atoms in the MOT is given by the Doppler cooling temperature

TD defined above. Various methods exist for reaching sub-Doppler limit temperatures

[Metcalf and van der Straten, 2002; Dalibard and Cohen-Tannoudji, 1989], but for atoms

with sufficiently narrow transitions, on the order of a kilohertz, microkelvin temperatures

can be reached.

How cold is cold enough? The creation of novel states of matter, such as Bose-Einstein

condensates (BECs) [Cornell and Wieman, 2002] and degnerate Fermi gases, is motivation

in its own right, and a wealth of interesting physics can be learned from studying such

systems [Simon et al., 2011; Derevianko and Katori, 2011]. The onset of BEC formation

occurs at temperatures as low as nanookelvin, requiring relatively long preparation time

due to evaporative cooling. If instead the primary motivation for cooling is to improve

measurement precision by suppressing the Doppler broadening of the atom sample, then

one can estimate the Doppler broadened linewidth from the temperature by calculating the

shift due to the root-mean-square velocity vrms =
√

3kBT/m. If the Doppler shift is given

by f(v) = (1 + v/c)f0, then

∆f ∼ 2vrms

c
f0 =

2

c

√
3kBT

mSr
f0 ∼ 50kHz (1.3)

for temperature T = 1µK, laser frequency f0 = c/λ, and λ ∼ 650 nm for a typical optical

wavelength. The quality factor for such a line is

Q = f0/∆f =∼ 1010. (1.4)

There exist methods for further spectroscopic improvement, particularly the use of optical

lattice traps (cite). Lattice traps work in the same manner as optical dipole traps: a far off-

resonant laser beam focused to a tight waist can induce a light shift in the electronic levels of

the atom. With the proper frequency detuning this shift can be negative, creating a trapping

region in space. An optical lattice trap is created from a dipole trap by retroreflecting the

beam, which creates a standing along the axis of beam propagation. Atoms in such a

trap are motionally quantized along the standing-wave axis, and therefore have suppressed

first-order Doppler shifts. As long as one performs spectroscopy along this axis of tight

confinement, photon recoil shifts can also be suppressed. One may add tight confinement
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in two or three dimensions by using additional lattice beams. Neutral atom optical clocks

in such lattices have been used to achieve new limits in atomic clock precision, at the 10−17

level for 103 seconds [Bloom et al., ], and a wealth of interesting physics can be studied in

such motionaly quantized systems.

The first neutral atom cooling and trapping experiments were performed using alkali

metals, most commonly Na, Cs, K, and Rb, which possess a strong cooling transition on the

order of 10 MHz wide. The earliest such work produced atom sample temperatures below

1 mK. More recently, experiments have been performed also using the two-electron species

such as Mg, Ca and Sr from the alkaline earth metal group, as well as the isoelectronic

species Hg and Yb. These species can offer a set of advantages over the alkali metals.

They have zero hyperfine structure in the ground state, allowing for simpler studies of

cold atom collisions. Additionally, these two-electron species have both spin singlet and

triplet energy level manifolds. Since the ground state 1S0 is a singlet, the spin-forbidden

transitions to the triplet manifold are weakly allowed only by spin-orbit coupling, and as a

result have extremely narrow linewidths [Yasuda and Katori, 2004]. The Q factors for such

transitions are as high as 1018, offering exciting spectroscopic and precision measurement

opportunities. The ∼ 1 mHz 1S0 −3 P0 transition in 87Sr is setting the standard for a new

generation of precision clocks [Nicholson et al., 2012]. For all isotopes, the 7.5 kHz 1S0−3P1

intercombination line transition serves as an excellent cooling transition to µK temperatures

without requiring sub-Doppler cooling methods (the strong, ∼ 30 MHz 1S0−1P1 line serves

as an initial cooling and trapping transition). Additionally, the kilohertz resolution of this

line allows for high-precision studies of cold atom collisions via photoassociation into long-

range molecules. In this work we bridge the gap between atoms and weakly bound molecules

in optical lattices.

1.2 Cold molecules

Cold molecules provide rich opportunities for precision measurements and studies of funda-

mental physics beyond that which is possible with cold atoms [Doyle et al., 2004; Dulieu and

Gabbanini, 2009; Carr et al., 2009]. Such experiments include measurement of the proton-
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to-electron mass ratio and its possible time variation [Zelevinsky et al., 2008; Kotochigova,

2008; Koelemeij et al., 2007; Shelkovnikov et al., 2008], the electron’s electric dipole mo-

ment [Hudson et al., 2011; Baron et al., a], and bound-system quantum electrodynamics

(QED) [Dickenson et al., 2013]. However because of their complex rovibrational structure,

production of cold molecules poses a much greater technological challenge than production

of cold atoms.

There are four feasible routes to trapped neutral molecules: sympathetic cooling of

magnetic species via buffer gases, manipulation of polar molecules via electric fields, direct

laser cooling, or using magnetic or optical fields to form molecules out of ultracold trapped

atoms. Additionally, recent progress has been made in evaporative cooling.

Buffer gas cooling [Krems et al., 2009; Patterson et al., 2009] utilizes a cryogenic gas

source, typically He or Ne, to sympathetically cool the target species, which may be laser-

ablated from a solid sample. This target species is then collimated and fed toward the

experiment by a process called hydrodynamic entrainment [Maxwell et al., 2005; Patterson

and Doyle, 2007]. Recent work on buffer gas-cooled ThO molecules has produced an order-

of-magnitude improvement in the search for an electron electric dipole moment [Baron et

al., b].

Stark deceleration uses varying electric fields in a technique analogous to that of linear

accelerators for charged particles. In this case the sample consists of polar molecules. The

first such experiment [Bethlem et al., 1999] was performed on a neutral metastable sample

of CO molecules, slowed from an initial thermal velocity to the effective temperature of 15

K.

Because of the high rate of inelastic collisions in molecules as compared with atoms,

evaporative cooling of molecules has remained elusive regardless of the method of prepara-

tion. Recently, however, evaporative cooling was achieved with a Stark-decelerated source of

magnetically-trapped neutral OH radicals, with elastic collisions enhanced by microwaves,

decreasing the temperature by an order of magnitude, and increasing the phase-space den-

sity by a factor of three [Stuhl et al., 2012].

The last category of cold molecule experiments uses samples of already-cold atoms as the

molecule constituents. Although these techniques restrict the variety of molecular species,
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the benefit is low temperatures that exceed the current capabilities of direct molecule cool-

ing. At such cold temperatures, the collision mechanisms are greatly simplified, and very

high spectral resolution can be attained. These techniques initially create what can be

called physicist’s molecules: weakly-bound, long-range molecules whose electronic structure

can be approximated by the structure of its substituent atoms.

Magnetic Feshbach resonance [Chin et al., 2010; Kohler et al., 2006] is used to associate

magnetic species with hyperfine structure in the ground state. This has been achieved for

many of the alkali metal atoms, such as K, Rb, Na, Cs, and Li. The model owes its name

to Herman Feshbach [Feshbach, 1958], and the earliest such observation was for a BEC

of Na [Inouye et al., 1998]. Recent work with molecules using the Feshbach association

technique have experimentally realized elementary quantum systems, such as a long-range

dipolar spin-exchange between polar 40K87Rb molecules [Yan et al., 2013].

For the bosonic isotopes of the alkaline earth metals that have no hyperfine structure in

the ground state this method is not available. Instead, the technique of photoassociation

(PA), or optical Feshbach resonance, is employed [Jones et al., 2006]. In this case, the

molecular and atomic scattering states are coupled by resonant photons. In this work, PA

is achieved via the narrow intercombination transtiion, as explained in detail in Chapter 3.

1.3 Thesis overview

My doctoral work is focused on production and control of the ultracold molecular species

88Sr2, and on initial precision measurements with implications for quantum chemistry, and

molecular and fundamental physics. Producing a stable sample of such molecules is a

nontrivial task, and represents one of the major steps of my doctoral work. After the

creation of this new class of cold molecules, my colleagues and I have been able to study

many unique aspects of ultracold physics and chemistry, including the precise determination

of the binding energy of several weakly-bound states that are relevant for molecular QED,

as well as their anomalously large magnetic g-factors and magnetic susceptibility. The next

major objectives are studies of forbidden molecular transitions, and optical transfer to the

absolute rovibrational ground state, from which many of the long-term fundamental physics
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measurements will be carried out. These experiments are briefly described in Ch. 6. This

document, which is the aggregate of my doctoral work, is structured as follows.

Chapter 2 describes the experimental apparatus. Being the first graduate student in

the lab, a postdoctoral researcher and I built the majority of the experiment in its current

form. Considerable detail is dedicated to the multistage process of design, construction

and testing. Tips and tricks are given as necessary. For optical systems, the technique for

the initial alignment of the system often differs from that for daily alignment, and each is

accorded its own description. This chronicles the setup of the lab itself, starting with the

oven and the collimated atom beam, the vacuum chamber and vacuum technology, the 922

nm cooling and trapping light source and frequency doubling cavity, the permanent-magnet

Zeeman atom slower, quadrupole and compensation magnetic fields, repumper lasers, and

finally the mK MOT. The transfer of this MOT to the second-stage µK MOT is then

detailed, by describing first the 689 nm light source and its stabilization scheme, and then

the electronic and optical setup, including the optimal transfer sequence. The optical lattice

setup is also described, including methods for alignment and atom transfer from the µK

MOT. The lattice trap is then characterized, with details on the trap depth, trap frequency,

as well as atom number, density and temperature. The chapter concludes with a description

of the spectroscopy lasers, all at 689 nm and phase-locked to the µK cooling and trapping

laser.

Chapter 3 picks up where Ch. 2 ends: having produced a stable sample of lattice-trapped

ultracold atoms, the process of photoassociating (PA) these atoms into Sr2 molecules is

described. The chapter starts with confirmation of the previous one-color PA results, and

continues with new two-color PA results. Most of the chapter is dedicated to the method for

molecule production into the electronic ground state, and high-resolution detection. Two-

color PA spectroscopy is used to measure coupling strengths between excited- and ground-

state vibrational level pairs, in an attempt to identify the excited levels that spontaneously

decay predominantly to a single ground state. The molecule creation process that is used

is described next, followed by the discussion of the recovery of the atoms via ultracold

molecule fragmentation, and imaging of the resulting atoms. The success of this method,

which was the topic of [Reinaudi et al., 2012b], concludes the chapter, with an additional
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discussion on the likely factors that contribute to the observed lifetime of these molecules.

Chapter 4 extends the recovery method from Ch. 3: fragmentation can be performed

using more than just the shallowest vibrational bound state, and moreover, other bound

states can be probed indirectly by adding an additional laser beam. Using photo-dissociation

as an anchor for zero binding energy, the binding energies of several of several weakly-bound

states are measured. These binding energies are tested against systematic experimental

shifts, allowing us to quote the final results with uncertainties in the range of only a few

kilohertz. Chapter 4 concludes with a brief discussion of the ab initio Sr2 molecular model

built by our collaborators [Skomorowski et al., 2012b], whose degrees of freedom have been

constrained by earlier work [Stein et al., 2011], and are currently being fit in the long-range

regime to the results of this chapter. This constitutes one of the most precise tests of modern

quantum chemistry. Additionally, the binding energies are sensitive to the retardation effect,

and can be used for QED tests in this heavy molecule. This is a work in progress.

Chapter 5 discusses surprising results pointing to an anomalously large Zeeman effect in

weakly bound molecules [McGuyer et al., 2013]. The linear shifts, or g factor measurements,

yield the Coriolis mixing angle of the molecular wave functions. Thus, the g factors provide

a highly sensitive probe of nonadiabatic molecular physics that couples the electronic and

nuclear (rovibrational) degrees of freedom. The quadratic Zeeman shifts exceed those in

free atoms by up to 106×, indicating an exceptionally large magnetic susceptibility. Besides

showing a good agreement with the ab initio model, we demonstrate a simple model that

shows how the susceptiblity increases cubically with the size of the molecule.

Chapter 6 concludes my Ph.D. work, and gives an outlook on the direction of future

research.
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Chapter 2

Apparatus

Figure 2.1 shows the electronic transitions in 88Sr that are relevant to our work, with

their corresponding wavelengths and decay rates. Briefly described, our objective is as

follows: slow a hot, gaseous beam of Sr and then trap the atoms using the strong 1S0 −1

P1 transition. The final temperature of this magneto-optical trap (MOT) is in the mK

regime, from which we will then transfer to a colder, µK MOT using the weak 1S0 −3 P1

intercombination line at 689 nm. From here the atoms will be loaded into an optical lattice

trap, and spectroscopy and molecule formation will be performed using lasers that are

phase locked to the master 689 nm laser. Figure 2.2 is a schematic of the vacuum chamber

apparatus and surrounding systems. While it does not give detail for all of the experiment’s

components, it offers a broad reference for the physical system immediately serving the

vacuum chamber, and will be referred to throughout this chapter. Some of the earliest

work on systems similar to ours was done by [Katori et al., 1999; Ido and Katori, 2003;

Loftus et al., 2004a; Loftus et al., 2004b; Boyd, 2007; Ludlow, 2008; Vogel et al., 1999;

Xu et al., 2003], which were used while constructing our setup as references. Let’s begin

with the oven source.
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Figure 2.1: Relevant electronic transitions for cooling and trapping 88Sr. The transition

wavelengths and decay rates are labeled.

2.1 Atom oven and vacuum system

2.1.1 Oven heating

Strontium is a solid at standard temperature and pressure. Cold atom experiments rely

on trapping from the gas phase. To achieve this, solid strontium is heated in an oven to

produce a sufficient vapor pressure, which by diffusion and collimation is then directed as

an atomic beam into a trapping chamber.

The original oven design was planned for use with strontium and ytterbium. However,

strontium requires comparatively high temperatures to reach a desired vapor pressure, as

seen in Fig. 2.3, and so early heating tests resulted in melted copper and silver gaskets, due

to unanticipated eutectic mixing. To simplify troubleshooting, and in light of our initial

interest in single-species Sr experiments, Yb was left out of the first oven. We were therefore

able to rely on a simpler, single-species design.

The eutectic diagram for nickel and strontium in Fig. 2.4 suggests that our desired 600oC

setpoint is safely within the gas phase for any admixture of the two elements. As a result
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Figure 2.2: A schematic view of the physical apparatus, for the purpose of understanding the

general relationships between the core components. Some detail is left out - e.g. schematics

for the laser systems and their locking schemes can be found later in the chapter - and

objects are not to scale with one another. The side view is also for general understanding,

and has been simplified further from the overhead view.

nickel gaskets were used for the final single-species oven design.

Figure 2.5 shows the oven’s design where both chambers are directly connected, re-

flecting its single-species use. The chambers are heated to 575oC, the back wall in the

center to 600oC, and the nozzle region, highlighted pink, to 600oC to avoid buildup or

clogging. Heating feedback control is achieved using the heating elements (McMaster-Carr

parts 3594K112 and 3594K491 for the oven, and 3594K261 for the nozzle region of the

pipe), detection thermocouples (McMaster-Carr parts 39095K54), and control device (EX-

TECH(R) Process PID Controller 48VFL). Reaching setpoint from room temperature can
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Figure 2.3: Log plot of Sr vapor pressure.

take 1 to 2 hours, so a switch scheduler was installed to conserve our Sr source; the oven

turns on at 7 a.m. and shuts off at 7 p.m. The nozzle heater is left on at all times.

2.1.2 Atom beam

The oven is fitted to a long, ∼ 1 m pipeline leading to the trapping vacuum chamber. To

control the flow and collimation of the beam source, a beam shutter and array of microtubes

are installed along the path. The purpose of the shutter is to control the source for timed

loading, but its 6 mm inner diameter (ID) also serves as a collimation point. The nozzle

highlighted pink in Fig. 2.5 has been fitted with an array of microtubes. This array serves

to reduce the solid angle of collision-free trajectories out of the oven toward the vacuum

chamber, providing atomic beam collimation. Together with the other elements along the

atomic beam pipeline, we can estimate a total fraction of the thermally diffuse oven source

atoms that will reach the chamber, and the resulting beam divergence. From this, together

with the beam slowing and maximum capture velocities discussed in the next sections, we

can estimate a final loading rate of cold atomic Sr into the first stage MOT.
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Figure 2.4: Eutectic diagram for Sr and Ni. Source: [Nash, 1990]

Figure 2.6 shows a rough schematic of the sections of the atomic beam pipe leading from

the oven to the trapping chamber, with their corresponding lengths and inner diameters.

We first estimate the atom flux rate Q from the oven nozzle. Each microtube is 3.6 cm

long and has a 0.36 mm ID and 0.48 mm OD. The flux rate through an individual microtube

can be estimated in the following way. The atom density in the oven is given by the vapor

pressure and temperature,

n =
P

kBT
. (2.1)

The root mean square (rms) velocity of the atom gas in the oven is given by vrms =
√
kBT/m,

where m is the atomic mass. Out of the total density n, we consider a subset of the sample

within the solid angle dΩ and within the velocity range dv,

fdΩ,dv =

√
2/π

v3
rms

e−v
2/2v2rmsdv

dΩ

4π
, (2.2)

where dΩ = dθvdφv can be written as a constant fraction because of an isotropic velocity

distribution within the oven. The fraction of these atoms that will pass through the micro-

tube aperture area A within the time interval dt is proportional to the volume of a cylinder
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Figure 2.5: Rendering of the oven design, assembled with the fitted microtube holder.

of base area A and height vdt,

NA,dt,dΩ,dv = n · fdΩ,dv · cos θAvdt = n · A√
8π

v3

v3
rms

e−v
2/2v2rmsdv(dφ/2π) sin 2θdθdt, (2.3)

where a trig identity has been utilized. By cylindrical symmetry the integration over φ is

trivial. Integrating over v, we get the total atom flux through one microtube, Q0,

Q0 =
1

4
nvavgA

∫ ∞
0

sin 2θdθ =
1

4
nvavgAIθ (2.4)

for Iθ = 2.5 · 10−5.

We can estimate the divergence of the atomic beam after the microtube array by

θ1/2 = tan−1 Dtube

L
= 5 mrad. (2.5)

What fraction of these atoms make it through the beam shutter? At a distance 19 cm

downstream from the microtube array, with zero length and an ID of 6 mm, we estimate a

fraction f1 of transmitted atoms

f1 ≈
D2

shutter/2

(Dnozzle/2 + L · tanθ1/2)2
= 0.45, (2.6)

and through the differential pumping tubes,

f2 ≈
D2

pump/2

(Dshutter/2 + L · tanθ1/2)2
= 0.71. (2.7)
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Hence the combined fraction post-microtubes to post-differential pumping tubes is f =

f1f2 = 0.32. From Fig. 2.7 it is estimated that there are 180 microtubes and 50 comparably

large intertube spacings, resulting in ∼ 230 total channels in the nozzle through which

atoms may pass by the geometry constructed above. Therefore the total atom flux through

this portion of the apparatus, after the two differential pumping tubes, is

Q =
1

4
nvavgAI0 · fNT =

1√
2π

P

mkBT
AIθfNT , (2.8)

for total number of microtubes NT . At an estimated vapor pressure 101 Pa, Q ≈ 1.6 ·1013/s.

Figure 2.6: Schematic showing the various apertures reducing the atomic beam divergence

and transfer.

Figure 2.7: Microtube holder, before assembly (left). Cross-sectional photograph of the

assembled microtubes in the holder (right).

Figure 2.7 shows the open holder design, and the final microtube fitting before instal-

lation into the oven. The microtubes were purchased from Microgroup. Each is made from
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304 stainless steel with dimensions 35.5 mm long by 0.34 mm minimum (0.38 mm maxi-

mum) ID, and 0.48mm minimum (0.50mm maximum) OD. Approximately 180 microtubes

were required to fill the holder.

In order to secure the microtubes holder into the oven nozzle using vacuum-safe parts,

the holder was designed with a slightly larger OD than the nozzle’s ID. The holder was then

cooled using liquid nitrogen, installed into the oven nozzle and then allowed to expand into

place during warming back to room temperature. Figure 2.8 details this installation.

Figure 2.8: View of the microtubes inside the nozzle, installed in the oven vacuum compo-

nent just after installation with accumulated condensation (right), and view on-axis con-

firming the line-of-sight, illuminated with a flashlight (left).

2.1.3 Multispecies oven for future work

In the future, we may use multiple atom species in the oven. To overcome the problems

encountered with the dual mixture of Sr and Yb cited above, a second-generation oven was

designed as shown in Fig. 2.9, although it has not yet been installed. It was designed with

inner nozzles separating different chambers within the oven [Stan and Ketterle, 2005] to

accommodate the different temperatures required to achieve comparable vapor pressures

with different atom species.
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Figure 2.9: Schematic of the second generation oven. The nozzles separating the Sr and Yb

chambers allow for equal vapor pressures of both species in the central mixing chamber.

The temperature difference between Sr and Yb at equal vapor pressures is roughly

80oC. It is possible that if both species’ ovens and the mixing chamber are not separated

by nozzles, Sr from the higher temperature region might condense and coat the Yb sample

on the other side of the oven since it is roughly 80oC lower in temperature. Hence any

future, two-species oven should include one narrow nozzle between the Yb oven and the

rest of the system, similar to the Ketterle design. The purpose of this nozzle is to ensure

that Sr doesn’t coat the Yb, but also that the Yb and Sr are in the mixing chamber

at comparable pressures. To choose the proper design for the nozzle separation, we first

calculate the pressure differences for Yb in the oven and in the mixing chamber due to

the conductances of the Yb oven nozzle, called CYb, and the microtubes leaving the oven,

called Cmix. Assuming that the backflow from atoms that have completely traversed the

microtubes is negligible, we may approximate the pressure beyond the tubes to be zero.

Under this assumption we determine the relationship between the Yb pressures in the oven

and in the mixing chamber, PYb and Pmix respectively, as

PYb

Pmix
=

1

1 + Cmix/CYb
.

Therefore if we want n orders of magnitude difference in the conductance of the micro-

tubes and the Yb nozzle (to ensure a low Sr presence in the Yb oven), then we can expect

basically n orders of magnitude in the pressure difference between Yb in the oven and Yb in

the mixing chamber. Hence adding any nozzle at all between the Yb oven and the mixing
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chamber means that if we wish to maintain the same Yb pressure in the mixing chamber,

we have to raise the Yb oven temperature.

