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Abstract

Ultracold molecules provide a new and promising platform for studies of fundamental
physics. Tight confinement of the homonuclear, diatomic molecule 88Sr2 in an optical
lattice allows for high precision two-photon spectroscopy of rovibrational levels. Such
a molecular lattice clock is sensitive to possible variations of the electron-proton mass
ratio, molecular QED effects and could enable searches for nano-scale deviations from
Newtonian gravity. This thesis presents the development of the metrology system
necessary to achieve Hz-level two-photon spectroscopy, adapting techniques originally
designed for atomic single-photon clocks.
A new master clock laser is built to improve the stability of the metrology system.
Spectral stability transfer between the clock lasers is achieved using a frequency comb
to bridge a gap of 26 THz. Metrologically important light is distributed between remote
locations using a fiber noise cancellation scheme featuring integrated intensity stabiliza-
tion and supporting relative stability on the 10−18 level.
Several candidate clock pairs are located by employing Autler-Townes spectroscopy. By
tuning the differential light shift near narrow polarizability resonances, state insensi-
tive trapping is achieved, yielding a 400-fold improvement in coherence. Finally, Rabi
oscillations are achieved across the ground state potential and current limitations on a
preliminary linewidth of 160 Hz are discussed.
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1 Introduction

The standard model (SM) of particle physics has been tested to incredible precision
using experiments in the entire spectrum of modern physics [1]. At the same time, it
seems incomplete, as it struggles to incorporate gravity in its framework, explain the
matter-antimatter imbalance, dark matter or dark energy.
Remarkably, dark matter and dark energy make up around 95 % of the energy in our
universe [2]. With the discovery of the Higgs particle in 2012 [3], all particles in the SM
have been observed, while it only explains 5 % of the energy in the universe.
This unsatisfying situation has sparked great efforts to detect new particles and observe
physics beyond the SM. While direct searches typically involve collider experiments at
energy scales of O(TeV), one can also search for deviations in the low energy regime
of ultracold atoms and molecules. Advances in atomic, molecular and optical (AMO)
physics in the last two decades have led to ever increasing quantum control and precision,
opening new pathways for tests of fundamental physics beyond the standard model [4].
This progress allows for unprecedented precision measurements. Atomic magnetometers
can measure magnetic fields at the level of 10−15 THz−1/2 [5] and the Laser Interferometer
Gravitational-Wave Observatory (LIGO) is capable of detecting changes in length at
10−23 Hz−1/2, which has led to the observation of gravitational waves in 2016 [6].
In particular, the development of optical atomic clocks has improved the accuracy of
frequency metrology by three orders of magnitude in the last ten years [7]. The highest
precision and stability is achieved using ultracold atoms in an optical lattice, yielding a
fractional frequency uncertainty of 2× 10−18 for 87Sr [8].
Much of the research in our group has focused on adapting techniques originally
developed for atomic clocks to molecules and establishing a new platform for tests of
the fundamental laws governing the universe.

1.1 A Molecular Lattice Clock

A clock measures time based on a stable reference oscillator. For a simple clock, this
reference could be the swinging of a pendulum. If complete isolation from the envi-
ronment is achieved, this frequency standard should only depend on the fundamental

1



1 Introduction

constants of physics that determine the frequency of the oscillator. For a pendulum, this
is e.g. the gravitational constant G.1

In the SM, all fundamental constants are indeed invariable, i.e. they don’t change over
time. However, several models beyond the SM suggest that the fundamental constants
dynamically vary with time. These include e.g. string theories, discrete quantum gravity
and loop quantum gravity [9].
How would one go about measuring these drifts? The measurement of a physical
quantity usually relies on the comparison between the measured system and a reference
that defines the unit. But what if the reference and thus the unit itself changes over time?
For this reason, searches for drifts in fundamental constants concentrate on the two
dimensionless constants in the SM: the fine structure constant α and the electron-proton
mass ratio µ = me

mp
.