The volumetric discharge of the microtubes was calculated to be 8.2∗10−8 m2 ·v(T ), the

sum of roughly 250 microtubes. The discharge of a 1 mm diameter and 3 cm long nozzle

between the Yb oven and the mixing chamber would be 8.3 · 10−9 m2 · v(T ), roughly an

order of magnitude lower than the microtubes, since v(T ) ∝ T 1/2 (by standard kinetics)

suppresses the effects on the discharge due to temperature differences.

Suppose then that we set the Yb oven at 580 oC. This corresponds to an in-oven vapor

pressure of 101.4 Pa = 25 Pa, which gives a mixing chamber partial pressure for Yb equal

to

25 Pa/(1 + 10) = 2.3 Pa,

similar to the Sr oven partial pressure calculated as a design goal for our current oven.

The components necessary for this oven were designed and then manufactured by Nor-

Cal, but are currently set aside until such time that two-species physics is part of the lab

agenda.

2.1.4 Vacuum system

We employ a differential pumping scheme [Chambers, 1998] between the oven source and

the vacuum chamber, as shown in Fig. 2.10. The scheme represents two-stage differential

pumping. The pumps are modeled by a perfect vacuum (P = 0), connected to the system

through a conductance S. By conservation of the flow of particles in the central section and

in the chamber, we may write

(Po − Pd)C1 = PdS1 + (Pd − Pc)C2, (2.9)

(Pd − Pc)C2 = PcS2. (2.10)

In this ideal model we assume there are no leaks and no out-gasing. One can then express

the ratio
Pc
Po

=
C2C1

(C1 + S1 + S2)C2 + S2 (C1 + S1)
. (2.11)

Assuming that C1, C2 � S1, S2, one can approximate

Pc
Po

=
C2C1

S2 S1
. (2.12)
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Figure 2.10: Diagram of the differential pumping scheme (two pumps).

As shown in Fig. 2.2, we have three ion pumps installed on the system (Varian Star-

Cell ion pumps), monitored by Varian Mini Vac controllers. The currently stable vacuum

chamber is at a pressure of ∼ 10−10 to 10−11 mBar (1 mBar = 0.75 torr ≈ 10−3 atm). The

controllers give the current draw from the pumps, and have monitors indicating whether

high vacuum (H.V.) is on.

Finally, we shutter the atomic beam using the high vacuum shutter shown in Fig. 2.11,

and use the manual valve shown in Fig. 2.2 to close off the oven source from the rest of the

system while the experiment is not in use.

2.2 461 nm light source

The previous section describes the Sr oven which was calculated to provide a collimated

atomic beam of Sr of 1.6 · 1013 atoms/s with a mean thermal velocity of ∼ 450 m/s. This

beam must now be slowed and trapped. To achieve this, as well as the eventual atom

trapping within the vacuum chamber, a stable source of 461 nm light at sufficient intensity

is required.

Diode lasers have become a reliable resource for low-cost light generation [Hollberg and

Wieman, 1991; Fox et al., 2003]. However wavelengths in the blue portion of the visible

spectrum have been difficult to achieve. One technique for generating light in the blue

spectrum is to frequency double infrared light via second harmonic generation (SHG) in a
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Figure 2.11: Pictures of the atomic beam shutter, before installation into the system. The

positive and negative leads to the shutter are designed to be compatible with high vacuum

environments.

nonlinear crystal. Infrared light at 922 nm is fed into a highly reflective cavity containing

the doubling crystal, in which blue light is generated. The experiment components for these

three steps - light generation, light amplification, and frequency doubling - are the topics

of the next three sections.

2.2.1 Extended cavity diode laser

Our extended cavity diode laser systems are built in-house. The schematic for ECDL

feedback is illustrated in Fig. 2.12. All of our diodes are purchased from Sacher Lasertechnik,

with the protective cover removed due to anti-reflection (AR) coating by the company.

These diodes are wired to Vescent laser controllers (D2-105) and installed into a custom-

designed ECDL housing. Figure 2.13 is a rendering of the ECDL baseplate we designed.
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Figure 2.12: Schematic of the ECDL feedback principle. The first order off of the diffraction

grating is fed back into the diode, causing stimulated emission. The wavelength of the

feedback light is determined by the angle of the feedback mirror. The zeroth order is the

output from the ECDL.

2.2.1.1 Temperature control

As shown in Fig. 2.14, the diode and collimating lens holder are installed in the cylindrical

hole which is mounted above and thermally isolated from the rest of the baseplate body

by a thermo-electric couple (TEC). The TEC is ∼ 1 mm thicker than the mount space

for it. The resulting small gap between the small upper level for the diode, and the rest

of the baseplate, provides thermal isolation. Thermally insulating nylon screws hold the

parts together, ensuring that the TEC directs all heat flow across the gap. A thermistor

is installed in a small hole drilled on the back face of the mount, ∼ 2 mm from the diode

holder, and provides temperature feedback for the stabilization scheme.

The Vescent laser controllers provide two-stage temperature locking. The TEC described

above constitutes the first stage, fast locking because the diode and holder above it have

a relatively small thermal mass. Setpoint is usually somewhere between 19 and 24oC, is

achieved in < 30 s and is stable to 10 mK.

The second stage of temperature control is a slow buffer stage responsible for the entire
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Figure 2.13: Blueprint of the current ECDL baseplate design (left). SolidWorks rendering of

an older baseplate design, with representative mirror, diffraction grating and diode housing

(right).

baseplate. Because of the large surface area and large thermal mass of the baseplate, the

second stage provides heating with a resistive Kapton heating pad rather than a TEC. The

heating pad cannot control the direction of heat flow, so this stage’s temperature setpoint

is set just above room temperature, and a one-way diode is installed in the heating pad

circuit so that “cooling” is achieved by passive heat loss to the environment. This stage

is usually set somewhere between 27 and 31oC, but achieving initial lock can sometimes

take > 10 minutes. Once achieved however, the temperature is usually stable to within

∼ 50 mK unless perturbed by an external shock. We found that the power output from

the Vescent controller was often insufficient for stabilizing this setpoint, so we installed the

current amplification circuit shown in Fig. 2.15.

2.2.1.2 Electronic feedback

The diffraction grating and optical feedback mirror are installed as shown in Fig. 2.13, the

spacing between them varying based on the wavelength of the diode, and usually between 8

and 13 cm. A small recess is drilled into the horizontal knob of the mirror mount face into

which a piezo-electric transducer (PZT) is installed - once installed, the knob ball should

press against the PZT. Adjusting the mirror mount knob or the embedded PZT changes the

wavelength of the laser light that is sent back to the diode, and changes the laser wavelength

by stimulated emission. Hence, PZT control is usually used as an auxiliary “slow” feedback
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Figure 2.14: Schematic of the ECDL feedback principle. The first order off of the diffraction

grating is fed back into the diode, causing stimulated emission. The wavelength of the

feedback light is determined by the angle of the feedback mirror. The zeroth order is the

output from the ECDL.

stage, while adjusting laser current, which adjusts the wavelength too, is used for primary

feedback.

2.2.1.3 Littman configuration, two-stage PZT

One can increase the mode-hop-free tuning range of a diode laser by modifying the feedback

mirror geometry. Littman and Liu [Liu and Littman, 1981] introduced a novel geometry

that accounts for the fact that adjusting the mirror angle also adjusts the cavity length,

both of which compete in defining the optimal cavity wavelength. By defining the mirror

pivot point at the intersection point of the planes of the mirror face and the diffraction

grating face, this conflict is alleviated. In this geometry, the changing feedback angle and

the cavity length cause equal changes in θ, and continuous scanning can be achieved over

much larger ranges.

Instead of building a cavity with such a pivot arm, we implemented a “first order”
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Figure 2.15: Booster circuit for the T1 temperature stage.

Littman configuration. We installed a second PZT between the mirror and the mount face.

Applying a voltage to this mirror that is some constant fraction of that applied to the PZT

installed at the mirror knob point, we can simulate mirror rotation about a desired point.

The larger the fractional voltage, the farther away the pivot point.

This two-stage PZT setup is used in several of our ECDL systems and results in sig-

nificant increase in continuous scanning range, or a typical improvement from ∼ 2 GHz to

∼ 10− 20 GHz, or even larger.

2.2.1.4 “Lens tweaking”

Diode laser output is typically collimated using a small aspheric lens with threaded mounting

to adjust its distance from the diode (e.g. Thorlabs part no. LT110P-B). Collimation of

the laser beam is often achieved by adjusting the lens position while observing the beam

spot at several meters. Our group has found that there is a better way to set the beam

focus, and that with better alignment the laser ECDL feedback mode is cleaner with larger

continuous-mode sweeping ranges. The protocol for “lens tweaking” is as follows:

1. Roughly collimate the beam as described above, install the diode in the ECDL, and

find visible feedback by retroreflecting the mirror’s beam back onto the diffraction
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grating. This is often easiest to see by adjusting the mirror’s vertical knob.

2. Install a laser power meter just outside the ECDL and plot this power on a scope with

slow (∼ 1 s) time constant

3. Using a very small flat-head screwdriver, or hex key, adjust the lens position by

pressing lightly on the notches in the lens face (typically adjusted using a spanner

wrench).

4. Constantly adjust the mirror’s vertical knob to get real-time feedback on the ECDL’s

optimal output power.

The feedback power as observed on the scope should change significantly for very small,

nearly imperceptible changes in the notch positions, requiring mirror realignment, and

should be dependent on the beam focus as determined by the notch position.

We have found that every diode behaves differently, and that some diodes are more

responsive than others to improvement from this alignment technique. In any case, we find

gains both in the total output power (e.g. > 30 mW where previously we had only ∼ 25

mW), as well as in the continuous scanning range, both by PZT as well as by laser current

adjustment.

2.2.2 Tapered amplifier

Our diode lasers typically provide no more than 30 to 50 mW of power. For experiments

that require higher powers, a tapered amplifier (TA) is a common solution [Walpole, 1996].

After purchase of the TA diode, we assembled the mounting base plate and temperature

control ourselves, as seen in Fig. 2.16. There are two focusing optics, one to mode-match

the input beam to the TA mode, and the second to shape the output TA beam mode.

Alignment is achieved by carefully mode-matching the input beam to the output mode

of the TA, which is set by two lenses on translation stages. The spontaneous emission

output power of the TA is ∼ 100 mW, and when alignment is achieved, the output jumps

in several stages to powers as high as ∼ 1.1 W. For power near 1 W, the TA power supply

is set to an ouput current of just under the 3 A safety limit. The quality of the output, and
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Figure 2.16: SolidWorks rendering (left), in which the TA is depicted in green, and picture

(right) of the tapered amplifier setup.

its stability, depends sensitively on the TA temperature setpoint, where the desired setpoint

is found iteratively as the system stabilizes.

After a desirable setpoint has been found, the temperature should only rarely need to

be adjusted. The primary culprit for low output power is the alignment of the input beam,

which should be checked weekly, and sometimes daily.

We use a TA to amplify our 922 nm diode laser, and running the controller (Thorlabs

LDC 240 C) at 2.95 A we generate the ∼ 1 W of power necessary for generating a sufficient

amount of blue light for our cooling and trapping purposes. Section 2.2.3 describes our

methods for blue light generation.

2.2.3 Nonlinear crystal and second harmonic generation

The majority of the 1 W output of the 922 nm TA is then sent to the frequency-doubling

cavity. After a first-generation cavity using the design from [Klappauf et al., 2004], a second

model was designed using the more effective bow-tie cavity described in [Targat et al., 2005;

Hemmerich et al., 1990], out of which as much as ∼ 600 mW of 461 nm output light can be

produced; 400 mW is a more realistic daily amount. Figure 2.17 shows the cavity schematic.

The output power depends very sensitively on the temperature setpoint of the nonlinear

crystal. This temperature should be incorporated into the iterative alignment process, since

it appears that the optimal temperature setpoint is dependent on the beam input position
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Figure 2.17: Diagram of the bowtie cavity. T is the input transmission coefficient for

infrared light, and R is the focusing radius of the curved mirrors.

and alignment to the crystal.

2.2.3.1 Initial alignment

As described in [Targat et al., 2005], there is an optimal focusing parameter for the input

infrared beam, which determines the length of the cavity. Using this value, our cavity was

drawn using SolidWorks (Fig. 2.18), and then printed to actual scale and taped to the

breadboard on which the cavity was being built. The mirrors were then placed over the

drawing as a first approximation of the cavity. From there, the first goal was to achieve

infrared cavity resonance without the nonlinear crystal. This was observed with an infrared

camera, and is achieved by starting with alignment of the input beam and iteratively cen-

tering the beam on each cavity mirror. When alignment is close, adjustment of any cavity

mirror knob will result in a cavity-resonance flickering of the beam spot as observed by the

infrared camera.

Installing the periodically-poled potassium titanyl phosphate (PPKTP) crystal does

change the effective cavity length and therefore the beam alignment to the cavity, but one

should still be able to detect some output blue light. From this point the cavity must be

adjusted incrementally, by tuning the crystal position setpoint temperature, until a higher

output power is achieved. It can help to expand the blue output beam spot onto an index

card and look at the output TMxy mode. The highest powers are achieved for the desired
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Figure 2.18: Blueprint of the ideal bowtie cavity dimensions (breadboard holes are spaced by

1 inch). The initial alignment was achieved by printing this at physical scale, cutting holes

for the mirror mounts, and taping to the breadboard. After the alignment was achieved,

the blueprint was removed from the breadboard.

TM00 Gaussian mode.

The blue light system requires daily maintenance. It is important to always start by

checking that the 922 nm diode laser mode, and the output power from the TA are satis-

factory before adjusting the doubling cavity.

2.2.4 Locking system

The output from the doubling cavity is then sent to the experiment using a high-power fiber-

optic cable, whose output is typically between 250 and 300 mW. Approximately 10 mW of

this light is directed toward a galvatron vapor cell (Hamamatsu L2783 galvatron series) for

saturated absorption locking to the 1S0-1P1 line in Sr [Preston, 1996; MacAdam et al., 1992;

Wieman and Hansch, 1976].

Figure 2.19 also gives a rough schematic of the feedback electronics. The requirements

are two-fold: firstly, feedback on the bowtie cavity, via a PZT mounted to one of the

cavity mirrors, to provide stable blue light frequency-doubled from the input infrared, and

secondly, feedback on the laser current and ECDL PZT to stabilize the laser frequency to

the Sr vapor source. A typical error signal for frequency doubling, and saturated absorption
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locking are given in Fig. 2.20. These two purposes are divided roughly between the upper

and lower parts of Fig. 2.19. As shown, a beam sampler directs part of the output blue

light just after the doubling cavity to a photodetector for feedback and monitoring.

2.2.5 Power distribution, frequency offsets

The power of our blue light system is divided between several important tasks, each of which

is set via acousto-optic modulators (AOMs) to a specific frequency offset from the atomic

transition: saturated absorption feedback locking (4 mW, −67.3 MHz), Zeeman slowing (65

mW, −502.5 MHz), MOT beams (∼ 15 mW for horizontal axes, ∼ 25 mW for vertical axis,

−27.3 MHz), and imaging (∼ 5 mW, 0 MHz). The emphasis of the schematic in Fig. 2.19 is

on the electronic feedback system. Geometries for the MOT beams can be found in Fig. 2.2.

Section 2.3 describes how we achieve atom slowing with the stable blue light source.
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Figure 2.19: Schematic of the 461 nm laser system, with detail given to the electronic

feedback for the frequency-doubling cavity, as well as for the saturated-absorption locking

feedback system.



CHAPTER 2. APPARATUS 31

Figure 2.20: Scope traces for the frequency-doubling cavity (left), and the vapor cell atom

lock (right). For the doubling cavity, the upper channel trace monitors the error signal, and

the lower trace monitors the actual blue power output from the cavity. Note that the full

error signal of the vapor cell lock is often not within the mode hop-free scanning range of

the diode.
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2.3 Zeeman slower

Atom beam slowing is achieved using a Zeeman slower and 461 nm light [Phillips and

Metcalf, 1982] to create an electro-magnet with the desired field profile. Radiation pressure

from laser light resonant on the strong 1S0−1 P1 transition at 461nm, provides the slowing

mechanism, and to account for the changing Doppler shift of the continually decelerating

beam, the Zeeman slower provides the magnetic field. A common method for slowing neutral

atom beams, Zeeman slowers provide a static but spatially varying field that assumes a

particular deceleration profile along the beam axis, providing at each point along the path

a magnetic field-induced Zeeman shift to cancel the corresponding Doppler shift.

Zeeman slowers are traditionally constructed by winding carefully designed layers of wire

around the atomic beam vacuum tube and running a current through the wire ([Phillips and

Metcalf, 1982; Bagnato et al., 1989]). Recently, designs based on permanent magnets have

been suggested and implemented [Ovchinnikov, 2008]. There are multiple benefits to using

a permanent magnet ZS. These benefits span adaptability, robustness, ease of maintenance,

zero power consumption, and low cost; the current-sourcing power supply as well as water

cooling are not necessary. As detailed in this work [Reinaudi et al., 2012a], we implemented

a dynamically controlled, optimizable permanent magnet Zeeman slower for our experiment.

We designed a permanent magnet Zeeman slower (ZS) based on the model in [Ovchin-

nikov, 2008]. Described here is the process of modeling the slower for our specific design

field, as well as the construction and finally the tuning of the slower. This section follows

the work of our recent paper [Reinaudi et al., 2012a].

2.3.1 Design considerations

The magnetic field profile for efficient atom slowing is set by placing an array of permanent

magnets at variable distances from the atomic beam. The magnets are neodymium disks of

0.5” diameter, 1/16 to 1/4” thickness, and 0.25 to 0.95 J/T magnetic moment. The entire

assembly is enclosed in a µ-metal magnetic shield, as pictured in Fig 2.21. We performed

nonlinear optimization simulations to determine the predicted positions and lateral spacing

of the magnets, as an advance proof of our intended design.
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Figure 2.21: Picture of the ZS installed on the experiment, lid off (left). SolidWorks ren-

dering of the motor attachments to the magnets (right).

Design constraints include the finite strength and size of the magnets and the spatial

constraints of the vacuum system. Achieving a smooth field profile as well as a high field

strength along the atomic beam path is a balancing act since the closer a magnet is to the

beam axis, the sharper its local effect on the magnetic field and hence the closer neighboring

magnets have to be placed for a smoothing effect. We found that performing the computer

simulation is important for determining the right spacing between neighboring magnets

and less important for determining magnet distance from the beam axis, since the latter is

adjustable, while the former is a fixed feature of the construction.

The resulting magnetic field is transverse to the atomic beam. As atoms travel through

the field region, they are decelerated by counterpropagating light that is linearly polarized

in the direction normal to the field and is gently focused to match the slight divergence of

the 6 mm wide atomic beam.

2.3.2 Computer control of the field profile

In order to allow real-time computer control of the magnetic field profile, the magnets were

mounted to stainless steel rods that freely slide in bronze sleeve bearings placed through

the walls of the µ-metal case, as can be seen in Fig. 2.21. The actuation of the magnet

positions relies on low-cost servomotors that are typically used in model airplanes and cars.

Such servomotors provide a rotation range of 90o and a velocity of ∼ 60o/s. The model
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Figure 2.22: (a) Test case in which the field value was halved at all points along the ZS

path. (b) Test case in which the field profile was compressed over half the original length.

Switching in both cases is achieved in < 0.5 s.

we used is HS-422 by Hitec, but there is a large variety of options available depending on

different requirements, such as torque, speed, and size.

In order to transform the rotary motion of the servomotors into linear motion, each

sliding rod is linked to the horn of a servomotor through a clevis and a threaded rod

(Fig. 2.21(b)). Sixteen servomotors are placed on each side of the ZS. For ease of assembly,

the servomotors are glued to each other (with appropriate spacers) and to an aluminum

bracket attached to the case of the ZS.

The servomotors are controlled by electronic modules manufactured by Phidgets. While

other options are available, these modules were chosen for their cost effectiveness and ease of

use since they interface with a computer USB port and provide a straightforward application

programming interface (API) for most common programming languages. Four modules are

needed to control the 32 servomotors. During the operation of the motors, care must

be taken about the range that each of them should be allowed to explore. We limit the

movement of the servomotors using the computer program that controls them.

Many modern experiments involve trapping several atomic species. In those cases,

the ZS is typically designed for the one that requires a longer slowing region, thus not

achieving the maximum efficiency for the other species at this slower length. However, in

experiments that routinely change the trapped species, it would be useful to switch rapidly
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between magnetic field profiles in a reproducible way so that each species is optimally

slowed. The computer-controlled setup described here makes this process straightforward

since any number of magnet configurations are saved in the software and can be retrieved

when needed. Additionally, for experiments that use two species simultaneously, one can

sequentially load each species using its optimal profile, since the switching between field

profiles is consistently < 0.5 s.

In general, designing the ZS magnetic field depends on many practical factors such

as the available space and laser power, the initial thermal velocity of the atoms, and the

presence of transverse cooling of the atomic beam [Dedman et al., 2004]. Our setup allows

for tuning the magnetic field profile for an optimal loading given these specific experimental

constraints.

As a proof of principle, we demonstrate the accuracy and flexibility of the servomotor

control by switching the magnetic field between initial configuration A and configuration

B giving the same profile but twice weaker at any point of the ZS (Fig. 2.22(a)). We also

demonstrate switching from field configuration A to configuration C, which corresponds to

the same field profile but twice compressed along the propagation axis (Fig. 2.22(b)). Note

that the number of magnets on three pairs of rods was changed between Figs. 2.22(a) and

(b).

The repeatability of our servo-controlled ZS was tested by measuring the field profile

after switching from different servo configurations to configuration A. The field profile can

be consistently reproduced within an accuracy of 1%, reaching the 1 G resolution limit of

our gaussmeter at all points in the ZS. Note that, to achieve this accuracy, the backlash

(mechanical hysteresis) of the servomotor assembly has to be accounted for. This is easily

accomplished by systematically instructing the computer to move all the servomotors to

the outermost position before adopting the desired configuration.

2.3.3 Real-time optimization of atom slowing

One of the advantages of a motorized ZS is that it can be easily controlled by a computer

program. This lends itself well to performing complex optimization algorithms that seek

out solutions at a pace unmatched by manual tuning. In the scheme presented here, we
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feedback on a live measurement of the number of trapped atoms in the MOT.