These drifts can be searched for in a variety of astrophysical systems, reviewed in [10].
To detect present-day variations in the lab, one could compare different clock transitions
which exhibit different dependencies on α and µ respectively. If the constants change,
so will the ratio between the two transition frequencies. Atomic clocks possess a strong
sensitivity for drifts in α. While µ can also be measured with atomic clocks, the resulting
constraints cannot be separated model independently from α drifts [11].
In contrast, if one uses vibrational levels in the same electronic potential of a molecule,
the clock transition is most sensitive to µ [12, 13]. By selecting two clock transitions with
maximally different µ dependencies, one can directly measure µ drifts in a clean way,
while the α dependence, as well as any intermediate clock drift essentially cancels out
[14, 15].
Further prospects of a molecular clock could include improving constraints on the
validity of nano-scale gravity and precise measurements of the potential can inform
quantum chemical ab-inito calculations.
88Sr2 is an ideal choice for a molecular clock, since the vibrational levels are relatively
immune to black body radiation due to selection rules. Furthermore, the lack of hyper-
fine structure makes the clock less sensitive to magnetic field fluctuations. Lastly, 88Sr
can be laser cooled to ∼1 µK. With a subsequent photoassociation of the Sr dimers, it is
possible to achieve Doppler- and recoil-free spectroscopy in an optical lattice.

1For a pendulum, the eigenfrequency depends of course highly on the local gravitational environment.
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1.2 Overview

1.2 Overview

The first two chapters describe the theoretical and experimental framework necessary to
understand the experiments described in this thesis. Chapter 2 gives a short review on
the molecular structure of 88Sr2, while chapter 3 explains the experimental apparatus
and how ultracold 88Sr2 molecules are produced.
Chaper 4 describes the development of the metrology system: A new clock laser is
built improving our metrological capability. Fiber noise cancellation is implemented to
distribute the stable light between remote locations. Finally, the stability is transferred
between Raman lasers to ensure the relative stability of the two clock lasers. In chapter
5, Autler-Townes spectroscopy of deeply bound vibrational states is presented. Once
these prospective clock transitions are found, the inhomogeneous Stark broadening
is eliminated by employing a magic wavelength technique, as discussed in chapter 6.
The increased coherence allows us to coherently transfer molecules between vibrational
levels. Chapter 7 describes Rabi oscillations across almost the entire ground state
potential. Finally, the results of this thesis are summarized and a short outlook on the
next steps towards the experiments outlined above is given.
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2 Structure of 88Sr2

This chapter provides a short review of the molecular structure of 88Sr2 and will only
focus on the cases relevant for the experiments described in this thesis. More detailed
explanations can be found in [16, 17, 18, 19]. Let’s consider the following Hamiltonian
for the diatomic, homonuclear molecule:

Ĥ = Ĥe + Ĥv + Ĥr (2.1)

In this simple picture, the electronic (Ĥe), vibrational (Ĥv) and rotational (Ĥr) parts of
the Hamiltonian are decoupled.
To first approximation, the electronic energy is given by the sum of the energies of
the two atoms forming the molecule (atomic asymptote). The vibrational part can be
described by a single quantum number v. The rotational part is the most complicated
since it depends on the different couplings of spin and orbital angular momentum of
the electrons and nuclei respectively. Note that the nuclear spin is 0 for 88Sr2.
Molecular states are typically classified by different Hund’s cases: Depending on the
coupling of the angular momenta and spins, a different set of "good" quantum numbers
is used to describe the state. One has to consider the interplay between the following
operators:

• L̂ (Λ̂): Electronic angular momentum

• Ŝ (Σ̂): Electronic spin

• Ĵe = L̂ + Ŝ (Ω̂): Total electronic angular momentum

• R̂: Rotational nuclear angular momentum

• Ĵ = R̂ + Ĵe: Total molecular angular momentum

where the Greek letters in brackets denote the projection onto the nuclear axis.
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2 Structure of 88Sr2

2.1 Electronic Ground State

The electronic ground state is best described by Hund’s case a), in which L̂ is strongly
coupled to the inter-nuclear axis and Ŝ is strongly coupled to L̂. A set of "good" quantum
numbers is then given by Λ, Σ, Ω, J and S. The most common notation for molecules
described by Hund’s case a) is similar to the atomic spectroscopic notation:

2S+1|Λ|±Ω,(g/u) (2.2)

where ± indicates the sign of Λ and the subscript g/u (gerade/ungerade or even/odd)
denotes the electronic parity, i.e. whether the wave function changes sign under reflection
at a plane normal to the inter-nuclear axis. The values of Λ are labeled by the Greek
letters Σ, Π, etc., in analogy to the atomic notation (S,P, etc.).
The electronic ground state is labeled as X and asymptotes to the 1S0 +1S0 atomic state,
so that L = S = Je = Ω = 0, justifying the application of Hund’s case a). The term
symbol for the molecular ground state potential thus reads: 1Σ+

0,g , where g and + can
be obtained by symmetry considerations, since the 88Sr nucleus is bosonic.
To fully describe the state, one additionally has to specify the vibrational quantum
number v and J. For symmetry reasons, only even J are allowed for the ground state. To
simplify the notation, the rovibrational levels in the ground state will simply be labeled
as X(v, J, mJ) in this thesis. We will often omit mJ , especially when dealing with J = 0.
It is also important to note that v = 0 is the most deeply bound state. When we consider
weakly bound states near the atomic asymptote, it is common to use negative values for
v, i.e. v = −1 denotes the most shallow bound state and is equivalent to v = 62.

2.2 Excited States

In this thesis, only excited states that asymptote to 1S0 +3P1 are considered. For these
states, Hund’s case c) is the more appropriate choice, where L̂ and Ŝ couple strongly,
but L̂ does not couple to the inter-nuclear axis [20]. In this limit, Ω, J and Je form a set
of "good" quantum numbers.
States asymptoting to 1S0 +3P1 can have Ω = 0, 1 and either even (g) or odd (u) symmetry.
In addition, for Ω = 0 it is usually specified whether the electronic wavefunction is
symmetric under reflection at a plane containing the inter-nuclear axis (±). Note that
this symmetry is different from the ± symmetry in Hund’s case a).
The typical notation for Hund’s case c) is |Σ|±

(g/u). The excited states considered in this
thesis are 0+u (v′, J′, m′J) and 1u(v′, J′, m′J), where v′, J′ and m′J denote the rovibrational
structure of the excited state.
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2.3 Selection Rules

2.3 Selection Rules

The most important selection rules for E1 transitions between molecular states are [16]:

g↔ e, g = g, e = e

∆J = 0,±1 (0 = 0)

∆v = 0 (for same electronic state)

(2.3)

This thesis describes high precision spectroscopy of the vibrational levels in the ground
state potential. According to (2.3), one cannot drive transitions between these levels
directly. Therefore, states in the excited potential 0+u will be used as an intermediate
state to perform two-photon spectroscopy. The two-photon transition sketched in
figure 3.2 thus constitutes the clock transition of the 88Sr2 molecular clock. In addition,
resonances in the 1u potential are used to tune the dynamic polarizability and achieve
state insensitive trapping (magic wavelength).
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3 Production of Ultracold 88Sr2 Groundstate
Molecules

The condition for the molecular clock described in this work is the creation of ultracold
molecules that can be probed in a recoil-free way without residual Doppler broadening.
Previous work in our group therefore focused on using photoassociation to obtain a
tightly confined sample of ultracold molecules from previously laser cooled 88Sr atoms
[21].
The experimental apparatus is extensively described in [19].

3.1 Laser Cooling of 88Sr

Our experiments uses the by now standard scheme to cool strontium atoms. Through
different cooling stages, it is possible to cool strontium from 800 K to 2 µK within less
than 1 s:

1. Sr oven and Zeeman slower: A solid block of Sr is heated to ∼800 K in an oven
to produce a hot beam of Sr atoms in the gas phase, collimated by a nozzle with
microtubes. A Zeeman slower operates on the strong 1S0 ↔1 P1 transition (461 nm)
[22]. Two repump lasers at 679 nm and 707 nm are used to close the cycle.
To drive the transition, an infrared 922 nm external-cavity diode laser (ECDL) is
amplified using a tapered amplifier (TA) and frequency doubled through a non-
linear crystal in a bow-tie cavity. The laser is locked to the absorption spectroscopy
of a Sr vapor cell. The blue light is used for the Zeeman slower, as well as the first
magneto-optical trap (MOT) and imaging.