Figure 2.23: Plot of the best loading rates achieved by various optimization algorithms.

The colored lines are several loading rates achieved by the genetic algorithm, and the gray

lines are those achieved by the local algorithm.

Figure 2.24: The field profiles produced by the local algorithm (dark gray) and the genetic

(red).

A CMOS camera connected via USB to the computer provides a live view of the MOT

fluorescence light. The experiment control program gives us the ability to actuate the

servomotors, to process images from the camera, and to use a versatile optimizing toolkit.

During an optimization run, the trapping laser beams and the magnetic field of the MOT are

turned on continuously, but the repumper lasers are kept off at all times for the following

reasons: (i) the smaller MOT makes the procedure less sensitive to typical instabilities
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associated with large atom numbers; (ii) the lifetime of the MOT is short under these

conditions, and as a result, switching to a new servomotor configuration leads to a stable

fluorescence signal on time scales < 1 s; and (iii) due to the artificially large loss rate, we

can assume that the loading rate is well represented by the atom number and thus by the

fluorescence signal.

Images are gathered from the camera at a rate of ∼ 10/s. The capture rate of the MOT

is inferred by summing the pixel values on the appropriate area of each image and is then

fed into the optimizer, which in turn controls the servomotor positions. The detuning of the

slowing laser is not a factor in the optimization since the field profile can be shaped with

greater freedom than in traditional slowers, achieving a variety of slopes and maximum field

values (Fig. 2.22). Typically, the optimizer sets a new configuration every second, allowing

the servos to fully reach their designated positions and avoiding any transitory effects in

the loading or decay of the MOT.

For the study of the automated optimization, we consider the field configuration A

from Section 2.3.2. This field closely matches the theoretical profile for Sr in the 32 cm

designated slowing region (assuming 65% of maximum deceleration) and overshoots in the

region immediately following. Such overshooting is undesirable in an actual slower since

it can cause overslowing, preventing atoms from reaching the trapping region. However,

it is illuminating to start the optimization from this field since it will be shown that our

optimization algorithms generate different and equally interesting solutions to this initial

condition.

We have tested several algorithms for the optimization of the MOT capture rate. Since

there is no expression for the derivative of the capture rate as a function of the servomotor

positions, only black-box optimization algorithms can be used. The results given by two

algorithms will be presented here. These two methods are a local search using the Nelder

Mead simplex algorithm and a global search using a genetic algorithm, taken from the

NLopt non-linear optimization package (http://abinitio.mit.edu/nlopt), and the Evolving

Objects package (http://eodev.sourceforge.net). Genetic algorithms mimic the process of

natural evolution by using the concepts of inheritance, mutation, and fitness. They perform

particularly well on black-box problems with many interdependent variables. The parame-
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Figure 2.25: A model of the velocity profile of atoms in the field profiles produced by (a)

the original design, (b) the local solution, and (c) the genetic solution.

ters used for the genetic algorithm runs were typically as follows: population size of 20 to

40, mutation rate of 40%, crossover rate of 30%, and total number of generations of 100 to

200.

Figure 2.23 depicts typical runs of the optimizer. On these plots, the starting point

corresponds to the initial configuration A and is used to normalize the atom capture rate

for each run, preventing long-term atom number fluctuations from introducing a bias to our

comparative analysis. The vertical axis scale is given by the extrapolated capture rate in

the presence of repumpers since this is a more conventional quality measure.

For the local optimization, it takes ∼ 100 servomotor configurations to converge to a

magnetic profile that yields an actual loading rate of ∼ 2 ·108 atoms/s (as measured with re-

pumpers). The local optimization has to be restarted typically 5 to 10 times before reaching
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a steady value. This occurs because it optimizes by probing local configurations that result

in small capture rate changes and hence is sensitive to experimental noise. Alternatively, the

genetic algorithm delivers a loading rate ∼ 6 · 108 atoms/s in ∼ 1000 servomotor configura-

tions. Genetic algorithms are insensitive to noise because they use stochastic operators for

selecting the best configurations. Consecutive runs of the genetic algorithm starting from

varying initial conditions produce similar field profiles. If the 32 servomotors are allowed to

move independently without maintaining strict symmetry about the ZS axis, better results

can be achieved through compensating any stray fields or imperfections in magnet alignment

(Fig. 2.23), although with a slower initial improvement due to the increased complexity.

Here we present simulations that give an interpretation of the gains achieved in the

two final fields resulting from optimizations starting from the initial field. Figure 2.24

shows the initial field and the two final fields as computationally inferred from the magnet

positions. There are noticeable differences between these three fields: the locally optimized

field exhibits an unexpected plateau followed by a steeper overshoot and the genetically

optimized field is shallower overall.

These differences can be explained by using a phase portrait, which depicts the decelera-

tion dynamics in the one-dimensional phase space (z, v) according to the radiation pressure

force

F (v, z) = − h̄kΓ

2

s0(z)

1 + s0(z) + 4(δ0 + kv(z)− µB(z)/h̄)2/Γ2
(2.13)

whereBz is the ZS magnetic field, the average saturation parameter for the cycling transition

is chosen to be s0(z) = 1.5, and the detuning of the slowing light is δ0 = 2π · 505 MHz in

this case. For Sr, the atomic spontaneous decay rate is Γ = 2π · 32 MHz, and the optical

wavenumber is k = 2π/(461 nm).

Figure 2.25(a) shows that the initial profile is overslowing many of the atoms and revers-

ing their velocities. Figure 2.25(b) explains the slowing dynamics of the locally optimized

field. The presence of the plateau in the magnetic profile causes the atoms to be slowed

less efficiently over the 5 cm region just before the field overshoot. These atoms are then

moving fast enough to pass through the region where they were previously stopped, since

the interaction time is too short to exert a full stopping force. They do undergo a sudden
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slowing kick that brings them within the capture range of the MOT.

The genetic algorithm solution depicted in Fig. 2.25(c) smoothly reduces the maximum

field at the end of the slower (z ' 0.3 m), leading to a velocity distribution that is adequately

within the capture range of the MOT, without overslowing. Note that the convergence to a

lower field magnitude near the entrance of the slower, and thus to a weaker deceleration in

the first part of the slower, led us to suspect that the typical velocity of the atomic beam

is below the 510 m/s design speed. The velocity distribution was subsequently measured,

and it was confirmed that the most probable velocity of the Sr beam is only 420 m/s.

2.4 The 1S0-
1P1 MOT

Figure 2.26: Picture of the vacuum chamber with a typical mK blue MOT present.
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2.4.1 Principle of a magneto-optical trap

The cooling mechanism described in Ch. 1, where emitted photons are statistically higher in

energy than absorbed photons, does not automatically lead to trapping. Without trapping,

the cooled atoms form what is called an optical molasses ([Metcalf and van der Straten,

2002]). There are several kinds of traps for neutral molecules; in our experiment we employ

a magneto-optical trap (MOT), as seen in Fig. 2.26.

The trapping mechanism of a MOT combines several features to create a region in space.

As atoms enter this boundary region, they experience a position-dependent restoring force

toward the trap center. This is best described using the 1D illustration of Fig. 2.27.

Figure 2.27: Diagram of the mechanism of a magneto-optical trap. The quadrupole mag-

netic field profile grows linearly outward from the trap center, as evidenced here by the

slope of the m = ±1 magnetic sublevels of the 1P1 state. Photons of the MOT laser, at

frequency ωL, are only on-resonance when the Zeeman shift and the Doppler shift match

the detuning of the incoming laser beam. Circularly-polarized light ensures that photons

will only be absorbed by the beam whose momentum absorption kick restores atoms toward

the trap center.



CHAPTER 2. APPARATUS 42

Quarter-wave plates before and after the trapping region ensure that the incoming and

returning laser beams are both circularly polarized, but with opposite circularity in the lab

frame, σ+ and σ−. The laser is red-detuned from the transition by an amount δ = ωL−ω0,

where ωL is defined in the figure. The quadrupole field profile, described in more detail

in Sec. 2.4.2, ensures that the field strength is zero at the trap center, and scales linearly

outward. As an atom moves into the boundary region, it is Zeeman-shifted into resonance

with the laser beam whose orientation will ensure an absorption momentum kick back

toward the trap center, ensuring trapping. The Doppler effect enhances absorption from

the laser beams whose momentum kicks counteract the atom velocity, leading to cooling.

2.4.2 Quadrupole coils and compensation coils

The MOT coils necessary for producing the field gradient described in Fig. 2.27 were con-

structed out of enamel-coated, hollow square copper wire with a 1 cm diameter, as shown

in Fig. 2.28. A current of 25 A at 30 V is sent through these coils, producing the field

profile shown in Fig. 2.29. Because the high current can cause heating, chilled water is fed

through the hollow coil center to maintain a low operating temperature. The chilled water

is supplied by a closed-system Haskris water chiller with temperature setpoint 65 oF.

Ambient magnetic fields in the lab are on the order of ∼ 1 G; to ensure that there is

zero field at the trap center, we installed compensation coils for all three axes, as shown in

Fig. 2.30. Spatial limitations around the vacuum chamber prevented us from installing true

Helmholtz coils - circularly-wound, with coil radius R matching the separation between the

opposing pairs - a design that maximizes field uniformity between the coils. These coils do

not require cooling, as < 5 A provides suitable magnetic field values for our purposes. Early

diagnostics on the 1S0 −3 P1 MOT showed that the trap’s vertical position was drifting in

correlation with changes in the vertical component of the lab’s ambient magnetic fields (the

source of which, and why it is mostly vertical, was not determined). As a result, we installed

an inverting summing amplifier circuit to add a small feedback correction current to the

base current supplied to the vertical compensation coils. An illustration of the inverting

summing amplifier can be found in Fig. 2.31.
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Figure 2.28: One of the two quadrupole coils, before installation on the system (left). The

joining between the hollow, enamel-coated quadrupole coils and the feed from the water

cooling system (right).

2.4.3 Repumper lasers

We employ a repumping scheme as described in Fig. 2.32. We use a software locking

technique: the wavelength as measured by the wavemeter is used as digital feedback on the

diode PZT. The wavemeter has MHz to 10s of MHz resolution, which is sufficient for our

purposes.

The MOT atom number with repumpers is an order of magnitude larger than without

repumpers, but the density increases by only roughly a factor of two.

2.4.4 Imaging

We perform all of our atom imaging using light tuned to the 1S0−1 P1 transition in Sr. We

use absorption imaging, and before successfully implementing our lattice trap, imaging was
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Figure 2.29: Plot of the MOT coils field profile along the atom beam axis. The field crossing

point marks the trap center, with a field gradient of 25 G/cm for 25 A of current.

performed using the Thorlabs DCC1240M camera and Thorlabs MVL25 25mm objective.

Absorption imaging is described in [Reinaudi et al., 2007]; the three-image technique is

illustrated in Fig. 2.33. As shown in Fig. 2.19, 5 mW of blue light is siphoned off from the

MOT beams for imaging purposes, and is coupled to a translation stage fiber. The output

fiber is located on the vacuum chamber breadboard, followed by optics for alignment and

focusing. The beam is expanded via telescope to∼ 1 cm waist. The three steps of absorption

imaging are as follows:

1. Image the atom sample; a sufficiently long exposure ensures that the atom sample is

thoroughly wiped.

2. Image an empty trap, with the imaging beam still on.

3. Take a dark image with no light pulse.

Once the objective’s magnification has been determined (see Sec. 2.6 on the 689 nm MOT

for details) and one has a value for the spatial extent per pixel (camera-dependent), imaging
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Figure 2.30: Pictures of the compensation coils surrounding the vacuum chamber, where the

coils have been traced with dashed white lines. At left, a picture of the large x and y axis

compensation coils. These require ∼ 75 turns to achieve the 3 G design setpoint. At right,

a picture of the vertical z axis coils, mounted closer to the chamber, and therefore requiring

only ∼ 25 turns to achieve the design setpoint (the opposing pair is out of view). Notice

that for the vertical set, there are square as well as circular coils. The circular coils were

added recently in order to perform measurements at much higher, ∼ 40 G field strengths.

These were not used in any of the measurements for this thesis.

can be used to determine several important characteristics of the atom trap.

After a loading sequence as described above, the imaging beam is pulsed for 40µs (gated

by the imaging shutter whose minimum shutter time is ∼ 4 ms. The image is then fed to the

lab computer, and properties of the trap, such as atom number or temperature, determined

as described in the next sections. Figure 2.34 shows the approximate time scale for the

imaging sequence. The imaging beam is collimated with a diameter comparable to the lens

aperture of the objective, ∼ 1 cm, and is oriented as shown in Fig. 2.2 (perpendicular to the

lattice and probe beams, 45o from the MOT beams. The beam frequency is on resonance

with the electronic transition.
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Figure 2.31: Inverting summing amplifier used for feedback on the vertical compensation

coils, for steadying the position of the red MOT. The circuit sums the current from the

compensation coils driver with the small correction that comes from the MEDA Gaussmeter.

2.4.5 Characteristics of the millikelvin MOT

2.4.5.1 Atom number

The absorption of light by the atom cloud follows the Beer-Lambert law. The absorption

images give the computed optical density:

OD ≡ σ0 ρc, (2.14)

where σ0 is the cross section of the transition at resonance and ρc is the column density,

i.e. the density of the cloud integrated along the path of the imaging beam. Recall that

σ0 = 1 · 10−13 m2 for the blue transition at resonance. The fitting function used below is of

the form A · exp
(
− x2

2 ∆2
x
− y2

2 ∆2
y

)
+B, for some constant offset B.

The output from our camera are digital units that range from 0 to 255 for the amplitude

of the brightness. This value must then be converted into optical density by multiplying

by 5.0/255 (where 5.0 represents entirely opaque). The camera’s spatial unit is in pixels,

and it is converted to length using the relationship 2.75 · 10−6 m/pixel (this value is for the

Navitar objective, and was determined by a free-fall calibration to g, the acceleration due

to gravity; see Sec. 2.6.5 for details). Using those units for A, ∆x, ∆y the integral of the
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Figure 2.32: Diagram of the optical repumper scheme (left), as well as a schematic of the

apparatus (right). We employ a software feedback system: two channels from our wavemeter

monitor the repumpers lasers, and the output controls the PZT controller voltages on the

ECDL feedback mirrors. The sensitivity of the wavemeter is sufficient for repumper locking

to ∼ 1 MHz.

Gaussian fit in terms of optical density is given by:

σ0

∫ ∫
ρc dx dy = 2π A∆x ∆y × 1.48 · 10−13 m2, (2.15)

where
∫ ∫

ρc dx dy is the atom number Nat.

The atomic density n can be evaluated by considering the equation

Nat =

∫ ∫ ∫
n dx dy dz =

∫ ∫
ρc dx dy, (2.16)

which is also equal to (2π)
3
2 n0 ∆x ∆y ∆z, where n0 is the density at the center.

One has to estimate the size ∆z of the atom cloud along the depth axis (the axis along

which the imaging beam integrates the column density). In the following we will consider

that ∆z ≡ ∆y since the cloud is elongated horizontally due to our configuration; it has no

reason to be more deep than high. We state this assumption explicitly with the following

notation:

∆zy ≡ ∆z = ∆y (2.17)

Using the same units from the fitting function, we can calculate the density n0 at the
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Figure 2.33: An illustration of the 3-step absorption imaging process. The third image

is used to subtract out imperfections in the camera, the second for imperfections in the

imaging beam, and the first for the actual picture of the atoms, generated by their shadow.

center of the cloud:

n0 =
A√

2π σ0 ∆zy

× 7.13 · 103 m−3 (2.18)

For the loading sequence described above, we capture ∼ 1.5 · 107 atoms in ∼ 200 ms, with

a peak atom density of ∼ 2 · 109 cm−3.

2.4.5.2 Temperature

One standard way to measure the trap temperature is to measure the rate of expansion of

the atom cloud during free-fall. Assuming a point-like initial condition (∆xi << ∆xf ), we

can make a direct comparison between ∆xf and the mean thermal velocity of the cloud,

vrms (if ∆xi is too large, a convolution would be required to relate them).

This relation is given by a velocity parametrization of the spatial distribution. Given

a Gaussian distribution after some time tTOF , then the spatial distribution, measured by

intensity in a camera picture (normalized here to 1), can be related to the thermal velocity

distribution by

e

− x2

2 ∆2
x


= e

−(v tTOF)2

2σ2
x


= e

−mv2/2

kB T


. (2.19)
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Figure 2.34: The absorption imaging sequence.

Starting with a point source allows us to directly map the position distribution to a velocity

distribution by the linear relation. Matching exponentials, then, we get

(v tTOF)2

σ2
x

=
mv2

kB T
(2.20)

and hence

T =
m

kB

(
σx
tTOF

)2

. (2.21)

This concludes our description of the 461 nm MOT. Our next objective to describe the

light source used for our colder, second-stage MOT, at 689nm.
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2.5 689 nm light source

The mK temperatures achieved in the previous section with the 1s0−1 P1 are not sufficient

for our spectroscopic purposes, and so the atom sample must be transfered to a second trap

using a different Sr transition. Recall that the Doppler temperature TD scales with the

linewidth of the transition,

TD =
h̄γ

2kB
. (2.22)

Spin-orbit coupling makes the forbidden 1S0 −3 P1 weakly allowed, resulting in a 7.5kHz

intercombination line, and a Doppler cooling limit TD = 480 nK. This sub-µK tempera-

ture is sufficiently low for the final-stage lattice trap, however a laser whose linewidth is

comparable or narrower than this transition’s linewidth must first be built. The 1S0 −3 P1

intercombination line is accessed with 689 nm light, which is available using standard diode

technology. A sufficiently narrow laser linewidth is achieved using Pound-Drever-Hall laser

stabilization to a high finesse cavity [Drever et al., 1983; Black, 2001]. Figure 2.35 explains

this schematic in detail.

2.5.1 High-finesse cavity

The cavity, shown in Fig. 2.36 consists of an ultralow expansion silica (ULE) glass spacer

with optically contacted end mirrors. ULE glass from Corning and Zerodur (low-expansion

glass ceramic) both can have very low coefficients of thermal expansion (CTEs), < 10

ppb/K. However, Zerodur is known to experience delayed elasticity (attributed to its alkali

oxide content), which can lead to mechanical creep that persists decades after the piece is

machined. For a new piece of Zerodur, this creep can exceed any thermal drift by an order

of magnitude.

A simple cylindrical configuration used by many time-and-frequency standards groups

is made by Advanced Thin Films (ATF) (Fig. 2.36). It is 10 cm long with a 5 cm outer

diameter. Its edges are made of one flat mirror and one 50 cm cc/pl mirror. This choice

of mirrors leads to a very stable cavity that is quite easy to align, especially for a modest

finesse. If thermal effects in the mirror coatings are an issue, then a 1 m mirror can be chosen

instead of 50 cm, effectively increasing the beam spot on the mirror and thus decreasing
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Figure 2.35: Schematic of the 689A laser and locking electronics.

the heating. Both mirrors are coated identically (AR on the outer side, the desired R on

the inner side). The flat mirror is slightly simpler to use as the input coupler, since in this

case the beam waist falls on the flat mirror surface. For a line width of ∼ 100 kHz and

FSR = 1.5 GHz, the finesse is F ≈ 15, 000, corresponding to the reflectivity R ≈ 0.9998.

ATF can achieve any desired finesse 103 to 3 × 105; if the highest finesse is not needed, a

more modest finesse simplifies the coupling into the cavity.

What finesse is necessary for our purposes? For example, to stabilize the 689 nm laser

to much less than the linewidth of the 1S0−3 P1 intercombination transition (7.5 kHz), then

a desirable laser linewidth could be, e.g. ∼ 100 Hz. Splitting the cavity linewidth by ∼ 103

with PDH locking is common, and so this justifies the ∼ 100 kHz cavity linewidth.

With careful temperature stabilization of the cavity, thermal drifts of ∼ 1 Hz/s are typi-
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Figure 2.36: Solidworks rendering of The high-finesse ULE cavity.

cally achieved. Conservatively assuming constant linear drift, this gives a typical frequency

change of > 30 MHz/year. Therefore the setup would contain an AOM (double-passed to

keep the beam path constant) with a bandwidth of at least ∼ 100 MHz, to keep up with

the drifting cavity over time.

Mounting high-finesse Fabry-Perot cavities can be challenging. A cylindrical 10 cm

cavity can be hung, supported ∼ 1 cm from each end. For the medium-high finesse of the

689 nm cavity, holding it in a 90◦ V-groove should be sufficient. Additionally, 4 elastomer

pads (e.g. Viton) are inserted to have the cavity contact the V-groove in only 4 places. The

pads can be attached to the V-groove with a dot of adhesive such as epoxy. They should

be placed such that the reaction force on the cavity cylinder is normal to its tangent.

2.5.2 Setup, locking electronics, frequency offset and control

Figure 2.35 is a schematic of the setup for the 689 nm master laser. After the ECDL and

isolator there is ∼ 25 mW of usable power. The laser beam is then distributed into four

essential parts, which will be explained in the following parts: PDH cavity locking, 30 to

100µW (frequency-offset to −420 MHz), ∼ 5 mW for Sr heat pipe locking (0 MHz frequency

offset, but currently not in use), ∼ 5 mW for phase locking slave lasers (−420 MHz), and

the rest (up to ∼ 20mW) sent to the experiment (−36 to −40 MHz including the broadband
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phase), however this is usually about 3 to 4mW out of the fiber on the chamber table.

It is clear that while the ULE cavity described in the section above provides frequency

stabilization, it does not carry any information about the desired transition-dependent

frequency setpoint. Where the cavity provides precision, a saturated absorption locked

(SAL) Sr heat pipe traditionally provides accuracy [Wieman and Hansch, 1976; MacAdam

et al., 1992; Preston, 1996]. Such a heat pipe and locking system was built by our group, but

it was determined that the optimal lock parameters still resulted in added noise compared

to a system that is simply locked to the PDH cavity alone. This added noise is attributed

to the poor quality of the error signal. The likely culprit is that the heat pipe is too short,

limiting the beam absorption path in the Sr vapor.