2. Blue MOT: The first 3D MOT operates on the strong (32 MHz) blue transition.
Due to the strong transition, the capture velocity is high and it is possible to trap
∼108 88Sr atoms at a temperature of ∼1 mK. The fluorescence of the blue MOT
can be easily seen by eye (figure 3.1).

3. Red MOT: The second MOT operates on the narrow (7.5 kHz) intercombination
line 1S0 ↔3 P1, which has a wavelength of 689 nm. The narrow line allows cooling

9



3 Production of Ultracold 88Sr2 Groundstate Molecules

down to 2 µK. The red MOT laser is locked to an ultra stable high finesse cavity
and has a narrow linewidth of < 200 Hz (see section 4.1). We currently trap O(107)

atoms in the red MOT.

4. Optical lattice: Even at 2 µK, the Doppler broadening for 88Sr2 is still ∼30 kHz. An
optical lattice is a standing wave formed by retro-reflecting an off-resonant dipole
trap. The tight confinement along the (in our case 1D) lattice eliminates Doppler
shifts due to the now quantized atomic motion. If the trapping frequency is larger
than the recoil energy, the recoil due to photon absorption cannot change the
motional state of the atom or molecule, enabling so-called recoil-free spectroscopy
[23]. The lattice laser is an ECDL at 915 nm, followed by a TA. This system supports
a trap depth of ∼100 µK and trapping of O(106) atoms.

Figure 3.1: Fluorescence of the blue MOT.

3.2 Photoassociation

Photoassociation (PA) is a light-assisted collision, in which two atoms form a weakly
bound excited molecule [20]. Here, we use one-photon PA to connect two atoms in the
1S0 ground state to the 0+u (−4, 1) molecular state. To obtain ground state molecules, our
method relies on the close to unity Franck Condon Factor (FCF) with X(−1, 0): The
molecules predominantly decay to a single vibrational level in the ground state potential
[21]. To obtain molecules in X(−2, 0), one can use photoassociation via the 0+u (−5, 1)
state instead. This scheme allows the preparation of ≈104 in a single quantum state.

10



3.3 Imaging
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Figure 3.2: Experimental sequence: a) PA and predominant decay to X(−1, 0). b) Raman
spectroscopy. c) Recovery and imaging of X(−1, 0) molecules.

3.3 Imaging

Once 88Sr2 molecules are created, one can perform Raman spectroscopy of deeper lying
vibrational levels using two probe lasers. In order to record spectra of the molecule, one
has to count the molecules in a specific state.
We typically only count molecules in X(−1, 0) and observe the spectra of other states as
loss. To image the molecules, they are first turned back into atoms with a short recovery
pulse that connects X(−1, 0) and 0+u (−2, 1), which efficiently decays to free atoms. These
atoms are then imaged using the strong blue transition. The recovery scheme is chosen
because the blue transition is almost closed, leading to multiple scattering events per
atom and a stronger signal.
The different steps of the experiment are sketched in figure 3.2. The following chap-
ter will describe work on laser stabilization and focus on the specific metrological
requirements of a two-photon optical clock.
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4 Laser Stabilization

4.1 Clock Laser

The operation of an optical clock consists of repetitively scanning the clock transition
while measuring the frequency of the laser. This way, one can lock the laser frequency
to the transition, which constitutes the frequency standard. By measuring the laser
frequency, it is possible to obtain precise measurements of the energy difference between
the clock states. This procedure imposes two requirements onto the clock laser:

1. Short term stability (linewidth): The laser linewidth has to be small enough to
resolve the narrow clock resonance and not introduce decoherence during the
interaction time (1 ms - 1 s).

2. Long term stability (drift): Since the laser serves as a "flywheel" between interroga-
tion cycles, frequency drifts will corrupt the clock performance.

In order to meet these requirements, one needs a low-drift, narrow frequency discrim-
inator to measure the frequency fluctuations of the laser. It is then possible to feed back
on this error signal and thus reduce both linewidth and drift. Fabry-Perot resonators
and a laser stabilization using the Pound-Drever-Hall (PDH) technique have become
a standard tool in clock-style experiments. The following chapter will summarize the
necessary theory of Fabry-Perot resonators and PDH locking. Such a lock is already
implemented for the red MOT laser, which is currently the master laser to which the
other probe lasers are referenced. In order to improve the two requirements mentioned
above, a new clock laser is constructed and its locking performance is analyzed.
In the following discussion, the old clock laser will be abbreviated by A, while the new
clock laser will be denoted by α.