One can see in the schematic the electronics for a two stage locking system for the 689

master laser: the PDH cavity feeds back on the laser current (and auxiliary PZT controller),

while the SAL system feeds back on the voltage-controlled oscillator (VCO) that determines

the AOM frequency, the output of which goes to the MOT beam. The PDH cavity affects

the laser frequency upstream of the SAL system, coupling the feedback of the two systems.

In the absence of a SAL system, this means that there is a frequency degree of freedom

in the electronics scheme. The output from the New Focus lockbox is therefore adjustable,

and must be set by hand when the MOT is first set up. This is described in Sec. 2.6.

2.5.3 Pound-Drever-Hall lock

We use the standard locking technique as described in [Drever et al., 1983; Black, 2001].

First alignment of the beam is achieved by using a surplus of a few mW of laser power, and

once optimized, usually no more than a few tens of µW of power incident on the cavity is

necessary.

First alignment can be difficult to achieve. The best way to align from scratch is to

ensure that the retroreflection of the beam off of the cavity face is always aligned with the

incoming beam, as observed on the mirror faces leading to the cavity. When the beam

is nearly aligned, its initial coupling to the cavity causes flickering in the retroreflected

intensity. Near this alignment, one should be able to find the PDH error signal on a scope

set up from the electronics leading from the photodetector.
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Figure 2.37: Error signal from the PDH cavity (left). Spectrum analyzer monitor of the

laser lock (right).

One should be mindful of the FSR of the cavity. It is important to be sure that once an

error signal is found on the scope, it corresponds not only to the correct laser wavelength

(nearest to the transition), but also to the proper transverse beam mode. Figure 2.37 shows

a representative error signal output, as well as a spectrum analyzer monitor of the laser

spectrum once a lock has been achieved.

2.5.3.1 Inferring the laser linewidth

We do not have a direct method for measuring the laser linewidth in our lab, as such a

measurement is usually performed by beating two independent, similarly narrow line lasers

against each other and measuring the bandwidth of the noise. This measurement can be

performed with just a single laser: assuming laser noise is uncorrelated in time, splitting

the light into two beams and passing one through a long delay fiber before rejoining them,

allows one to look at the noise spread of a laser against itself. Such a measurement, known

as self-heterodyne linewidth determination, was assigned as an undergraduate project, but

our available delay fiber, at 10 km, was deemed insufficient for our laser.

We can set upper limits on the linewidth of the laser through use on known physical sys-

tems. Using the spectroscopy lasers phase locked to this master laser, we have been able to

measure the intercombination transition near its natural linewidth of 7.5 kHz. Furthermore,
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we have performed bound-bound Raman transfer between molecular vibrational levels, with

linewidths as small as 200 Hz, as discussed in the last chapter of this thesis. Hence we be-

lieve that we can set a conservative upper limit on the linewidth of our PDH-locked lasaer

at a value well within the current needs of our experiment.

2.6 The 1S0-
3P1 MOT

2.6.1 MOT transfer

The ideal spatial extent of a MOT is dependent on its temperature, and therefore on

the linewidth of the trapping transition. The 3P1 MOT therefore should be considerably

smaller in size than the 1P1 MOT. The goal then is to transfer between the two MOTs while

losing as few atoms as possible. One method for achieving this is to mode-match the blue

and red MOTs by ramping the quadrupole field gradient while simultaneously applying a

tapering RF function to the red 689 nm MOT trapping laser. This broadband trapping

laser frequency is shown in Fig. 2.38 [Katori et al., 1999].

Figure 2.38: The red MOT broadband (left) and final, single-frequency (right) spectra as

monitored on the spectrum analyzer. See Fig. 2.39 for details on the transfer sequence.

The field switching between the high blue MOT field gradient and the lower red-MOT

gradient was performed by an insulated gate bipolar transistor (IGBT), executing the shut-

off in 10 ms. However, during the switch (just before the blue MOT beams are shut off),

we observed that the blue MOT atoms were being ejected upward from the trap. We
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Figure 2.39: The MOT transfer sequence voltages applied to control the red trapping beams.

We found that a small overshoot on the center frequency detuning to 7.5 V, and then back

to 7 V (40 MHz), maximized the transferred atom number. Also note that the signal to the

AOM that controls the MOT beam powers is ramped down slightly, to reduce saturation

and minimize the final trap temperature.

determined that this was caused by eddy currents in the apparatus surrouding the vacuum

chamber and quadrupole coils. One culprit was the breadboard supporting the vacuum

chamber, which is circularly continous with a central hole cut out in which the chamber

resides. To mitigate this effect, we sawed through one side of the breadboard, effectively

cutting the circle into a U shape. Unfortunately this modification had little or no effect on

the atom ejection.

In the end, the solution to this problem was to no longer ramp the quadrupole coils field

gradient. We found that at the final, low 25 A current setpoint for the coils power supply

(corresponding to 25 G/cm), we are still able to produce a sufficiently large blue MOT

whose transfer efficiency to the red MOT is roughly 10%. Figure 2.39 details the sequence

breakdown for the broadband signal to the 40 MHz, center frequency detuning, and AOM

signal power used for the MOT transfer.
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2.6.2 Absorption imaging and the Navitar objective

As described in the 1P1 MOT section, a Thorlabs DC1240M CMOS camera is used for

imaging, however to resolve on a smaller scale appropriate for the smaller MOT, a different

objective is used. We installed a Navitar objective, and performed the final focus on our

atom sample only after we had produced a lattice trap; now this method is used for imaging

at all stages including and after the red MOT.

The objective was initially focused onto the atom trap by using a real-time Gaussian

fit to the trap image. When the Gaussian waist is minimized the trap is in focus. Note

that this is better to do with a smaller trap, so it should be repeated after the cigar-shaped

lattice trap is found.

Figure 2.40: Calibration of the Navitar objective using the free-fall of the atom sample.

The magnification of the Navitar objective was determined by using the MOT’s free-fall

in vacuum and setting this to the value for the acceleration due to gravity, g. Figure 2.40

shows this fit, and the extrapolated value for the space per pixel, 2.75µm/pixel. This should
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be remeasured after any time that the focus of the objective is changed.

2.6.3 The MOT setup and initial alignment

The 689 nm MOT beams are coaligned with the 461 nm beams using a dichroic mirror (blue

reflection, red transmission). As with the 461 nm, the 689 nm beams are telescopically

expanded, but only to roughly 0.5 inch diameter because the red MOT will be considerably

smaller in size than the blue MOT. The red beam spot is made just large enough to cover

the blue MOT size.

Alignment to the blue MOT is first achieved by eye, and optimized once an atom signal

in the red MOT is found. As mentioned in Sec. 2.5, without the vapor cell atom lock,

there is a degree of freedom in the frequency control that must be set by hand. Once the

MOT beams have been aligned as well as possible by eye, we create a stable and visible blue

MOT and adjust the New Focus LB1005 frequency-offset knob that controls this frequency

degree of freedom. Careful observation of the blue MOT reveals that, at the right red MOT

frequency, a small shell of darkness in the blue MOT appears; the 689 nm laser interaction

with the blue MOT atoms eject them from the shell that is on-resonance with the 1S0−3 P1

transition. This dark shell can be difficult to see, but has proven to be the most reliable

first step in finding the desirable red MOT 689 nm laser frequency from scratch.

Next, we run the red MOT sequence and look with the Navitar camera objective for

any sign of atoms in the red MOT, using the BK Precision function generator in series with

the adjustable knob to more finely control the red MOT laser beam frequency. Less than

±200 kHz adjustment should be sufficient.

Once a signal is found, the MOT laser beams should be tuned until a maximum number

of atoms in the trap is reached. When this optimum is reached, we install irises on all three

axes centered on each red MOT beam and its retroreflection. This helps considerably if any

significant, future alignment is necessary.

2.6.4 Daily maintenance

Daily maintenance of the red MOT is necessary but relatively uninvolved. Because there

is no atom lock, the BK Precision function generator that controls the frequency degree of
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freedom must usually be adjusted by as much as 100 kHz. This is often all that is necessary

for daily adjustment, however the MOT beam alignment should be routinely checked as

well.

2.6.5 Characteristics of the microkelvin MOT

Following the characterizations from the work in [Loftus et al., 2004a; Loftus et al., 2004b],

we modeled the trap dynamics by considering the trapping force in 1D, given by

F (v, x) =
h̄kΓ

2

(
s

1 + s+ 4(∆− k · v − µdxB · x)2/Γ2

− s

1 + s+ 4(∆ + k · v + µdxB · x)2/Γ2

)
−mg, (2.23)

where Γ is the natural linewidth, and ∆ is the laser frequency detuning (both in rad/s),

s = I/Is is the saturation parameter for the laser intensity (Is ≈ 3µW/cm2 for the 1S0−3P1),

dxB = dB/dx is shorthand for the magnetic field gradient from the quadrupole coils, v is the

atom velocity, and x is the atom position. The gravitational term indicates we have chosen

the vertical axis. There is a symmetric relationship between v and x, which means that this

restoring force works on both momentum and position (resulting cooling and trapping), as

shown in Fig. 2.41. The separation between the lines is set by ∆, and the width by s.

Figure 2.41: Magneto-optical trapping force along the vertical axis (left). The offset is due

to gravity. The MOT potential energy, where the incline is due to gravity (right). Atoms

at µK temperatures pool at the lower edge of the well, creating the bowl shape found in

Fig. 2.42.

Figure 2.41(b) shows the potential energy of the trap, which gives more insight into the
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trap shape. The overall slant of the well is the gravitational contribution, and the recession

cut in at the center is the space created by the MOT. The width of this recession is set

by the detuning ∆, and the depth by the beam intensity I. Assuming the depth is greater

than the atom thermal energy, we expect atoms to pool at the bottom of this well. This

is indeed what we find: Fig. 2.42 shows that for larger detunings, the atoms occupy the

bowl-shaped bottom of the well, and that we can adjust the shape using ∆. Figure 2.42

shows images of the MOT for various detunings ∆.

Figure 2.42: Super-imposed images of the red MOT for various detunings ∆ = 2πδ. For

larger detunings, the cold atoms sag to the bottom of the potential well.

2.6.5.1 Atom number

Using the atom counting technique described in Sec. 2.5, we measure the number of atoms

in the MOT to be Natom ' 2 · 106, and a corresponding density natom ' 5 · 1011 cm−3.

2.6.5.2 Temperature

Using the time-of-flight technique described in the previous section, we measured the tem-

perature of the atoms in the MOT to be Tatom ' 2µK. Figure 2.43 shows the atom cloud

in free fall for times (a) 0 ms, (b) 3 ms, (c) 5 ms and (d) 8 ms. For lower laser powers, we

can achieve colder temperatures down to ∼ 0.9µK, but at the cost of fewer trapped atoms.
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Figure 2.43: TOF imaging of the red MOT. Retrieving the expansion of the Gaussian

waist of the cloud at several points gives a result for the expansion rate, and therefore the

temperature, according to Eq. 2.21. Typical temperatures are 1− 2µK.

2.7 The optical lattice trap

Figure 2.44: Diagram of the optical lattice trap. The trap depth and frequency are labeled,

as are the red and blue sidebands.
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The Doppler shift for Sr atoms at 1µK is still substantial compared to the 7 kHz

intercombination linewidth [Foot, 2005]:

fFWHM = f0

√
8kBT ln2

mc2
≈ 30 kHz. (2.24)

However the kinetic energy associated with this temperature is small enough to make opti-

cal dipole trapping feasible. In fact, retroreflecting a far off-resonant dipole trap (FORT),

known as an optical lattice trap because of its standing-wave nature, is a standard technique

for further suppressing unwanted spectroscopic broadening at µK temperatures. Retrore-

flection of a single FORT beam provides tight confinement along the axis of beam propaga-

tion, suppressing the recoil shift and the first-order Doppler shift by quantizing the motion

of the trapped atoms. Figure 2.44 shows a diagram of the trap. For sufficiently deep traps,

the sinusoidal potential can be approximated as quadratic, and the quantized states can be

treated as those of a simple harmonic oscillator.

If the trap frequency is greater than the recoil frequency of an absorbed photon,

ωtrap > ωR =
h̄k2

2m
, (2.25)

then the energy associated with the momentum kick of a photon cannot be imparted to the

motionally quantized atom, and is instead absorbed by the lattice system. Additionally, if

the trap frequency exceeds the natural linewidth of the atomic line under study, ωtrap > Γ,

then the probe laser can be blue- and red-detuned to select excitation to blue and red

sidebands of the lattice trap, allowing the experimenter to control the motional state of the

lattice trap. These two regimes are referred to as the Lamb-Dicke ([Leibfried et al., 2003])

and resolved-sideband regimes, respectively, and are crucial requirements for performing

the desired spectroscopy in ultracold optical lattice experiments.

Complete motional confinement in 3D is achieved by overlapping mutually orthogonal

lattice trap beams. In this section we describe the physical requirements and technical

implementation of our 1D lattice trap, with an option for and preliminary measurements

with 2D and 3D setups. For a 1D lattice beam, the trapping regions are pancake-shaped

cross-sections of the beam; by extension, two lattice beams create cigar-shaped tubes, and

three lattice beams create spherical trapping regions. These three geometries are illustrated

in Fig. 2.45.
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Figure 2.45: Trapping geomtries for the (a) 1D lattice (pancakes), (b) 2D lattice (cigars),

and (c) 3D lattice (spheres).

2.7.1 Magic wavelength

The potential well of the optical trap is caused by an ac stark shift of the atom energy levels.

This results in a shift of the absolute line position given by the differential Stark shift of

the ground and excited states, and if the atoms sample various laser intensities within the

Gaussian trap profile, it can result in inhomogenous line broadening as well. The shift of an

atomic state depends on that state’s polarizability αa. Plotting αa for the 1S0 ground state

and the various 3P1 state sublevels, as seen in Fig. 2.46, one can see that the differential

shift of the ground state and the m = 0 sublevel of the excited state is zero at a specific
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wavelength, indicated by the crossing point (solid black and dashed green lines). At this

wavelength, measured by [Ido and Katori, 2003] to be 914± 1 nm, the zero differential shift

means that there should be no observed shift or broadening of the line for σ-polarization

of the trapping light. Note that the calculation of Fig. 2.46 predicts 872 nm, off by ∼ 5%

from the observed value.

Figure 2.46: State polarizabilities and magic wavelength crossing point, where m denotes

the magnetic sublevel, and p the light polarization relative to the applied magnetic field.

We therefore chose a Sacher Lasertechnik diode at 940 nm with a wavelength range

allowing for tuning to 914 nm.

2.7.2 Setup

The lattice laser was constructed in an analogous manner to the 922 nm seed for the blue

light setup (Sec. 2.2): a home-built ECDL with two-stage temperature control outputs

∼ 35 mW, which is then amplified to ∼ 1 W using a home-built tapered amplifier from
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the same designs as for the blue light setup (see Fig. 2.16). The beam is then split into

three parts for creating a 3D lattice. As described in [Greiner, 2003], it is important

that the standing waves of the three mutually orthogonal lattice beams not interfere, as

this can create unwanted superlattice waves by which atoms could be channeled out of

the trap. The polarization geometry for such a trap is shown in Fig. 2.47. In principle

choosing orthogonal beam polarizations should prohibit this, but experimentally any small

imperfection in orthogonality will result in interferences. Hence it is common practice to

offset the frequencies of the three axes using AOMs by 10s of MHz.

Figure 2.47: The combined geometry of the 3D lattice (left), broken down into component

beams. Black arrows represent pointing vector orientations, and blue arrows represent

polarization vectors. Circles represent vector orientations perpendicular to the page.

The primary axis lattice beam is picked off before the AOM, while the second- and

third- axis beams are separated using the double-pass technique: the zeroth and first orders

of the retroreflection of the first order of the first pass.

Each of these axes is fed into a three-stage fiber coupler and sent via polarization-

maintaining patchcord to the chamber. The primary axis, which is used for all 1D measure-

ments, is directed into the chamber along the horizontal axis, through one of the two large

window pairs, as seen in Fig. 2.48. The other two are directed through the small window

ports at 45 degrees from the horizontal. On all three axes, 120−150 mm focusing lenses are

installed just outside the port windows to provide beam focusing at the trap center. The

trap depth and frequency of the lattice trap are determined by the focusing waists of the
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Figure 2.48: Schematic for 914 nm lattice laser setup.

lattice beams, and are the topic of Sec. 2.7.3.

2.7.2.1 Beam alignment - initial detection

Aligning the three lattice beams with the red MOT can be difficult without assistance from

another laser. This is especially the case for the two diagonal axes whose port windows

are smaller and whose focusing lenses are harder to position. The key is to employ an

assisting laser whose effect on the atoms is easier to detect. We use the resonant 461 nm

light from the imaging beam, and temporarily replace the fiber of whichever lattice axis

we are aligning with the imaging fiber. After maximizing the power output from the fiber,
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alignment is achieved by iterating over the following two steps:

1. Adjusting beam alignment and focus into the chamber by using the fiber translation

axis and mirror knobs, until maximum atom depletion is achieved.

2. Dialing down the imaging beam power until the atom number is nearly recovered back

to full.

Repeating these two steps eventually leads to imaging beam powers small enough that

the shape of the beam can be seen cutting through the red MOT atom sample, indicat-

ing that the optics are sufficiently aligned. Although geometries for focusing optics are

color-dependent, we have found that aligning with the 461 nm seed is sufficient, and after

reinstalling the 914 nm lattice beam, minimal adjustment is required to find the lattice

trap.

Horizontal alignment of the 1D lattice is achieved in two ways. The retroreflection

mirror is first installed with a non-adjustable Thorlabs LMR mount, ensuring that when its

back reflection is overlapped with the incoming beam, both are normal to this vertically-

mounted reflecting mirror. Alternatively, one may use the atom diffusion from the one-way

dipole (not lattice) trap. When the beam is perfectly horizontal, as the atoms diffuse they

also undergo a “sloshing” effect as the beam focusing induces a weak restoring gradient. If

the beam is not exactly level, this sloshing is lopsided and atom diffusion does not occur

symmetrically from the trap center. Once the beam is horizontal, this is also a reliable

technique for finding the true beam waist.

2.7.2.2 Beam alignment - daily maintenance

While not always necessary, it is important to make sure that the lattice trap is sufficiently

aligned on a daily basis. If any of the axes has been completely misaligned and cannot be

found, then refer to Sec. 2.7.2.1 for aligning the lattice trap from scratch. The description

here is for daily maintenance to maximize overlap of the three axes, and for aligning the

retroreflection beams. The key is to maximize atom confinement by overlapping one-way

dipole traps from orthogonal axes.
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1. Align the retroreflection of the 1D axis by allowing for a long (∼ 100 ms) hold time

in the lattice as set in the software sequencer (Sec. 2.9), and adjust the knob on the

retroreflecting mirror until the horizontal diffusion of the atoms is minimized.

2. Blocking the retroreflection of the 1D beam, align the one-way beam of another axis

until the crossed-dipole trap size is maximized.

3. Horizontally misalign the retroreflection of this second beam by a small amount, and

maximize it’s crossed-dipole trap signal with the horizontal beam as well, so that there

are now 2 crossed-dipole traps.

4. Horizontally realign the retroreflection of this axis until the return beam crossed-dipole

trap is overlapped with the incoming one.

5. Blocking the retroreflection of the second beam again, align the incoming third beam

with the horizontal axis, and then with the incoming beam of the second axis, until

the trap signal is maximized.

6. Perform the same retroreflection alignment technique for the third axis as was per-

formed for the second: horizontally misalign from the incoming beam, and maximize

the crossed-dipole signal with the horizontal axis. Then horizontally align back onto

the incoming beam until the overlap is maximized.

7. Unblock all retroreflections.

For aligning the retroreflection of any given axis, one can monitor the coupling of the

retroreflection back into that axis’ fiber by installing a polarizing beam splitter and pho-

todetector pre-fiber, monitoring the small polarization leak. Return powers of 10% are

easily expected.

2.7.3 Trap parameters

The vacuum chamber size prohibits use of lenses with focal lengths less than 120 mm. For

the horizontal 1D lattice, a large 2” diameter 150 mm lens is mounted to the breadboard

supporting the chamber. The original collimated lattice beam diameter was measured to be
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w = 1.6 mm. By standard Gaussian optics [Kogelnik and Li, 1966], the calculated focused

waist w0 is then

w(z) = w0

√
1 +

(
z

zR

)2

(2.26)

for Rayleigh length zR = πw2
0/λ and laser wavelength λ. The Rayleigh length is the distance

from the waist to where the beam radius is larger by w(zR) =
√

2w0. Of interest to us is

the full length of this trap range, called the confocal parameter b = 2zR. At large distances

from the waist the beam diverges linearly, and the waist is related to this divergence θ by

w0 ≈
λ

πθ
. (2.27)

Our geometry predicts a 27µm waist, and in fact our first direct measurements of the waist

were 27µm. However after the focusing lens is secured in place, the easiest way to adjust

the focal point for maximal alignment with the red MOT atoms is to adjust the focus of the

beam’s output fiber stage. We have since found that the optimal alignment gives a 23µm

waist.

The trap depth for an optical lattice with one-way power P is given by [Ludlow, 2008]

〈|Ua|〉 = αa
4P

ε0cπw2
0

, (2.28)

where ε0 is the permittivity of free space, c is the speed of light, and αa is the state-specfic

polarizability introduced earlier.

For a quantum harmonic oscillator, H = T + U = p2/2m + (Umin + mω2
trap x

2/2). For

our time averaged lattice trap,

U = −〈|Ua|〉cos2(k x) ≈ −〈|Ua|〉(1− (k x)2/2)(1− (k x)2/2) ≈ −〈|Ua|〉(1− (k x)2) (2.29)

where we have Taylor expanded in (kx) to second order. If we match these two potentials,

then Umin = −〈|Ua|〉 and we can find the trap frequency ωtrap. We obtain

ωtrap =

√
2 〈|Ua|〉k2

m
=

√
8π2 〈|Ua|〉
mλ2

. (2.30)

With 60% double-pass AOM efficiency and 70% fiber-coupling efficiency, up to 500 mW

of 1D lattice power can be expected, or dividing across all three axes, roughly 175, 100

and 100 mW, respectively. From the expressions above, for the range 100 to 175 mW, this
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corresponds to trap depths and frequencies from 23 to 116µK (0.48 to 2.4 MHz), and 3.5

to 8µK (70 to 160 kHz), respectively. However, when 1D measurements are being taken,

1D beam powers usually do not exceed 200 mW, corresponding to

〈|Ua|〉(P = 175 mW)/h = 850 kHz = 40µK · h/kB, (2.31)

ω(P = 175 mW)/2π = 100 kHz = 4.5µK · h/kB. (2.32)

These values meet the Lamb-Dicke and resolved-sideband requirements. The Lamb-Dicke

parameter η is defined as

η2 ≡ ωR

ωtrap
' 30 kHz

100 kHz
= 0.3, (2.33)

where ωR = h̄k2/2m is the recoil frequency. The last important requirement to meet is that

the horizontal, 1D beam must be able to hold the atoms against gravitational pull. Linearly

estimating the radial trap gradient and comparing it to the force of gravity on a single Sr

atom,

∆U/∆x = 〈|Ua|〉/23µm = 2.4 · 10−23 N > mg = 1.4 · 10−24 N, (2.34)

we find that the radial trap gradient is greater than the gravitational force by an order of

magnitude.

2.7.4 3D lattice

Based on the atom densities from the previous section, we expect ∼ 200 atoms/site in a

1D lattice, ∼ 10 atoms/site in a 2D lattice, and less than 0.03 atoms/site in a 3D lattice.

In a scenario with tight confinement along all three axes, and with significantly less than

1 atom/site in a 3D lattice, photoassociation (Sec. 3.2) should be suppressed. This is not

quite what we observe, but our 3D lattice has not been exhaustively tested. What we have

observed to date is the possible existence of core of non-photoassociated atoms in the 3D

cross-over region above that of the 1D peripheral regions, as plotted in Fig. 2.49.

For some of our tests, the tail for the 3D section does not trail to zero, but rather to

some finite value, suggesting a non-photoassociated core of atoms. However, the initial

atom number in the 3D region is significantly higher than in the 1D (due to its greater trap

depth), which may explain the longer tail and conflate the observed finite asymptote. Not



CHAPTER 2. APPARATUS 71

Figure 2.49: Photoassociation losses in 1D and 3D trapping regions. Note that the initial

atom number is higher in the 3D region due to greater trap depths from the sum of the

substituent beam depths. Our measurements were inconclusive on whether or not there is

a distinct, 3D core in which photoassociation is suppressed.

all of our tests confirmed whether there is a non-photoassociated core. The rest of my thesis

requires only a 1D lattice, and so further diagnostics of the 3D lattice must be revisted.

2.8 The spectroscopy apparatus

We employ three spectroscopy lasers that are phase-locked to the master 689 nm laser (or

“689A”), and are named sequentially as 689B, 689C, and 689D. The locking scheme is

described in Fig. 2.50.

Lasers B and C are both phase-locked to A by the same EOT ET-4000 photodetector,

while D is locked to C on a second detector of the same make. All three spectroscopy

lasers are fed to the experiment via the same single-mode fiber patchcord, and joined via
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beamsplitter with the 1D horizontal optical lattice beam (see Fig. 2.48). Because these

beams co-propagate with the lattice laser, they are also co-focused. Adjusting the beam

waist relative to the lattice is therefore achieved upstream from the joining beamsplitter,

usually by adjusting the longitudinal focus of the output fiber translation stage. For many of

our measurements the spectroscopy beams shared the same focus as the lattice trap beam,

w0 = 26µm; however for some of the spectroscopy, where very little power is necessary, we

expanded the waist to provide a more uniform laser intensity in the region of the trapped

lattice atoms, expanding to a waist w0 = 38µm.

When locked, the error signals for these lasers are similar to the spectrum analyzer

traces shown in Fig. 2.51. To check the quality of the phase locks, we looked at the signal of

the beat between lasers B and C while both were locked to A. One can see that the central

feature linewidth is not larger than several hundred Hz, resolution-limited by the spectrum

analyzer.

Our lab sequencing software has been programmed with the capability for the generic

sequence shown in Fig. 2.52. This gives us extensive measurement flexibility.

2.9 The lab control software

We use software for control and sequencing that was written in-house, and communicates

with our hardware using a National Instruments Data Aquisition (NIDAQ) system. The

NIDAQ system has input and output for both digital and analog signals, and has timing

precision to 10 µs. Sequencing is performed by software separate from that which receives

images from the camera and proccesses data; communication between the two is triggered

by the NIDAQ signal that controls the camera. Figure 2.53 is a screen capture of the se-

quencing software. The left-hand panel is used to select portions of the sequence - blue

MOT loading, red MOT loading, lattice loading, spectroscopy, and imaging - while the

right-hand portion shows the resulting time sequence: columns represent segments of time,

and rows represent various digital and analog channels for NIDAQ control of hardware.

Figure 2.54 are two screen captures of the imaging, analysis, and data logging software.

Images are retrieved from the camera using the Thorlabs UEye software application pro-
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gramming interface (API), displayed real-time in the imaging bench as shown (with tiling

if the camera AOI is smaller than the bench window) and the output data is logged to text

file. The output data is most commonly the atom number (or more directly, just the pixel

brightness), and this is measured either using a pixel-summing tool or a Gaussian-fitting

tool. One of the primary advantages of our homemade software is that it was written as

a core framework with an exposed API for writing plugins. The pixel-summing, Gaussian-

fitting, and the text-logging tools were all written as plugins in this way. New plugin tools

may be written without any knowledge of how the core framework operates, allowing both

experienced as well as inexperienced programmers to expand the capabilities of the software

by writing new plugins. And each plugin benefits from the features of the core framework,

which include highly modular drag-and-drop functionality and the ability to change output

measurements real-time without having to pause the sequencer.
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Figure 2.50: Schematic of the spectroscopy apparatus. Lasers 689B and C are phase-locked

to 689A, while 689D is phase-locked to 689C. Each spectroscopy laser is shuttered using a

double-pass AOM at a total frequency shift of 420 MHz; together with the 80 MHz shift of

the 689A laser, this means that the spectroscopy lasers B and C can probe the 1S0−3 P1 line

if they are offset locked to a total of 500 MHz from 689A. For 689D, the setpoint depends

on C.
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Figure 2.51: Spectrum analyzer traces of the lasers (a) 689A, (b) 689B, (c) 689C, and (d)

the beat of 689B with C. Note that in (a) through (c) the span of the trace is 10 MHz

to show the servo sidebumps, whereas in (d) the span of the trace is 10 kHz, focused on

the central lock feature. The observed width of the central lock peaks are limited by the

resolution of the spectrum analyzer.
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Figure 2.52: The full experimental sequence schematic.

Figure 2.53: Screen capture of the sequencer software.
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Figure 2.54: Screen capture of the lab control software.
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Chapter 3

Production of ultracold 88Sr2

molecules

Because the energy level structure of molecules is significantly more complicated than that of

atoms, and few closed optical transitions are available, methods for direct cooling and trap-

ping of molecules have been limited. As a result ultracold molecule production often relies on

an already cold sample of constituent atoms [Doyle et al., 2004; Dulieu and Gabbanini, 2009;

Carr et al., 2009]. One such method utilizes magnetic fields to tune bound molecular chan-

nels to resonance with the incident open channel. These resonances, known as Feshbach

resonances, rely on the species having hyperfine magnetic structure in the ground state. For

species that do not have this structure, such as in our case with Sr, an analogous optical

technique, photoassociation [Jones et al., 2006], is employed.

3.1 Sr2 molecular notation

In an idealized molecule, electronic, vibrational and rotational degrees of freedom can be

separated. Analogous with atomic structure, the electronic state of the molecule is specified

by a term symbol. Recall that an atom’s term symbol is described by 2S+1LJ , where S is the

spin, L is the orbital angular momentum, and J is the total electronic angular momentum.

Molecular term symbols depend on the details of the molecule in question. Any choice in

term symbol represents an approximation of the true picture, and for any given picture,
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mixing can occur between the various states, complicating the system. It is important to

choose the picture that most closely represents the properties of the atom or molecule at

hand.

For each electronic state there is an internuclear potential that describes the energy of

the system for varying nuclear separation. Figures 3.1 and 3.2 (a) and (b) shows two of the

most relevant for our work.

Figure 3.1: Angular momentum breakdown for Hund’s case (a) (left), and for Hund’s case

(c) (right). Source: [Atkins and Friedman, 2010].

3.1.1 The Born-Oppenheimer picture and Hund’s case (a)

The most common molecular term symbol models the atomic term symbol closely [Budker

et al., 2008],

2S+1|Λ|±Ω,(g/u), (3.1)

where S is the total electronic spin, Λ is a projection of the total electronic orbital angular

momentum L, and Ω is a projection of the total angular momentum J . In this case, Hund’s
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Figure 3.2: Hund’s case (a) potentials (left), and Hund’s case (c) potentials (right). Notice

the state-swapping at avoided crossover points in (c) compared with (a). Source: [Sko-

morowski et al., 2012b].

case (a), there is strong electrostatic coupling, and very little molecule rotational coupling,

explaining its similarity to the atomic symbol.

Because diatomic molecules are symmetric in rotation about the internuclear axis, λ

is conserved. Hence the projection onto that axis, Λ, is used as a label. We refer to the

absolute value, so Λ = |Λ| > 0, and its sign is accounted for as a symmetry. Once again, to

distinguish from atomic notation, where L = 0, 1, 2, 3→ S, P,D, F , values of Λ are tracked

using greek symbols, Λ = Σ,Π,∆,Φ, ... The superscript ± labels the sign of the angular

moment L projection, and signifies whether or not there is a wave function sign change

under reflection across the plane perpendicular to the internuclear axis.

For homonuclear dimers there is one more symmetry: electronic sign change about the

molecule center of mass. For even (odd) symmetry, the subscript g (u) is used, following

the traditional gerade/ungerade symmetry labeling system.

3.1.2 Empirical spectroscopist’s notation

A variant on the Hund’s case (a), the empirical spectroscopist’s notation adds a letter prefix

on each symbol above, X for the ground state, and A,B,C... (a, b, c...) to denote states with

the same (different) Ω multiplicity of that of the ground state, ordered by increasing energy

[Brown and Carrington, 2003]. In this case,

• X1Σ+
g corresponds to the 1S +1 S ground state asymptote,
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• A1Σ+
u and A′1Πu correspond to the 1D +1 S asymptote,

• B1Σ+
u and B′1Πu correspond to the 1P +1 S asymptote, and

• a3Σ+
u and c3Πu correspond to the 3P +1 S asymptote.

3.1.3 Relativistic picture and Hund’s case (c)

Heavy dimers with strong spin-orbit coupling are best described using Hund’s case (c)

notation [Jones et al., 2006; Ciurylo et al., 2004; Ulmanis et al., 2012]. In this approximation,

the coupling means that neither Λ nor Σ are well defined, and so the molecular term symbol

denotes the combined value Ω:

(n)|Ω|±(g/u). (3.2)

The ± superscript here is different than that for Hund’s case (a) coupling, and denotes

whether or not there is a sign change of the electronic wave function under reflection along

a plane containing the internuclear axis. Naturally then, this symmetry only exists for

Ω = 0 states.

There is an ambiguity here, since this labeling system doesn’t identify the asymptotic

atomic states of the substituent atoms. To account for this, the traditional label places a

number in parenthesis in front of the term symbol, denoting the ordering of these states

for increasing energy at the asymptotic line, as in (1)0u, (2)0u, etc. This is described in

Fig. 3.2. In this system the ground state X is unique,

• X1Σ+
g corresponds to the 1S +1 S ground state asymptote,

• (1)0+
u and (1)1u correspond to the 3P1 +1 S asymptote (a shorthand for these lowest

two states omits the prefix: 0+
u and 1u), and

• (2)0+
u corresponds to the 1D2 +1 S asymptote,

and so on. This notation, as well as the empirical spectroscopist’s, is used extensively in the

works [Skomorowski et al., 2012b; Skomorowski et al., 2012a], in which an ab initio model is

used to construct the potential energy states of 88Sr2, used for comparison with our results

in the coming chapters.
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3.1.4 Rovibrational indices

The various notation systems above denote manifolds with a given electronic state, and

depending on the system, projections of the total spin, orbital angular momentum, and

combined angular momentum of the dimer. For any one of these manifolds, there are then

a set of vibrational bound states, denoted v, and so long as the non-projected, total angular

momentum J is a good quantum number [Brown and Carrington, 2003], rotational states

as well. These are the last two indices to fully define a state, and depending on how deeply

bound the state is, two different conventions can be used:

• For weakly-bound states, one can count the vibrational index downward from dissoci-

ation: v′ = 0,−1,−2, etc. denotes the atomic asymptote, the least-bound molecular

state, second least-bound, etc.

• For more deeply-bound states, one can count the vibrational index upward from the

most deeply-bound state: v′ = 0, 1, 2, etc. denotes the vibrational ground state, first

excited state, second excited state, and so on.

And lastly, quantum numbers permitting, one may assign a total angular moment value

J to a given state. With all of these prescriptions, one has then identified a single quantum

state that corresponds to a unique binding energy. The resulting, full molecular prescription

(for the first three states for Hund’s case (c)) would then be [McGuyer et al., 2013]

• X1Σ+
g (5s2 + 5s2) (v = ..., J = ..., m = ...)

• (1)0+
u (5s2 + 5s5p) (v = ..., J = ..., m = ...)

• (1)1u (5s2 + 5s5p) (v = ..., J = ..., m = ...).

3.1.5 Selection rules

As will be described in more detail in the next section, one drives atom pairs between these

states by one- and two-photon photoassociation (1PA and 2PA). We assume that sufficiently

cold atoms interact only by s-wave collisions, so by conservation of momentum, ∆J = ±1

for 1PA. For 2PA, we expect ∆J = 0,±2, for electric-dipole transitions.
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3.2 Photoassociation

Photoassociation (PA) [Jones et al., 2006; Thorsheim et al., 1987] is a process by which two

colliding ground state atoms, and a photon red-detuned from an electronic transition, form

a weakly bound molecule. In this weakly bound regime, the molecule can be approximated

as its substituents: one atom in the ground state and one in the electronic excited state.

Sr + Sr + γ → Sr− Sr∗ (3.3)

The interaction between such a pair of atoms results in a set of bound rovibrational

states. The detuning of the PA photon from the electronic transition must match the

binding energy of one of these states for photoassociation to take place, as shown in Fig. 3.3.

Figure 3.3: One-photon photoassociation from the free atom ground state (dashed line) to,

e.g. the 0+
u (v′ = −4, J ′ = 1) excited molecular state.

Previous work has been done on the strong 1S0 −1 P1 line [Nagel et al., 2005]. The

locations of the nine least-bound states of the 1S0−3 P1 manifold have also been previously
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reported [Zelevinsky et al., 2006], and the majority of which have been confirmed again in

our work. Figure 3.4 shows a representative example of 1PA losses on the (v′ = −5, J ′ = 1)

line, at ∼ −3.5 GHz binding energy, for minimum PA laser power (for larger PA intensity,

the line is deepened and widened); Fig. 3.5 shows the loss rate for this line, as well as the

rate vs. PA laser intensity. Also note that the ∼ 7 kHz intercombination line allows us

to resolve the least-bound state at ∼ −450 kHz. Resolving this line relative to the strong

atomic line near it is a balancing act for the measurement. For observations of the −450kHz

line in this work, we instead rely on a bound-bound transfer to the state, rather than a

free-bound. This is discussed in detail in Ch. 4.

Figure 3.4: 1PA on the 0+
u (v′ = −5, J ′ = 1) line. A relatively small free bound laser (LFB)

power of 80µW was employed to show minimal 1PA linewidths of ∼ 200 kHz. For higher

powers, depletion can reach as much as 80 to 100%, with linewidths up to 1 MHz. In either

case, the thermal tail on the left-hand side is evident.

Photoassociation can be modeled by the psuedo-Lorentzian scattering matrix element
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Figure 3.5: 1PA loss curve on the (v′ = −5, J ′ = 1) line (left). Loss rate vs. LFB intensity

(right).

Figure 3.6: A typical 1PA sequence.

[Napolitano et al., 1994; Bohn and Julienne, 1996; Jones et al., 1999]

S1g(ε, l, δ, I1) =
γ1γs(ε, l, I1)

(δ + ε)2 + (γ/2)2
, (3.4)

where δ is the laser detuning from the PA line, δ = δL − δ1, ε is the collision interaction

energy, γ = γ1 + γs, where γ1 is atomic linewidth, and γs is the linewidth of the stimulated

emission process from the excited state. The linewidth γs depends on the laser intensity I1,

the collision interaction energy ε, and the total angular momentum of the atom pair, l, and

the resulting bound state b1 [Ciurylo et al., 2005],

γs = 2π〈b1|Vlas(I1)|ε, l〉2. (3.5)

Microkelvin trap temperatures guarantee that s-wave collisions dominate, so for our treat-
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ment of photoassocation, l = 0. From γs we can define a scaling parameter that is a useful

gauge of the strength of a transition, called the optical length,

lopt =
γs

2krγ1
. (3.6)

Table 3.1 has a list of predicted lopt values, as calculated by our collaborators.

Table 3.1: Calculated optical lengths

v’ E/cm−1 lopt

-1 -1.2407E-05 8.06E+05

-2 -7.8541E-04 9.15E+03

-3 -7.4420E-03 6.13E+01

-4 -3.6237E-02 4.70E+01

-5 -1.1422E-01 3.15E+00

-6 -2.6982E-01 3.48E-02

-7 -5.2651E-01 2.22E-01

-8 -8.8540E-01 1.22E-02

-9 -1.3196E+00 7.51E-03

The lifetime of these states is dominated by the short lifetime of the atomic excited state,

and so the molecules rapidly deexcite either to molecules in the ground state manifold, or

back to free atoms. In general this is an unreliable method for producing a large number

of molecules in a single, long-lived rovibrational state.

3.3 Two-color photoassociation

The problem of 1PA deexcitation to many ground states can be side-stepped if instead

one uses a pair of lasers to perform a coherent, two-photon transfer directly to the ground

state. To ensure that one only drives the coherent process while minimizing scattering

off of the one-photon line, both lasers are detuned from the excited state by a common

amount, as shown in Fig. 3.7. However this process has its own experimental limitations,
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since higher laser power is required to drive the transition for larger common detuning. A

typical sequence for 2PA spectroscopy is illustrated in Fig. 3.8.

Figure 3.7: Two-photon photoassociation from the free-atom ground state (dashed line) to,

e.g. the (v = −2, J = 0) state in the molecular ground state manifold.

Figure 3.8: A typical 2PA sequence.

Two-photon photoassociation can be modeled by the scattering matrix element [Bohn
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and Julienne, 1996; de Escobar et al., 2008],

|S|2 =
((δ1 − δ0)− δ2 + ε)2γ1γs

((δ1 − δ0)− δ2/2 + ε)2 − 1
4(δ2

2 + Ω2
2)2 + (γ/2)2((δ1 − δ0)− δ2 + ε)2

, (3.7)

where (δ1 − δ0) is the detuning of the LFB frequency from the free-bound PA line (with δ0

a free parameter to account for the non-zero location of the 1PA line), δ2 is the detuning of

the bound-bound laser from the bound-bound tansition frequency (i.e. independent of the

LFB frequency δ1), Ω2 is the Rabi frequency of the bound-bound transition, γ1 = 2γatomic

is twice the atomic linewidth, and γs is the stimulated emission linewidth. The linewidth

γs can be expressed as a function of the optical length,

γs = 2krγ1lopt, (3.8)

where the optical length is a measure of the ease with which a FB transition may be excited;

it depends linearly on the laser intensity, and in principle should be measurable from this

result.

The actual locations of the peaks in this function can be found at the derived frequencies

δ± given by the expressions

δ± =
1

2
((δ1 − δ0) + δ2)± 1

2

√
((δ1 − δ0)− δ2)2 + 4Ω2

2. (3.9)

The dynamics of 2-photon photoassociation are similar to those of a 3-state lambda system

as seen in Fig. 3.9. If one plots the peak positions for various BB laser detunings, one finds

a hyperbolic avoided crossing curve as seen in Fig. 3.10. For large detunings, the dominant

central peak can be described as the 1PA line, while the detuned line is the coherent, 2PA

transition. At small detunings, the system is described best by the dressed-state model,

where each peak is a coherent mixture of both the excited molecular state accessed via 1PA,

and the ground molecular state accessed via 2PA. The mixture is determined by the dressed

state re-diagonalization:

|+〉 = e−i(Ω
′−δ−ω0)t/2 · (cosθ|1〉+ e−iωtsinθ|2〉) (3.10)

|−〉 = e−i(Ω
′−δ+ω0)t/2 · (−eiωtcosθ|1〉+ sinθ|2〉) (3.11)

for Ω′ =
√

Ω2 + δ2 and for angles

cos2θ = δ/Ω′ (3.12)
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sin2θ = −Ω/Ω′ (3.13)

For larger values of Ω, one must detune farther in order to separate the 1PA and 2PA

processes. For fixed exposure time and PA laser intensity, increased detuning reduces the

Figure 3.9: (a) Diagram of a three-state lambda system. The laser represented by the right-

hand arrow (in our case, the free-bound, or FB) couples the initial state to the intermediate,

and the left-hand arrow (bound-bound, or BB) couples the intermediate to the final state.

(b) A schematic plot of trap atom number vs. FB laser frequency, for a fixed BB laser

frequency. There are two loss peaks, one at the one-photon frequency, and one at the two-

photon frequency, where the FB laser detuning matches that of the BB laser. At small BB

detunings, the two peaks become a coherent mixture of the two cases, as in a dressed-state

system, and never cross.

peak depth of the 2PA line. This is the 2PA tradeoff: purer transfers that decrease the

likelihood of scattering off of the excited intermediate state require more laser power to

drive.