4.1.1 Fabry-Perot Resonator

A Fabry-Perot resonator is formed by two opposing spherical mirrors, as depicted in
figure 4.1. On resonance, the field interferes constructively with the light that has taken

13



4 Laser Stabilization

EI

ER

ET

z1 z2

r1 r2

L

z = 0

R, TR, T

EC

w0

Figure 4.1: Schematic of a Fabry-Perot cavity of length L. R and T are the reflection and
transmission coefficients for the intensity. The radii of curvature are denoted
by r1 and r2. EC is the intra-cavity electric field and EI , ER and ET denote the
incident, reflected and transmitted field respectively. The red Gaussian beam
is a resonant eigenmode of the cavity, with a waist w0 at position z = 0.

an additional round trip, so that the resonance condition can be written as:

φ = m · 2π (4.1)

where m is an integer and φ is the phase picked up by the light during a single round
trip. In the geometric optics picture, φ would simply be given by φ = 2Lω

c . In contrast,
a Gaussian beam picks up an additional phase along its propagation direction, the so
called Gouy phase:

ξ = −(l + k + 1)arctan
(

z
zR

)
(4.2)

where zR is the Rayleigh length of the mode and z the distance from the waist along
the optical axis. l and k describe higher order transverse eigenmodes. The fact that
the Gouy phase is not the same for all modes lifts the mode degeneracy and therefore
different modes can be observed when the laser frequency is scanned. Figure 4.2 shows
some of the Laguerre Gauss modes [24], which were observed using a CCD camera
behind the cavity while scanning the laser frequency. It is particularly important that
the TEM00 mode is not degenerate, since we eventually want to lock the laser to this
mode. Because we are mainly interested in the fundamental TEM00 mode, we will drop
l and k for the further discussion.

14



4.1 Clock Laser

TEM00 TEM01*

TEM01

TEM02

TEM11 TEM20

Figure 4.2: Laguerre Gauss modes. Once the cavity is well aligned and mode matched,
only the fundamental TEM00 mode persists.

The Gouy phase acquired in one round trip is given by:

ξrt = arctan
(

z1

zR

)
− arctan

( z2

zR

)
(4.3)

Here, z1 and z2 are the distances between the two mirror positions and the waist.
Finally, we can write the resonance condition as:

φ =
2Lω

c
+ ξrt = m · 2π (4.4)

Knowing the round trip phase shift, we can now calculate the electromagnetic field
inside the cavity and its frequency dependence. For an incident laser field EI , the steady
state field inside the cavity EC fulfills equation 4.5. It is the sum of the transmitted part
of the incident field and the intra-cavity field after one round trip.

EC = EI
√

T + ECReiφ (4.5)

Solving for EC yields the intra-cavity electric field:

EC =

√
T

1− eiφR
EI (4.6)

Finally, the transmitted and reflected electric field ET and ER are related to EC in a
simple way:

15



4 Laser Stabilization

0

0.5
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0

Figure 4.3: Reflection coefficient R(ω)2 and its imaginary part. A cavity finesse of 100
is assumed for the plots.

ET =
√

Teiφ/2EC ER =
√

TReiφEC −
√

REI (4.7)

Note that the minus sign in ER arises due to a π phase shift of EI upon reflection at
the backside of the first mirror. For the PDH technique we are mainly interested in the
reflected light. The reflection transfer function R(ω) becomes:

R(ω) =
ER

EI
=
√

R
eiφ − 1

1− Reiφ (4.8)

The square of the transfer function R(ω)2 and its imaginary part are plotted in figure
4.3. The intensity of the reflected light features dips when the resonance condition is
met. From equation 4.4 it is clear that the spacing of these resonances is given by the
so-called free spectral range (FSR).