We can estimate the feasibility of this production method using a simple model: simul-

taneously setting a detuning-dependent upper limit on the laser intensity in order to keep

photon scattering off of the 1PA (or atomic) line to a minimum, while also setting a lower
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Figure 3.10: (a) Two representative 2PA traces, black for a coupling laser detuning of 0

MHz, and gray for 1 MHz. (b) Aggregate trace of 2PA peak positions for various coupling

laser detunings, with vertical lines to mark the example traces from (a).

limit on the molecular formation rate K. Recall from [Foot, 2005] that the spontaneous

scattering rate Rs is related to the excited state density matrix element ρee by the saturation

intensity,

Rs = s0ρee =
s0Γ/2

1 + s0 + (2∆/Γ)2
. (3.14)

Our estimate is that the molecular lifetimes will be on the order of τ1 ∼ 5− 10 ms, and so

our formation rate must not exceed this. Using the relation s0 = 2Ω2
2/Γ

2 on resonance, and

for the bound-bound transition Rabi frequency Ω2,

τ1 ≤
∆2

Γ2

4Γ

Ω2
2

, (3.15)

where the 1 in the denominator of the above expression has been removed because we are

dealing with an open molecular transition that is not susceptible to the effects of saturation.

The 1 in the numerator has been dropped because we expect our detunings to be large (∼

MHz) compared to the transition linewidth (∼ 10 kHz).

In addition, the two-photon Rabi frequency Ω12 must be much faster than the decoher-

ence time, setting the relation

Ω12 =
KΩ2

2∆
≥ π

τ2
(3.16)
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for a conservative estimate of τ2 ∼ 1 ms. The inequality for τ1 sets the detuning restriction

∆

Ω2
≥
√

Γτ1

2
∼ 15, (3.17)

while together with the expression for Ω12 we set a lower limit on the formation rate K,

K ≥ ∆

Ω2

2π

τ2
∼ 9 · 104/s. (3.18)

However, based on our existing 2PA measurements, such as that shown in Fig. 3.11, we do

not achieve sufficiently high rates for K. And this is indeed what we have found; we have had

no success explicitly detecting molecule formation with 2PA via several different promising

state pairs. We must therefore explore alternative methods for molecule production.

Figure 3.11: Two-color loss plot for the (−6′,−3) transition (left), and two-color loss rates

vs. free-bound PA laser power (right).

3.4 Franck-Condon factors

We conclude this chapter exploring possible routes toward the production and detection of

Sr2, the final result published in [Reinaudi et al., 2012b]. This begins with a discussion on

Franck-Condon Factors (FCFs), the overlap between wavefunctions in the electronic ground

and excited states.

Because of the narrow 1S0−3 P1 intercombination line, the interaction potential for the

weakly bound molecular states has a small, attractive C3 coefficient, and a C6 coefficient
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similar to that of the ground state [Kotochigova, 2008; Skomorowski et al., 2012a; Reinaudi

et al., 2012b]. Therefore the wave function of the excited state is very similar to the ground

state at the Franck-Condon point, as seen in Fig. 3.12. It is presumable then that some

excited rovibrational states have large FCFs with some ground rovibrational state. The

Figure 3.12: Wave functions for the v = −2 (solid) and v′ = −5 (dashed) vibrational levels.

The large overlap near the classical turning point leads to the large FCF. Source: [Reinaudi

et al., 2012b].

advantage of a large FCF between two states is that spontaneous emission from the upper

state will occur predominantly to this single lower state. In such a scheme, 1PA can be used

together with this selective spontaneous emission to produce a large sample of molecules in

a single rovibrational state of the electronic ground state manifold.

We would therefore like to find as large an FCF as possible to use in our production

method. One measures FCFs of pairs of states by measuring the Rabi splitting of the

Autler-Townes doublets discussed in Sec. 3.3, by the relationship

fvv′ =
1

2α2

Ω2
vv′

Ω2
a

, (3.19)

where Ωa = Γa
√
s/2 the Rabi frequency of the atomic line, Γa the natural atomic linewidth,

s the saturation parameter of the BB laser, and α the line strength between rotational states

(1/3 in this case, for (J = 0, J ′ = 1)). Note that here we denote the BB Rabi frequency

using the vibrational numbers of the excited and ground states, but in Sec. 3.3 we used the

simpler notation Ω2, the Rabi frequency of the “second leg” of the 2PA transition.

Table 3.2 is the final result of the work summarized in this section: FCFs for 10 different

state pairs, compared to the values calculated by our collaborators [Skomorowski et al.,
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2012b] (this data was received through private correspondence; it is related to, but not

included in, the published work). The final uncertainty was determined after measuring

against various systematics: LFB and LBB intensities, lattice laser intensity, magnetic field

bias, and atom density. In the interest of time, these systematics were measured on a

representative trace, (v′ = −5, v = −1), and used for all other traces in the manner discussed

below.

Table 3.2: Franck-Condon factors: measured

-1’ -2’ -3’ -4’ -5’ -6’

-1 - - 0.331(173) - 0.103(7) -

-2 - 4.07(9) · 10−4 2.65(23) · 10−3 0.157(22) 1.018(139) -

-3 - - 5.692(2.525) · 10−5 9.951(1.575) · 10−4 0.0368(227) 1.67(70)

Table 3.3: Franck-Condon factors: calculated

-1’ -2’ -3’ -4’ -5’ -6’

-1 - - 0.4849 - 0.02889 -

-2 - 3.438 · 10−4 3.622 · 10−3 0.1084 0.8067 -

-3 - - 1.939 · 10−4 8.783 · 10−4 0.04117 0.8382

3.4.1 Fitting function

In the following discussion a suitable 2PA fitting function is obtained, and then compared

to the simpler approach of using a two-peak Lorentzian. It is found that the results are

similar enough that it is beneficial to perform the bulk of the analysis using the simpler

function, with significant decrease in time spent on the analysis. But first, the better model

is constructed.
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3.4.1.1 Derivation

Photoassociation, being a two-body interaction, is modeled by density-squared dynamics

with a proportional term to account for vacuum lifetime losses. For atom density n(t) the

expression is
dn

dt
= −2Kn2 − n/τ, (3.20)

for molecule formation rate K and atom trap vacuum lifetime τ . As quoted in Ch. 2, the

vacuum lifetime is on the order of ∼ 10 s, whereas our photoassociation time scales are

∼ 10 ms. It is therefore reasonable to neglect the trap lifetime proportional term, which

simplifies the analytic solution. Integrating the density-squared term alone yields the the

expression for the atom density,

n(t) =
1

2Kt+ 1/n0
(3.21)

for initial atom density n0 and photoassociation time t. The spectroscopic dependence of

this function is built into the molecular formation rate K:

K(ε, l, δ1, δ2, I1, I2) = 〈πv
k2

∞∑
l=0

(2l + 1)|S(ε, l, δ1, δ2, I1, I2)|2〉, (3.22)

where v is the interaction velocity of the colliding atom pair, k =
√

2µε/h̄ is the collision

wave number, ε the collision energy (in frequency units Hz), µ the reduced mass of the atom

pair, l is the total angular momentum of the system, and S(...) is the 2PA scattering matrix

element as defined in the previous section.

The spectroscopic arguments in K and S are the two laser detunings and intensities,

respectively, and δ± are the dressed state peak locations at a given set of laser detunings.

Details on the scheme can be found in [Bohn and Julienne, 1996]. However, note that

Bohn’s and Julienne’s definition of ∆2 is dependent on ∆1, whereas in our case we have

defined it as a detuning from resonance with the intermediate and final states. Rather, our

δ1 and δ2 are defined similarly to those in [de Escobar et al., 2008].

The collision energy term ε has been introduced because our atomic ensemble is in a

thermal distribution in collision energy ε, and therefore our lineshape is the convolution of

the expression above with the energy distribution

f3D(εh) =
2√
π
e−εh/kBT

√
εh

(kBT )3/2
, (3.23)
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resulting in a final expression for the rate K,

K3D =

∫
ε
f3D(ε)K(ε, l = 0, ...)dε. (3.24)

Because of the Wigner threshold law [Ciurylo et al., 2004], at T ∼ 1, µK no higher order

angular momentum states can contribute to the collision interaction, and so it is accurate to

calculate for strictly s-wave collisions (l = 0). Since we are in a 1D lattice our dimensionality

is 2D. However at our ∼ 1, µK temperatures the thermal tail should contribute relatively

little to the overall line shape, and so the calculation was performed using a 3D thermal

ensemble.

It is the number of atoms in the lattice trap that we measure, which is converted to an

atom density. This function K3D is then used in the expression for natom defined at the

beginning of this section, and is then fit to the data.

3.4.1.2 Implementation and fitness

Data fitting is performed in Origin, and the thermal convolution above is composed of a

50-term discrete summation. This was found to achieve the desired level of smoothness

for the majority of the 2PA peaks, even at large detunings from the 1PA line. The free

parameters of the system are δ0, δ1, δ2, Ω2 (which define δ±), n0, lopt, and a final parameter

A which is defined below. However the exact implementation of this set of free variables

comes with three qualifications that require explanation.

First, for an avoided crossing set of traces, δ1− δ0 and Ω2 should each have only a single

value, but each can be extrapolated from just a single constituent trace. The solution then

is to set each either as a singly-defined global free parameter across the whole set of traces,

or to still leave each as fully free, and look at the spread and error across the set of traces.

We opted for the latter solution, and have plotted δ1−δ0 and Ω2 across the traces as shown

in Fig. 3.13 (a) and (b).

The spread of values for δ1 − δ0 gives a mean and standard deviation of

δ0 = 739(23) kHz, (3.25)

which is quite consistent. But for the Ω2 trace a little more analysis is required. The three

low-lying outliers happen to correspond to traces whose fit line was not smooth, as shown
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Figure 3.13: Plot of Ω2 (left) and δ1 − δ0 (right) values extrapolated from 2PA fits for

various single traces.

in Fig. 3.14. Ignoring these three, there are still 8 data points, and from their spread we

can average the value of Ω2 to

Ω2 = 548(48) kHz. (3.26)

The globally-extrapolated value for Ω2, i.e. the value of the minimum spacing between the

two peaks as found from the data in Fig. 3.16 below, is Ω2 = 503(18) kHz, which is in

agreement with the spread from the trace as quoted above.

The second qualification for the fitting function concerns lopt. Our collaborators pre-

dicted values for the optical length per unit of laser intensity. This value can either be

fixed, or left as a free parameter to independently check the prediction. Our attempts at

independent confirmation found the fit relatively insensitive to lopt, and so we decided to

fix them to their predicted values.

The third qualification is regarding the free parameter A. The original model did not

include such a term, and the first attempts at fitting produced results similar to the pink

trace in Fig. 3.15. This fit implies that, for our exposure times (and for tests at any

reasonably larger times), it is not feasible to induce losses as deep as the data shows. This

makes intuitive sense, because the photoassociation rate is a density-squared loss process;

as PA loss drives the atom density down, it becomes increasingly difficult to further induce

PA losses. But there must still be a discrepancy between our measurement and the fit. One

possible explanation is that the atom density is different than what we measure with our
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Figure 3.14: Discrete-sum thermal 2PA fit example from one of the traces resulting in an

anomalously small Ω2 value (red), and the smoother, but less accurate, nonthermal two-

Lorentzian fit function (blue). For the discrete sum, the same non-smooth artifact of the

thermal convolution is present in all of the traces with anomalously low Ω2 values, and

therefore is assumed to be the culprit. The Ω2 values from these traces have been ommitted

from the analysis.

camera. If we introduce a scaling factor A on the overall density in Eq. 3.20, it cancels from

all terms, except to linear order in the n2 term:

n(t) =
1

2AKt+ 1/n0
. (3.27)

It is clear that fits including the free parameter A match the data significantly better,

as shown in Fig. 3.15, with a resulting value A ∼ 5.5. It only remains to explain why

such a density compression factor is necessary. One possible explanation is lattice trap

density compression. Our CMOS camera resolution, at ∼ 3µm, is significantly larger than

the lattice site size scale, ∼ 500 nm, and so the atom density measured from the CMOS

underestimates the true, local value experienced by atoms. We can estimate the lattice

density compression factor with the following reasoning. The total lattice trap depth for a
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Figure 3.15: Comparison of the 2PA fit function with (red) and without (pink) the additional

scaling factor A. All other parameters, such as the optical length l, and the exposure time

t, are equal.

one-way laser power P = 180 mW and beam waist w0 = 25µm is U/kB ∼ 35µK. Our atom

sample is typically at a temperature T < 2µK. If the atoms only occupy the spatial extent

2x of the well at or below 2µK, then for a sinusoidal trap profile, the fractional compression

for this ratio is

x

λ/4
= 4sin−1

(√
2µK/35µK

)
/2π ' 0.153 ' 1/6.5. (3.28)

Because A is introduced such that n → An, this means that A is the reciprocal of the

compression factor above. Hence,

A =

(
λ/4

x

)
' 6.5, (3.29)

which matches the fit result of A ∼ 5.5 within 20%. We believe this is a credible explanation

for why this additional parameter A is necessary for the fit function.
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With these qualifications accounted for, the fit function appears sufficient because it

accounts for the thermal asymmetry of the peak points and has the PA-suppressing inter-

ference point that can be found between the two peaks, a feature clearly evident in the

data.

3.4.1.3 Evaluation

We evaluate the fitness of this function, and the two-Lorentzian, by comparing their success

on a representative data set, as shown in Fig. 3.16.

Figure 3.16: Plot of the peak separations of the 2PA fit peaks (black), and the double

Lorentzian peaks (red) (left). Difference of the point sets (right). Notice the crossing point

at ∼ −250 kHz.

It is clear from the data that the interference point of zero PA between the two peaks

is real, and that the two-Lorentzian function fails to account for it. But what matters the

most is simply that the two-Lorentzian function sufficiently identify the peak positions. By

eye we can see that it does not account for thermal tail-induced asymmetry in the peak.

However, for calculating FCFs, it is only the peak separations that matter, and because

this shift is systematically leftward for both peaks, its effect could very well cancel out.

Figure 3.16 is a plot of this measure, (δ+ − δ−)− (δR − δL), where δR/L are the frequencies

of the right and left peaks of the two-Lorentzian peaks. The overall spread is within ±40

kHz, and there appears to be a linear dependence on detuning. This is not surprising; as

detuning is increased, the thermal asymmetry is not exhibited equally by the two peaks (the
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narrower line is more symmetric), and therefore the imperfection of the Lorentzian fit does

not subtract out in the difference. But the difference is approximately zero at zero detuning,

where Ω2 is most sensitively determined. Hence if the two-Lorentzian function is used, it is

appropriate to add a pessimistic ±30 kHz additional uncertainty to the extrapolated value

of Ω2.

3.4.2 Systematic shifts

The FCF values were measured against five possible sources of systematic shifts:

• LFB intensity

• LBB intensity, although this laser intensity factors directly in to the expression for Ω2

• Lattice laser intensity

• Magnetic fields

• Atom/molecule density

Because each FCF data point requires a full avoided crossing set of traces, any systematic

shift is extrapolated from a repeated binary measurement, four data points in total. There

is concern that on the apparatus there is an overall laser frequency drift on the order of ∼ 2

kHz/min (possibly from thermal drift of the high-finesse cavity), and since each avoided

crossing set takes ∼ 40 minutes, both the individual traces as well as the binary sets were

taken in an interlaced fashion, to avoid conflating any measurement axis with time. All

measurements were made on the representative pair (v = −1, v′ = −5), and the resulting

uncertainties are extrapolated from this pair for all other state pairs.

3.4.2.1 LFB intensity

From the slope in Fig. 3.17 (d) we estimate a possible LFB intensity-induced shift of

20(40) kHz/mW LFB.
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Figure 3.17: (a) A representative 2PA trace for a fixed LBB detuning of 0 MHz. (b) Autler-

Townes avoided crossing aggregate of 2PA traces, with dots marking the peak pair positions.

(c) Hyperbola of peak position differences, with a fit to extract Ω2 (Eq. 3.9). (d) Plot of

Ω2 for a pair of high and low LFB intensities, and a resulting linear fit to extrapolate the

final shift and uncertainty.

3.4.2.2 LBB intensity

The FCF depends explicitly on the LBB intensity, and so Ω2 depends on it as more than

a systematic shift. Therefore it is implicit in each measurement’s uncertainty, and is not

treated here.

3.4.2.3 Lattice laser intensity

From the slope in Fig. 3.19 (d) we estimate a possible lattice laser intensity-induced shift

of 30(30) kHz/200 mW lattice laser power.
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Figure 3.18: (a) A representative 2PA trace for a fixed LBB detuning of 0 MHz. (b) Autler-

Townes avoided crossing aggregate of 2PA traces, with dots marking the two peak positions.

(c) Hyperbola of peak positions differences, with fit to extract Ω2 (Eq. 3.9). (d) Plot of Ω2

for two high and low BB laser intensities, and resulting linear fit to extrapolate the final

shift and uncertainty.

3.4.2.4 Magnetic fields

From the slope in Fig. 3.20 (d) we estimate a possible magnetic field-induced shift of

3(2) kHz/G vertical magnetic field offset. This is negligible compared to the other sources

of uncertainty, and so will be neglected.

3.4.2.5 Atom/molecule density

From the slope in Fig. 3.21 (d) we estimate a possible density-induced shift of−20(10) kHz/5·

10−11 cm−3 atom density.

This concludes our measurement of the systematics, which gives us our error bars on the
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Figure 3.19: (a) A representative 2PA trace for a fixed LBB detuning of 0 MHz. (b) Autler-

Townes avoided crossing aggregate of 2PA traces, with dots marking the two peak positions.

(c) Hyperbola of peak positions differences, with fit to extract Ω2 (Eq. 3.9). (d) Plot of Ω2

for two high and low lattice laser intensities, and resulting linear fit to extrapolate the final

shift and uncertainty.

results from Table 3.2 from the previous section. Our goal however was simply to find large

FCFs, and it can be seen in the table that two state pairs have near-unity FCFs: (−2,−5′)

and (−3,−6′). Given the limitations of laser power, it is much easier to drive the (−2,−5′)

pair, and so we opt for this state as a reliable step in the molecule production sequence.

The details of production are the topic of the next and final section.
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Figure 3.20: (a) A representative 2PA trace for a fixed LBB detuning of 0 MHz. (b) Autler-

Townes avoided crossing aggregate of 2PA traces, with dots marking the two peak positions.

(c) Hyperbola of peak positions differences, with fit to extract Ω2 (Eq. 3.9). (d) Plot of Ω2

for two high and low magnetic field biases, and resulting linear fit to extrapolate the final

shift and uncertainty.

3.5 Molecule production and detection

It should be noted that in order to detect a positive signal for molecule formation, our

sequence utilizes a final step of molecule fragmentation back to atoms, since we have decided

that this process is favorable over the difficult process of direct molecule imaging [Wang et

al., 2010], currently developed for polar molecules.

We model the ground state molecule density using an expression similar to that of

standard density-squared interaction dynamics,

d

dt

nm
n0

=
b

(1 + at)2
− cnm

n0
= bf2

a − cfm (3.30)
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Figure 3.21: (a) A representative 2PA trace for a fixed LBB detuning of 0 MHz. (b) Autler-

Townes avoided crossing aggregate of 2PA traces, with dots marking the two peak positions.

(c) Hyperbola of peak positions differences, with fit to extract Ω2 (Eq. 3.9). (d) Plot of

Ω2 for two high and low trap densities, achieved by the presence and absence of repumper

lasers, which results in a density difference factor of two. The resulting linear fit is used to

extrapolate the final shift and uncertainty.

where n0 is the initial atom density, fa = n/n0 and fm = nm/n0 are the fractional atom

and molecule densities, respectively, and the constants a, b and c are expressions derived

from the usual density-squared interaction with a linear loss term. The fractional atom

density n(t)/n0 = fa(t) = 1/(1 +at)2. In this case a = 2Kn0, b = αfvv′Kn0, and c must be

experimentally determined using atom-molecule and molecule-molecule collision dynamics.

If we assume a relatively small molecule number relative to the atom reservoir in which

they are produced, then it is safe to assume atom-molecule collisions dominate. In this

case the molecule loss rate can be estimated as c ' 2hn0R6/µ ∼ 200/s for trap densities
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n0 ∼ 1012/cm3. This ∼ 5ms lifetime limits the time frame for the photoassociation step,

since once PA has been performed for long enough, a resonant 1S0−1 P1 461 nm blue pulse

can be used to clear away the atom source, leaving only whatever molecules have been

created. For the (−2,−5′) pair, the initial PA rate is a ∼ 1680/s and ground-state molecule

production rate is b ∼ 220/s.

Plotting this expression in Fig. 3.22, we find an optimal PA time beyond which molecule

formation drops and molecule loss begins to dominate the overal signal.

Figure 3.22: Molecule formation vs. PA time. The optimal PA time is ∼ 1 ms, beyond

which the molecule loss rate exceeds the formation rate.

Atoms can then be recovered by use of another spectroscopy laser tuned from the bound

state to a weakly-bound excited state, from which a large portion of the molecules will

spontaneously decay to free atoms, which can then be imaged. Figure 3.23 describes this

full process, and Fig. 3.24 lays out the sequence timing, with a pictorial analog in Fig. 3.25.

We first presented these results in [Reinaudi et al., 2012b], and at the time we modeled

the molecule loss using a simple linear term, but later attributed the short molecule lifetime

to atom-molecule collisions, because the molecule density is still too low to account for the
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Figure 3.23: Diagram of the molecule creation and atom recovery sequence.

loss rate, and the lifetime appeared to increase significantly after using the resonsant blue

laser pulse to wipe away the background atom bath. If this is the dominant molecule loss

term, then the differential equation should reflect that. Modifying the form of the loss term,

dfm
dt

= f2
a − cfmfa, (3.31)

but we found that in order to reproduce the result that matched the data, we had to inflate

the coefficient by a factor of 5, to c ≈ 1000/s.

Another proposed molecule loss mechanism is that the free-bound laser is off-resonantly

driving a bound-bound transition, from the final (v = −2, J = 0) to some other elec-

tronically excited state. Although not intentionally near resonance with any transitions,

the intensity IFB is high for bound-bound processes. Therefore we introduced an addi-
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Figure 3.24: Typical atom recovery sequence.

Figure 3.25: Images of the lattice-trapped atoms at various stages in the recovery sequence.

The wipe pulse serves to remove all un-photoassociated atoms. Imaging at this time will

show nothing, because the molecules present are insensitive to the 461 nm imaging beam.

The camera sensitivity has been adjusted to show the dim recovery signal.

tional term to our equation, to account for laser-induced molecule losses, while keeping the

c ' 200/s value for the atom-molecule loss rate:

dfm
dt

= bf2
a − cfa − dfmfa. (3.32)

With both of these terms we are able to model the observed loss curve from above, with the

laser-induced loss coefficient d a phenomenologically-chosen parameter. This is no proof of

the mechanism, but as will be explained in later chapters, the free-bound laser can indeed
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be used together with an additional bound-bound laser to drive coherently between bound

states.
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Chapter 4

Binding energies and QED

At the end of Ch. 3 we showed a positive detection of molecules formed in the v = −2

vibrational state of the ground electronic state. Detection was achieved by atomic frag-

mentation & recovery by transfer to the weakly bound v′ = −1 vibrational state of the

electronic excited state. This state then largely spontaneously dissociates to free atoms

which are then imaged in the usual way. If we perform this recovery process, iteratively

sweeping the recovery laser frequency, we find a Lorentzian peak as shown in Fig. 4.1. The

next logical question to ask is: can we recover molecules by way of the next-deeper v′ = −2

excited state?

We do find a recovery peak at an expected detuning of ∼ −24 MHz for the v′ = −2

state, as shown in Fig. 4.2. We also tested recovery off of the atomic dissociation line at 0

kHz. Instead of the usual Lorentzian peak we found that recovery could be performed for

large blue detunings beyond the dissociation limit, resulting in a recovery “shelf” as seen

in Fig. 4.3, where excess laser energy must be transferred to atom kinetic energy.

This hypothesis is confirmed by the following observation. If a sufficient delay is inserted

after the recovery pulse but before imaging, atoms are ejected from the trap as seen in

Fig. 4.4. What appears to be two lattice trap-shaped ejections, one below and one above,

is actually the projection onto the camera axis of a cylindrically-symmetrical ring-shaped

ejection, although this has not been confirmed with a second camera. Fitting the ring

distance versus the laser detuning follows a square root velocity dependence expected from

such a kinematic process.
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Figure 4.1: Representative trace of the least-bound excited state, at ∼ −450 kHz binding

energy.

Additionally, for larger laser detunings above the shelf, or for longer wait times, a second

ejection ring appears, as shown in Fig. 4.5. This suggests that the first, more energetic ring

may actually belong to another dissociation shelf at some farther red-detuning. Using the

square root fit of Fig. 4.6, we extrapolate a zero-detuning frequency at ∼ 150MHz below the

nearby shelf. This is consistent with the prediction that the ground state J = 2 rotational

levels are ∼ 150MHz above the J = 0 states [private correspondence with S. Kotochigova].

Detuning our recovery laser frequency by ∼ 150MHz we find an analogous dissociation

shelf as expected, as well as v′ = −1 and −2 bound states. These states should only differ

by the properties of the ground states J = 0 and 2, but closer inspection of the individual

peaks reveals otherwise. Application of a small ∼ 1 G magnetic field splits the alleged

v′ = −1 peak into six separate peaks. The explanation for this is that five of these peaks

belong to a weakly bound (v′ = −2, J ′ = 3), and one to the expected (v′ = −1, J ′ = 1) state
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Figure 4.2: Representative trace of the second bound state, at ∼ 24 MHz.

(for an explanation of the number of peaks, see Fig. 4.8). The location of this J ′ = 3 state

will be discussed at the end of this chapter. It and the other states’ magnetic susceptibility

are topics of the next chapter, and will not be discussed further here.

Figure 4.9 gives an inventory of the recovery peaks discovered so far. The v′ = −1 and

−2 are fit using a standard Lorentzian, but to fit the dissociation shelf more thought is

required.

Atomic fragmentation can be modeled as the reverse process of photoassociation. Whereas

in the previous case the underlying Lorentzian lineshape must be convoluted over the initial

thermal distribution, in this case the initial state has no Boltzmann distribution, and the

convolving integration is over the final thermal state determined by excess thermal energy.

Dropping the Boltzmann factor from Eq. 5 in [Zelevinsky et al., 2006] and integrating over
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Figure 4.3: Representative trace of the atomic recovery shelf. The fit function can give a

frequency uncertainty ∼ 3 kHz, which is small enough that this shelf can thus be used as

an anchor for measuring absolute binding energies.

positive energy,

W (ν) ∝
∫ ∞

0
L(ν, ε)dε ∝ 1

2ε
arctan(2δ/γ) (4.1)

for the Lorentzian

L(ν, ε) ∝ 1

(ν − ν0 − ε/h)2 + (γ/2)2
, (4.2)

and using the standard arctan result of an integral over a Lorentzian. This model is therefore

implemented with the fitting function

W (ν, ν0, γ, A, y0) = y0 +A

(
1

2
+

1

π
arctan

[
2(ν − ν0)

γ

])
(4.3)

with an overall offset y0, a frequency offset ν0, shelf height A, and shelf steepness parameter

γ.
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Figure 4.4: Image of an ejected ring of atoms around the central lattice trap. (The cylin-

drical symmetry has not been confirmed with a separate viewing angle, but the ejection

velocity matches the excess photon energy, and there is no reason to believe there is cylin-

drical anisotropy.)

Figure 4.5: Successive images of the ejection ring for increasing post-PA delay time. Note

that the PA time is fixed in each of these panels. A similar effect could be achieved if both

the PA and delay time are fixed, but the laser frequency increased, increasing the excess

energy delivered.

Using the fit function from Eq. 4.3, the dissociation line can be found to within 3 kHz.

Naturally one could then use this shelf as an anchor for measuring the absolute binding

energies of the other discovered peaks. From the broad spectrum from Fig. 4.9, we have
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Figure 4.6: Ring separation as a function of recovery laser detuning. The square root

dependence is evidence that this is indeed an effect of the excess photon energy.

five different peaks that correspond to three different excited bound states and two different

rotational ground states. Of these states we can reliably measure:

• The v′ = −1 binding energy using peak 1 and shelf 1. In principle peak 3 should give

the same result, but it is unusable for this measurement because it is largely obscured

by peak 4.

• The v′ = −2 binding energy using peak 2 and shelf 1, or peak 5 and shelf 2.

• The (v′ = −2, J ′ = 3) binding energy using peak 4 and shelf 1.

• The binding energy difference between the ground states J = 0 and J = 2 using peaks

2 and 5.
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Figure 4.7: Trace of the overlapping (v′, J ′) = (−1, 1) and (−2, 3) states. Selection rules

and the multiplicity of the ground and excited states dictate the number of peaks observed.

4.1 Binding energies and systematic effects

As with the 2PA data, the reported values for binding energies are extrapolated from

measurements of systematic shifts for a set of four experimental parameters:

1. Recovery laser power

2. Lattice laser power

3. Magnetic shifts

4. Atom/molecule trap density

Systematics were not performed for the free-bound PA laser because it is switched off

by the time recovery takes place. We will now discuss the effects of each of these sources of

uncertainty on the relevant binding energies, one by one.
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Figure 4.8: Selection rules and the multiplicity of the ground and excited states dictate the

number of peaks observed. For π transitions (black), the number of peaks is determined

by the minimum multiplicity of the ground and excited states. For σ transitions (dashed

gray), the number of peaks observed is given by the minimum multiplicity plus two, or

the maximum multiplicity, whichever is smaller. On occasion we found weak σ transitions

leaking through due to imperfect probe laser polarization.

4.1.1 0+
u (v′ = −1, J ′ = 1) binding energy

As mentioned above, we do not have the J = 2 ground state available for this measurement

because it is obscured by an overlapping (v′ = −2, J ′ = 3). Therefore this measurement

can be made most directly by measuring the frequency difference between the f ′0 shelf and

v′ = −1 accessed from the J = 0 ground state. Additionally, the less direct method of

measuring the f ′0 to v′ = −2 and then to v′ = −1 can be used. We use the direct method.

Our approach for measurement is to consider the shift and uncertainty contributions for

each of the light shifts and the density shift, and then add these to a final value obtained

by an extrapolation of the binding energy to zero magnetic field.

4.1.1.1 Magnetic shifts

We determined that the dominant source of uncertainty for the binding energy of this

peak is the magnetic field-induced shift. This state’s binding energy is inferred from the

zero magnetic field value for the central of three peaks. Although this central peak does
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Figure 4.9: Broad spectrum of all of the observed recovery peaks and shelves. The space

between the J = 2 and J = 0 sets has been omitted, and the frequency zero-point is

arbitrary. The three sets of arrows summarize the binding energy measurements that are

the results of this chapter.

not appear to have linear order Zeeman shifts, it does appear to undergo quadratic and

possibly higher-order shifts.

Data was taken for various applied magnetic field values within the range of ±1 G, and

is plotted in Figs. 4.10 and 4.11. The field was applied using a circuit switch on the vertical

pair of compensation coils. Therefore the applied field direction is parallel (perpendicular)

to the probe (lattice) laser polarization, and therefore only accesses π transitions.

The results of this measurement are plotted in Fig 4.10. For each peak a simple quadratic

line fit was used to find the zero point. Extrapolating to this point for the central peak, we

get ∆ = (−0.4452 ± 0.0030) MHz. For this measurement, 165 mW of lattice laser power

and 20µW of recovery laser power. Incorporating a 5% uncertainty on these powers, and

including the corresponding light shifts from these two lasers as determined in the other

sections, the final result for the binding energy of the 0+
u (v′ = −1, J ′ = 1) state is

∆0+u (v′=−1,J ′=1) = −0.4521(43) MHz. (4.4)
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Figure 4.10: Plot of (v′ = −1, J ′ = 1) peak positions for various magnetic fields (left). On

the right is the same data, but lotted versus time, with black lines connecting successive

data points, taken to check for any experimental drift dependence. There appears to be

negligible drift.

Figure 4.11: On the left, a plot of the J ′ = 1 shelf position for varying magnetic field.

The dip at 0 G is explained by the breakdown of the recovery lineshape when there is

no magnetically-defined quantum axis. As expected there does not appear to be strong

dependence, and so on the right, the background laser frequency drift in time is observable.

4.1.1.2 Recovery laser light shift

The probe laser light shift of this state was difficult to pin down. Two initial attempts

resulted in nearly opposite final values. It was determined that whatever shift may exist

was being obscured by the experimental laser frequency drift mentioned earlier, which can
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be as large as ∼ 2 kHz/min and whose sign and value changes often. Therefore the light

shift of this state was linearly inferred from a repeated “binary” measurement: one at high

probe power, and one at low power, repeated many times.

The raw data, as found in Fig. 4.12 (a), suggests there may be a small shift, but that

the spread of measured values at either high or low power dominates the uncertainty. We

time-stamped each measurement, and Fig. 4.12 (b) shows a plot versus time instead, where

the drift of the laser frequency is clear. This drift was fit to a line whose slope was assumed

to represent a constant drift in time that could then be removed from the original data.

Figure 4.12 (c) shows the original set with this correction. Our binary measurements force

us to assume a linear shift dependence, and fitting to a line we get our final result.

Our result for the recovery laser light shift of the dissociation shelf is (−0.129± 0.077)

kHz/µW, and for the bound state is (−0.061± 0.021) kHz/µW.

4.1.1.3 Lattice laser light shift

The lattice laser light shift of this state is significantly larger than that of the probe laser

shift, making the shift dependence easier to measure against background laser frequency

drift. Data was taken for lattice laser power in the range of 100 − 400 mW and is plotted

in Fig. 4.14. To account for any possible frequency drift however, the measurements were

taken in an interlaced fashion, where the lines between data points portray their chronology.

It is immediately apparent that the lattice shift is larger than the background drift.

Our result for the lattice light shift of the dissociation shelf is (+0.0812 ± 0.0138)

kHz/mW, and for the bound state is (+0.1148± 0.0131) kHz/mW.

4.1.1.4 Density shifts

There were no observed density shifts for this state. For a more detailed explanation of our

method for measuring possible density shifts, see Sec. 4.1.2.

4.1.2 0+
u (v′ = −2, J ′ = 1) binding energy

For the 0+
u (v′ = −2, J ′ = 1) it appears as if both the J = 0 and J = 2 ground states are

available for measurement, however details of the behavior of the dissociation shelf from the
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Figure 4.12: Recovery (v′ = −1, J ′ = 1) peak position vs. (a) recovery laser frequency and

(b) vs. the time when data was taken. (c) This linear drift was removed, and the final shift

dependence was determined from the corrected fit.
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Figure 4.13: Recovery J ′ = 1 shelf position vs. (a) recovery laser frequency, and (b) vs. the

time when data was taken. (c) This linear drift was removed, and the final shift dependence

was determined from the corrected fit.
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Figure 4.14: Lattice shifts of the (a) (−1, 1) peak and (b) J ′ = 1 dissociation shelf, where

the laser frequency drift has been treated as negligible.

J = 2 state make the latter unfeasible. More specifically, if our recovery laser is π-polarized,

then from Fig. 4.8 we can see that recovery from the J = 0 ground state can occur only to

the m′ = 0 sublevel. From the J = 2 ground state, however, recovery can occur through all

three sublevels m′ = 0,±1. Because of this, and because of the fact that the dissociation

shelf is not a narrow function like a Lorentzian, the m′ = ±1 shelves obscure the zero-point

of the m′ = 0 shelf. Therefore we can only measure this binding energy using the J = 0

ground state.

As with the previous state, the magnetic field-induced shifts are the dominant source of

uncertainty. We therefore tally the shifts and uncertainties due to the other contributions,

and then add these to the final value obtained by an extrapolation of the binding energy to

zero magnetic field.

4.1.2.1 Magnetic shifts

This state’s binding energy is inferred from the zero magnetic field value for the central of

three peaks. Although this central peak does not suffer from linear order Zeeman shifts, it

does appear to undergo quadratic and possibly higher-order shifts.

Data was taken for various applied magnetic field values within the range of ±1 G,

and is plotted in Figures 4.15 (a) and (b). The field was applied using a circuit switch

on the vertical pair of compensation coils. Therefore the applied field direction is paral-
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Figure 4.15: (a) The shift in the J ′ = 1 atomic shelf is more suggestive of laser frequency

drift than of magnetic field dependence. We do not expect there to be any linear or quadratic

dependence of this shelf on the magnetic field, and because the drift is negligible compared

to the shifts of the v′ = −2 state of this section, it is not corrected out of this trace. (b)

Plot of (v′ = −2, J ′ = 1) peak position for various magnetic fields. Any laser frequency

drift is negligible compared to this shift.

lel (perpendicular) to the probe (lattice) laser polarization, and therefore only accesses π

transitions.

For each peak a simple quadratic line fit was used to find the zero point. Extrapolating to

this point for the central peak, we get ∆ = (−23.9563±0.0020) MHz. For this measurement,

160 mW of lattice laser power and 6.6µW of recovery laser power. Incorporating a 5%

uncertainty on these powers, and including the corresponding light shifts from these two

lasers, the final result for the binding energy of the 0+
u (v′ = −1, J ′ = 1) state is

∆0+u (v′=−2,J ′=1) = −23.9684(50) MHz. (4.5)

4.1.2.2 Recovery laser light shift

As with the previous state, the probe laser light shift of this state was difficult to pin

down. Two initial attempts resulted in nearly opposite final values. It was determined

that whatever shift may exist was being obscured by the experimental laser frequency drift

mentioned earlier, which can be as large as ∼ 2 kHz/min and whose sign and value changes
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Figure 4.16: (a) Plot of (v′ = −2, J ′ = 1) peak position vs. recovery laser power, after

correcting for the laser frequency drift as in Sec. 4.1.1. (b) Plot of (v′ = −2, J ′ = 1) peak

position vs. lattice laser power. The lines connect points that were taken successively; the

near-overlap of these lines indicates that there is little frequency drift relative to the lattice

laser shift.

often. Therefore the light shift measurement was performed using a repeated “binary”

measurement: one at high probe power, and one at low power, repeated many times.

The data showed a measurable shift comparable in magnitude to the background drift.

Still, the spread of measured values at either high or low power contributes significantly to

the uncertainty. Figure 4.16 (a) shows the data after removing suspected residual cavity

drift, performed in the same way as in Sec. 4.1.1. The result for the recovery laser light

shift of the dissociation shelf is (−0.129 ± 0.077) kHz/µW, and for the bound state is

(−0.458± 0.059) kHz/µW.

4.1.2.3 Lattice laser light shift

Once again, the lattice laser light shift of this state is significantly larger than that of

the probe laser shift, making the shift dependence easier to measure against background

drift. Data was taken for lattice laser power in the range of 100 − 400 mW and is plotted

in Fig. 4.16 (b). As with the previous state, to account for any possible frequency drift,

the measurements were taken in an interlaced fashion, where the lines between data points

delineate their chronology. It is apparent that the lattice shift is larger than the background
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drift. The data set used for the dissociation shelf is the same as was used for the previous

peak.

Our result for the lattice light shift of the dissociation shelf is (+0.0812 ± 0.0138)

kHz/mW, and for the bound state is (+0.1364± 0.0196) kHz/mW.

4.1.2.4 Density shifts

There were no observed density-dependent shifts for this transition. We measured the line

position with and without repumper lasers, which approximately halves the density, from

∼ 1012 cm−3 to ∼ 5 ·1011 cm−3. In an attempt to find an observable shift within the system

noise, especially the background laser frequency drift, we took successive traces with and

without repumpers, as plotted in Fig. 4.17.

Figure 4.17: Plot of (v′ = −2, J ′ = 1) peak position vs. successive repumpers on/off

measurement pairs.

Each data point is a measure of the difference in peak position for repumpers on and
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off. The first two data points were taken with the 689 nm atomic heat pipe lock engaged,

but this lock has been unreliable, and could have possibly induced oscillations or overall

drift. With the exception of the one additional outlier, there is very little evidence for a

density-induced shift, We found such absence of dependence for the other measured states,

and so as a result we have chosen to neglect density shifts in our calculations of the binding

energies.

4.1.3 0+
u (v′ = −2, J ′ = 3) binding energy

For the 0+
u (v′ = −2, J ′ = 3) state there are complications in measuring the binding energy

from the nearby dissociation shelf. As a result, its binding energy is measured relative to

the adjacent 0+
u (v′ = −2, J ′ = 1), whose binding energy was determined above. In other

words, we chain this state’s binding energy to the binding energy of another. This results

in an a larger overall uncertainty, but still provides the best result available for this state.

Once again we tally the shift and uncertainty contributions for each of the light shifts

and the density shift, and then add these to a final value obtained by an extrapolation of

the binding energy to zero magnetic field.

4.1.3.1 Magnetic shifts

As with the other states, the dominant source of uncertainty for the binding energy of

this state is the magnetic field-induced shift. The binding energy is inferred from the zero

magnetic field value for the central of its seven peaks, only five of which are observed due

to probe laser polarization. Although this central peak does not suffer from linear order

Zeeman shifts, it does appear to undergo quadratic and possibly higher-order shifts.

Data was taken for various applied magnetic field values within the range of ±1 G, and

is plotted in Fig. 4.18. The field was applied using a circuit switch on the vertical pair of

compensation coils. Therefore the applied field direction is parallel (perpendicular) to the

probe (lattice) laser polarization, and therefore only accesses π transitions.

Extrapolating to zero magnetic field, we get ∆ = (−23.9563 ± 0.0020) MHz. For this

measurement, 160 mW of lattice laser power and 6.6µW of recovery laser power. Incorpo-

rating a 5% uncertainty on these powers, and including the corresponding light shifts from
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these two lasers, the final result for the binding energy of the 0+
u (v′ = −1, J ′ = 1) state is

∆0+u (v′=−2,J ′=3) = −0.626(12) MHz. (4.6)

4.1.3.2 Recovery laser light shifts

Unlike the measurements of the previous states, the probe laser light shift of this state was

discernible from the background frequency drift in our original measurements. The data

was taken over probe laser powers in the range of 10 − 100µW in an interlaced fashion,

where the lines connecting the dots delineate the chronology.

This data is plotted in Fig. 4.19, and is strongly linear in laser power, with little apparent

drift in time, so no correction was made for drift. The result for the recovery laser light

shift of the dissociation shelf is (−0.129 ± 0.077) kHz/µW, and for the bound state is

(−0.458± 0.059) kHz/µW.

4.1.3.3 Lattice laser light shifts

Once again, the lattice laser light shift of this state is significantly larger than that of the

probe laser shift, making the shift dependence easier to measure against background drift.

Data was taken for lattice laser power in the range of 100 − 400 mW, and is plotted in

Fig. 4.20. As with the previous state, to account for any possible frequency drift, the

measurements were taken in an interlaced fashion, where the lines between data points

delineate their chronology. It is apparent that the lattice shift is larger than the background

drift. The data set used for the dissociation shelf is the same as was used for the previous

peak.

Our result for the lattice light shift of the dissociation shelf is (+0.0812 ± 0.0138)

kHz/mW, and for the bound state is (+0.1148± 0.0131) kHz/mW.

4.1.3.4 Density shifts

There were no observed density shifts for this state. For a more detailed explanation, see

the density shifts portion of Sec. 4.1.2.
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Figure 4.18: (a) The various sublevels of the (v′ = −2, J ′ = 3) recovery peak, as well as the

obscured (v′ = −1, J ′ = 1) peak, plotted vs. applied magnetic field. (b) The (v′ = −2, J ′ =

1) vs. applied magnetic field. (c) Their difference, which is used to extrapolate the absolute

binding energy of the J ′ = 3 state. Laser frequency drift was deemed negligible for this

data set.
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Figure 4.19: (a) The (v′ = −2, J ′ = 3) peak vs. recovery laser power, (b) the (v′ = −2, J ′ =

1) peak vs. recovery laser power, and (c) their difference, where laser frequency drift was

deemed negligible.
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Figure 4.20: (a) The (v′ = −2, J ′ = 1) peak vs. lattice laser power, (b) the (v′ = −2, J ′ = 3)

peak vs. lattice laser power, and (c) their difference, where laser frequency drift was deemed

negligible.
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4.2 Summary and prospects for QED effects in Sr2

Table 4.1 summarizes the binding energies whose measurements are the topic of this chapter.

Table 4.1: Binding energies (MHz)

0+
u (v′ = −1, J ′ = 1) 0+

u (v′ = −2, J ′ = 1) 0+
u (v′ = −2, J ′ = 3)

experiment −0.4521(43) −23.9684(50) −0.626(12)

theory −0.37195 −23.546 −0.5368

The theoretical predictions are the result of a model for Sr2 built by our collaborators

[Skomorowski et al., 2012a; Skomorowski et al., 2012b]. The model utilizes an ab initio

approach constructing the molecular potentials, relying on the fact that, being a heavy

dimer, 88Sr2 conforms to Hund’s case (c), with strong spin-orbit coupling (see Sec. 3.1).

The Hamiltonian for the interaction is then

V 0+u =


V c3Πu(R)−A(R) ξ1(R) ξ2(R)

ξ1(R) V A1Σ+
u (R) 0

ξ2(R) 0 V B1Σ+
u (R)


and

V 1u =


V a3Σ+

u (R) 0 ϕ1(R) ζ1(R)

0 V b3Σ+
u (R) ϕ2(R) ζ2(R)

ϕ1(R) ϕ2(R) V c3Πu(R) ϕ3(R)

ζ1(R) ζ2(R) ϕ3(R) V B′1Πu(R)

 ,

with the notation as described in [Skomorowski et al., 2012b]. The goal of the model

is to generate values for these various matrix elements, where an analytical expression is

used to calculate the value of each matrix element at a given internuclear distance R. The

short-range degrees of freedom are fit to the results of [Stein et al., 2011], and the long-

range to the results of this chapter and of [Zelevinsky et al., 2006]. Because of the highly

nonlinear nature of the model, it has yet to produce results that are within the experimental

uncertainty. For more deeply-bound states, the uncertainty on the model is around 1%,

which is still considerably worse than the spectroscopic precision of our measurements and

those of related experiments.
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The sensitivity of the two 88Sr2 most-weakly bound levels to QED retardation effects is

unusually high, at ∼ 10% to ∼ 30% [Moszynski, Skomorowski private comm.]. Moreover,

the sensitivity to higher-order QED is ∼ 1%, well within reach of our experimental precision.

Despite extensive tests of QED in atomic systems, few such tests exist for bound molecules

[Jones et al., 1996; Salumbides et al., 2011], and none exist for higher-order QED effects.
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Chapter 5

Linear and quadratic Zeeman shifts

in Sr2

In this chapter we discuss novel results originally discovered in the process of measuring

systematic shifts of the binding energies reported in Ch. 4. We compare these results with

the ab initio model from [Skomorowski et al., 2012b] . We found that there exist strong

nonadiabtic effects in the most weakly bound levels of 88Sr2. In particular, anomalously

large linear and quadratic shifts were observed, and it is understood that due to nonadiabatic

Coriolis coupling and the long-range interatomic interactions, the quadratic shifts scale

cubically with the molecule size. From the linear shifts we quantify the mixing of the 0+
u

and 1u molecular potentials. Additionally, we are able to detect fourth-order contributions

in the quadratic term, and test the ab initio model with accuracy not achievable by linear

shifts alone.

5.1 The 0+
u and 1u states are mixed

As described in Ch. 3 and Fig. 3.2, the ground state X dissociates to the 1S0+1S0 asymptote,

and the Hund’s case (c) states, 0+
u and 1u, dissociate to the 1S0 +3 P1 asymptote with total

electronic angular momentum projection onto the nuclear axis |Ω′| = 0 and |Ω′| = 1,

respectively. However, near the asymptote, the long-range molecules undergo (L · J)-type

Coriolis coupling, which strongly mixes these two Hund’s case (c) states. Therefore each
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observed state is actually a combination of the 0+
u and 1u states with a mixing angle θ,

|v′, J ′〉 = cosθ|v′(0), J ′〉+ sinθ|v′(1), J ′〉. (5.1)

The solid horizontal lines in Fig. 5.1 (a) identifies the two weakly-bound levels v′ = −1, −2

(both J ′ = 1), while the inset shows the third |v′, J ′〉 = | − 2, 3〉 that is nearly degenerate

with the | − 1, 1〉 level (in this notation, the vibrational quantum numbers are assigned

before the rotational ones). These are the states whose binding energies were measured in

the previous chapter. For these various states, recall that selection rules forbid J ′ = 0, and

require that J ′ be odd for 0+
u states, and J be even. The vertical lines in Fig. 5.1 (a,b)

represent the electric dipole-allowed transitions, which are then spectroscopically plotted

in Fig. 5.1 (c). The various peaks are denoted p1 to p5, with the two dissociation shelves

marked as s1 and s2 for transitions from the J = 0 and J = 2 ground states, respectively.

To measure the magnetic field dependence of the energy levels, we apply a small field

B ≤ 3 G. This field is produced by the existing compensation Helmholtz coils on the

experiment, and defines the quantum axis for the system, pointing vertically along the z-

axis in the lab frame. For the majority of our measurements, the spectroscopy probe laser

polarization is aligned parallel to this quantum axis, allowing for π transitions. In cases

where σ transitions must be observed, the probe laser polarization is rotated by ∼ 45o to

allow observation of both. We employ the recovery method described in Ch. 4, which gives

us a recovery peak signal against a nearly zero background signal. Additionally, we employ

a second spectroscopy technique: a third laser is used to drive a bound-bound transition

that depletes the v = −2 ground state population before it can be recovered. Fixing the

recovery laser on a recovery peak or shelf, and sweeping the bound-bound third laser, we get

recovery “loss” spectra: dips in the background recovery signal whose amplitude is that of

the recovery peak from the previous, simpler method. For all of the following measurements,

we confirmed that none of the measured field shifts are due to shifts in the ground state J = 0

and J = 2 levels, as a comparison between p2 and p5 yielded no observable difference. (In

principle, only very small ground-state magnetic shifts are expected, due to the rotational

factor gr.)

The general spectroscopy sequence is depicted in Fig. 5.2. The dotted exposure times

for lasers 689B and 689D represent the optional anti-recovery sequence, where the expo-
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sure drives molecules via two-color transfer away from the bound state from which 689C

eventually recovers.

Figures 5.3 (a) and (b) are typical recovery traces from p5 and p4, respectively. The

asymmetry in the three subpeaks of p5 are a result of the strong quadratic shifts resulting

from the applied magnetic field (−3.22 G in this case). Figures 5.3 (c) and (d) show

the peak positions for p5 and as plotted for various applied fields B, fitted to parabolic

shapes with the required symmetry constraints. Figure 5.4 shows similar data for several

more deeply bound states. Strong linear and quadratic shift dependence is apparent (note

that the adiabatic picture predicts no such linear dependence for 0+
u states). Recent work

[Kahmann et al., ] on intercombination line photoassociation reported absolute values for

linear shifts in Ca atoms. We can model the Zeeman effect for these molecules using the

usual Hamiltonian

Hz = µB(gLL+ gsS) ·B, (5.2)

where L and S are the electronic orbital and spin angular momentum, respectively, and

gL = 1, gS ≈ 2, and µB is the Bohr magnetion. The calculated first- and higher-order shifts

of the binding energies are then

∆Eb = gµBm
′B +

∑
n>1

qnµBB
n (5.3)

≈ gµBm′B + qµBB
2, (5.4)

where the effective q contains contributions from higher even-order terms. Here, g is defined

effectively as

g = 〈Hz〉/(m′µBB), (5.5)

and since it depends on the expectation value 〈Hz〉, it will therefore depend on θ as well.

The value m′ is the projection of J ′ onto the quantum axis defined by B, and note that

qn = qn(v′, J ′,m′) depends on m′, but g = g(v′, J ′) only depends on the magnitude J ′. The

ab initio theory generates coefficients according to Eq. 5.3, while the experimental data is

fit to Eq. 5.4.
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Figure 5.1: The long-range potentials for 88Sr2 for (a) the excited state that dissociates to

the 1S0 +3 P1 asymptote (as shown with the horizontal dashed line) and (b) the ground

state that dissociates to 1S0 +1 S0. Drawn as solid lines in the excited state are the two

bound states v′ = −1, −2, both with angular momentum J ′ = 1. Drawn in the inset is the

additional |v′, J ′〉 = | − 2, 3〉 that is nearly degenerate with | − 1, 1〉. As described in Ch. 4,

our ground state molecules occupy the rotational levels J = 0, 2 of the v = −2 vibrational

level. The bound-bound transitions are marked by the solid lines p1−p5, and the bound-free

transition, are marked by the dashed lines s1, s2. (c) The spectroscopic trace across all five

peaks and two continuum shelves, fitted with the appropriate lineshapes as described in the

Ch. 4.
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Figure 5.2: The spectroscopy sequence for the measurement. The dashed lines indicate the

optional anti-recovery sequence, in which lasers 689B and 689D drive a two-color transfer

away from the bound molecular state from which 689C recovers, resulting in a loss from

the recovery signal.

5.2 Linear shifts, g factor measurement

From Eq. 5.1 and 5.2 we may write g for the |v′, J ′〉 level with its θ dependence.

g = g(θ) =
gasin

2θ

J ′(J ′ + 1)
+

gasin2θ√
J ′(J ′ + 1

〈v′(0)|v′(1)〉. (5.6)

The atomic ga = 1.5 and the overlap for the vibrational parts of the basis states is

〈v′(0)|v′(1)〉 ∼ 1. Theoretical mixing angles θ are calculated from the updated ab initio

model of [Skomorowski et al., 2012b] as constrained to the data from [Stein et al., 2011],

which predicts most of the measured J ′ = 1, 3 states at the percent-level accuracy. For

pure 0+
u states there should be no linear Zeeman shift (θ = 0o), and 1u levels (θ = 90o) have

g = 0.75 for J ′ = 1. The inset in Fig. 5.3 (c) shows g(θ) for J ′ = 1 for the assumed vibra-

tional overlap of 1. Because θ varies from 0 to π, it includes both the relative amplitude

and phase of the two wavefunction components, and therefore for each measured g-factor

there are two solutions for θ. The example given in the inset is for |v′, J ′〉 = | − 2, 1〉 and

gives θ = (6.1o, 103.4o), the first of which closely matches the ab initio prediction θ = 5.9o.
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Figure 5.3: Sample spectra of (a) p5 and (b) p4 from Fig. 5.1, for small magnetic field

B values, and showing π-transition peaks. The p4 trace includes a shifted sublevel of the

nearly-degenerate p3. (c,d) These peak positions as plotted for varying field amplitudes, and

fitted to parabolic equations with the required symmetry constraints. In (d), the outermost

|m′| = 3 are measured with a rotated polarization to allow for σ-transitions. In (c), the

three curves do not cross at the same point, likely due to optical lattice tensor light shifts.

The inset in (c) shows the g(θ) curve from Eq. 5.6, in which is marked the Coriolis mixing

angle θ = 6.1o, as measured for |v′, J ′〉 = | − 2, 1〉.

Figure 5.5 gives a list of measured g factors and angles θ. The average agreement between

experiment and theory is ∼ 5%, if the two most deeply-bound levels are excluded, while

the typical experimental uncertainty barely exceeds 1%. As for θ, in the cases where only

one value is given, the value predicted from the model closely matched one of the measured

values, allowing us to identify the correct value from two possibilities (Eq. 5.6; inset in
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Figure 5.4: Sample Zeeman shift measurements of the deeper excited states. The measure-

ment was achieved by Sr2 production in the ground state −2 in the usual way, but then

transfered via a third spectroscopy laser to the deeper excited state before recovery from

the ground state is performed. By fixing the recovery spectroscopy laser on transition, and

sweeping this third laser, the peaks are marked by ”anti-recovery” dips in the otherwise

non-zero atom signal. (a) Representative loss peaks to the v′ = −3 state; (b) Zeeman shifts

of the v′ = −3 peaks, (c) of the v′ = −5 peaks, and (d) of the v′ = −6 peaks.

Fig. 5.3). However in the case of the two deepest levels, the predicted value for θ was not

sufficiently close to either of the measured values, hence we’ve quoted both; these states are

strongly mixed due to their similar binding energies.
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5.3 Quadratic and higher order shifts, magnetic susceptibil-

ity

To calculate the quadratic and higher-order shifts, there are two approaches. First, one may

calculate the quadratic shifts from the ab initio model by using second-order perturbation

theory, but for higher order terms this becomes difficult. To calculate the second-order

perturbative effect, one must sum over contributions from the continuum as well as from

bound rovibrational levels. Each of these states belongs to one of two groups. One group

contains states with the same J ′ = 1 or 3 that belong to the coupled 0+
u or 1u manifolds.

These contribute only for m′ 6= 0, and the contribution is negative for 0+
u and positive for

1u. The second group contains states with J ′ = 2 or 4, must have opposite f -parity that

belong to the 1u manifold, and for all these levels the contribution is negative and signficant

for all m′. The limitation to this approach, as stated above, is that the calculation is only

for the second-order quadratic contribution. For small magnetic fields this can be sufficient.

For the four most weakly bound levels, the dominant contribution to the quadratic shift

is from the continuum of scattering states above the dissociation limit, while for deeper levels

it is from the nearest bound level. Because the correct prediction of the quadratic Zeeman

shifts requires precise description of the continuum and bound levels with ∆J ′ = 0,±1, this

second-order measurement provides a substantially more stringent test of the molecular

model than do the linear shifts alone.

The second approach does not calculate the higher-order shifts explicitly. Rather, the ap-

proach is to incorporate the magnetic field shift directly into the Hamiltonian and calculate

the energy levels analytically for each given magnetic field value. One then gets a calculated

plot similar to the experimental plot of Fig. 5.3. In this case the higher-order contributions

are not known explicitly. Instead, one fits the plotted data to the same parabolic function

as was performed on the experimental data, extrapolating the quadratic and higher-order

coefficients from the fit. And as with the experimental fit, for small magnetic fields, one

may truncate after the quadratic contribution and absorb such smaller, higher-order effects

into an effective q (Eq. 5.4).

Figure 5.5 gives a list of values for the effective quadratic coefficient calculated by the
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second method, q, for various bound rovibrational states (and m′), along with our experi-

mentally measured equivalent. The disagreement between theory and experiment on average

only slightly exceeds the experimental uncertainty. In the most weakly-bound state, we also

find sensitivity to fourth-order shifts, which have been absorbed into the q coefficient. The

results for q are plotted in Fig. 5.6, and normalized to the atomic qa = 1.28 · 10−7 G−1.

The anomalously large quadratic Zeeman shifts grow by several orders of magnitude with

decreasing binding energy. A qualitative explanation can be offered by considering the

magnetic susceptibility χ, i.e. ∆E
(2)
b = −χB2/2. The susceptibility for the 0+

u states is

then

χ(R) ≈ Cm′
J ′

µ2
B

V1(R)− V0(R)
≈ Cm′

J ′
µ2
BR

3

3C3
, (5.7)

for internuclear separation R, V|Ω′| the potentials from Fig. 5.1 (a), and coefficients Cm
′

J ′

that result from the transformation of the magnetic susceptibility tensor from the molecule-

fixed frame to the space-fixed frame [Brown and Carrington, 2003] (of order unity). This

result assumes that near the asymptote, C3 terms dominate over C6 in the long-range

potentials. The result is an effective paramagnetic component of the susceptibility, while

the diamagnetic component is negligible. The line plotted in Fig. 5.6 is χ for the J ′ = 0,

m′ = 0 levels of 0+
u , with C3 quoted from [Zelevinsky et al., 2006] and R set to the classical

outer turning point. The χ model is in excellent agreement with the relevant data points

(black squares for J ′ = 1). The V1(R)− V0(R) in Eq. 5.7 approximates that the dominant

contribution is from the continuum, as is true for these weakly-bound states.

To summarize, we have performed precise measurements of the strongly nonadiabatic ef-

fects in ultracold molecules via determination of Zeeman shifts of the weakly-bound states.

These measurements were compared with ab initio studies that are the work of our col-

laborators [Skomorowski et al., 2012b]. We found close agreement between theory and

measurement for both the linear g factors and 0+
u (to within 5%) and for the higher-order

shifts, accounted for by the quadratic coefficient q (within ∼ 20%). The g-factors yield

(model-dependent) experimental determinations of the nonadiabatic Coriolis mixing angle,

a subtle property of molecule wavefunctions that is otherwise difficult to access.
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Figure 5.5: The relevant magnetic properties that are strongly sensitive to the nonadiabatic

effects in the weakest-bound levels of 88Sr2 near the 1S0 +3 P1 asymptote. Equations 5.3

and 5.4 define the experimental and theoretical quadratic shift coefficients q (G−1). An

asterisk denotes cases that include strong fourth-order contributions (q4 in Eq. 5.3). Exper-

imental and theoretical g factors are given, as are the Coriolis mixing angles θ. Due to the

limitations of the model, for the two deepest states a unique angle cannot be determined

from the two provided by the measurements.
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Figure 5.6: Measured q versus the binding energy, normalized to the analogous atomic

coefficient qa. The results show a 106× enhancement in the weakest-bound region relevant

to Fig. 5.3. The various markers are defined in the legend, and the solid gray line represents

the magnetic susceptibility model of Eq. 5.7 for the J ′ = 1, m′ = 0 levels of the 0+
u manifold.

Note that this is relevant only for the black squares with J ′ = 1, and is in excellent agreement

with the data.



CHAPTER 6. OUTLOOK 145

Chapter 6

Outlook

The conclusion of my Ph.D. work marks the end of a chapter in the story of the Zelevinsky

lab. My contemporaries and I saw through the construction of the main apparatus - from

setup of the initial vacuum chamber through the successful creation of ultracold, µK samples

of atomic Sr trapped in an optical lattice [Reinaudi et al., 2012a]. Our first major result was

the successful production and detection of photoassociated ultracold 88Sr2 molecules from

this cold atom sample [Reinaudi et al., 2012b]. Our all-optical photoassociation technique

makes weakly-bound molecules in the shallowest rovibrational states of the electronic ground

state. This afforded us the opportunity to measure the binding energies of several of these

states to new levels of accuracy. The two weakest-bound of these states are predicted to

have as much as 10−30% contribution from QED retardation effects, allowing us to use our

experiment as a rare test of molecular QED. Additionally, we measured the unusually large

magnetic susceptibility of these long-range molecules, detecting a million-fold enhancement

of the quadratic Zeeman shifts as compared to those of unbound atoms, and allowing

us to compare our results to a state-of-the-art ab initio theoretical model created by our

collaborators [Skomorowski et al., 2012b]. Our measurements of the weakly-bound Sr2

g-factors lead to precise determinations of the nonadiabatic Coriolis mixing angle of the

molecular wave functions [McGuyer et al., 2013].

But while the structure of this new class of ultracold molecules is worthy of study in its

own right, from the perspective of quantum chemistry and ultracold physics, our long-term

interest in the 88Sr2 system is motivated by broader questions in fundamental physics, such



CHAPTER 6. OUTLOOK 146

as the creation of a molecular clock. Such a clock could discern subtle (< 10−16/year)

variations of the electron-to-proton mass ratio [Zelevinsky et al., 2008], and possibly help

constrain mass-dependent Yukawa-type interactions at the nanometer scale [Adelberger et

al., 2003].

To accomplish these goals, we require production of Sr2 in the deeply-bound rovibra-

tional levels of the electronic ground state. Figure 6.1 is a map of the bound states of both

the electronic excited and electronic ground state manifolds (J ′ = 1 and J = 0, respec-

tively), with the heat map giving the dipole moment of the transition between any two

given states. Our current work has been limited to the white rectangle indicated in the

upper-right corner, with the absolute ground state indicated by the bottom row. The con-

tour lines span state pairs that can be coupled by light of the same color. To achieve transfer

to the ground state, at ∼ 30 THz binding energy relative to the continuum, weakly-bound

molecules must be coherently transferred by a two-color (Raman) process via frequency

comb-locked [Cundiff et al., 2001] lasers.

Our lab has installed a fiber-laser frequency comb (Menlo Systems) at 1550 nm and

frequency-doubled to span the visible and near-infrared range. We have added a 650 nm

ECDL to be locked to the 689 nm master laser for the purpose of transferring the molecules

to these deeper states. To test the principle, we have initially transferred between the

weakest-bound states already under study. Figure 6.2 (a) shows the successful transfer

from the X (v = −2, J = 0) to the (v = −1, J = 0) state. The relevant control sequence is

as follows: before recovery, an additional spectroscopy laser is used (689D), in conjunction

with the 689B laser, to perform a far-detuned two-color transfer. Figure 6.2 (b) shows the

same transfer at a smaller, 120 Hz linewidth. With decreasing probe power the linewidth

approaches this∼ 100 Hz limit. We believe this limit is dominated by slightly unequal lattice

light shifts for the two molecular states, due to the inhomogeneity of the lattice intensity

over the extent of the trap. Figure 6.2 (d) shows the empirically-determined differential

lattice light shift of ∼ 4 Hz/mW, substantiating the ∼ 100 Hz residual line broadening. For

more deeply bound molecular levels, we will search for a “magic” lattice wavelength and

polarization combinations to cancel the differential shifts.

In the meantime, our shorter-term goals include further study of the weakest-bound
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levels. Recent work has suggested there may be a rovibrational dependence on the collisional

lifetime [Mayle et al., 2013]. Additionally, my colleagues have been probing the gerade 1g

states that are only coupled to the X 1Σg states via weak magnetic-dipole transitions. It

is possible that transfer to the absolute molecular ground state may prove easier from one

of these states, and that the magnetic-dipole transitions are strongly enhanced on weakly

bound molecules. Another type of forbidden transition currently being explored is electric-

dipole, with ∆J > 1. We have been able to enhance its transition strength by 105× with

modest magnetic fields. The richness of this ultracold molecular system in the high-precision

regime is only beginning to be explored.
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Figure 6.1: A map of the transition dipole moments between the vibrational states of the

excited 0+
u and the ground X manifold (for J ′ = 1 and J = 0, respectively), with false color

to represent the log of the dipole moment. The excited states of 0+
u are plotted along the

horizontal axis, and the ground states of X on the vertical axis. The contour lines connect

levels that can be coupled by the same laser wavelength, where the lines, from left to right,

span across wavelengths from ∼ 830 to 650nm.
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Figure 6.2: Representative traces for Raman spectroscopy between states v = −2 and

v = −1. (a) Losses from v = −2 overlaid with gains to v = −1, (b) losses from v = −2 at

a narrower, 120 Hz linewidth corresponding to a 20 ms coherence time, (c) Rabi flopping

between the two states, and (d) a plot of the line frequency vs. lattice laser power. It

is suspected that the inhomogeneity of the lattice laser intensity, at a slightly non-magic

wavelength, is the cause of the 600 Hz linewidth limit.
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