FSR =
c

2L
(4.9)

It can be shown that the full width at half maximum (FWHM) of a resonance dip is
given by:

FWHM = FSR
1− R
π
√

R
=

FSR
F (4.10)
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4.1 Clock Laser

Free spectral range FSR 1.5 GHz
Finesse F 644 700

Full width at half maximum FWHM 2.3 kHz
Length L 10 cm

Radius of curvature 1 r1 ∞
Radius of curvature 2 r2 50 cm

Table 4.1: Specifications of our commercially available Fabry-Perot cavity by Stable Laser
Systems. Note that r1 = ∞ means that the first mirror is flat.

where the finesse F is a key indicator for resonators and is defined as the ratio between
FSR and FWHM of the cavity. The higher the finesse, the narrower the resonance for a
given FSR.

F =
FSR

FWHM
=

π
√

R
1− R

≈ π

1− R
(4.11)

The last approximation is typically made when F >> 100. Since we want the
resonance to be a very narrow frequency discriminator in order to lock the laser, the
finesse and thus the mirror reflectivity R are very high for our cavity. Table 4.1 shows
some important quantities for our cavity that was bought from Stable Laser Systems
(SLS).

SLS initially estimated the finesse to be 478 000 by measuring the mirror reflectivities.
This approach has a relatively large error and also depends on a somewhat rough
estimate of the mirror losses. To get an independent measurement, one could simply
measure the FWHM of a resonance. However, since the resonance is so narrow, this
would require a laser which is already narrower than the resonance.
An alternative approach is to measure the energy decay inside the cavity once the laser
field is shut off. The energy decay rate is proportional to the energy stored inside the
cavity, where the proportionality constant is determined by the mirror’s reflectivites (for
a loss-less cavity).

dE
dt

= −E
τ

(4.12)

This equation is solved by an exponential, where the decay constant τ is the photon
lifetime inside the cavity.

E(t) = E0e−t/τ (4.13)
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Figure 4.4: Intensity decay of the transmitted light. The laser was quickly shut off at
t = 0 using an AOM. The inset shows the combined response time of RF,
AOM and the photodiode, which was determined to be ∼1 µs. The decay
constant from an exponential fit is τ = 68.5(5)µs, corresponding to a finesse
of F = 644700(500).

The energy decays by 1− R in a time L/c, such that τ is given by:

τ =
L

(1− R)c
=
FL
πc

(4.14)

We can measure the decay time by stabilizing a laser to a cavity resonance and then
quickly switching off the light while recording the transmitted light on a fast photodiode.
To quickly extinguish the laser, we use an acousto-optical modulator (AOM) [25]. The
first order of the AOM is stabilized on the cavity resonance and the AOM’s radio
frequency (RF) signal is switched off using a TTL RF switch. The combined response
time of the RF, AOM and photodiode is shown in the inset in figure 4.4 and is on the
order of 1 µs, i.e. much faster than the cavity decay.
From the measurement depicted in figure 4.4 we obtain a finesse of F = 644700(500)
using equation 4.14, which is substantially larger than the value estimated by SLS. This
translates to a resonance width of FWHM = 2.3 kHz, which gives us a very narrow
frequency discriminator that we can use to obtain an error signal for the laser.
In order to lock the laser to a cavity resonance, we need an error signal that changes
sign at the center of the resonance so that the lock can correct the frequency with the
right sign. The imaginary part of the transfer function in figure 4.3 carries information
about the phase of the reflected light and features exactly that quality. The idea behind
the PDH technique is to access this phase information to obtain a narrow error signal.
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4.1 Clock Laser

4.1.2 PDH Locking

This section gives a summary of our implementation of PDH locking to a high finesse
cavity. Useful reviews of the PDH technique are given in [26, 27].
In order to see how the PDH error signal measures Im{R(ω)}, let’s consider a phase
modulation of the laser beam incident on the cavity and its effect on the reflected field.

EI = E0ei[ωt+βsin(Ωt)] (4.15)

Here, β and Ω are the modulation index and frequency respectively. We can approxi-
mate equation 4.15 using the Jacobi-Anger expansion, keeping only the first two terms,
where J0 and J1 are Bessel functions of the first kind. Finally, the terms are rewritten in
the last equation to see how side bands appear in frequency space:

EI ≈ E0[J0(β) + 2i J1(β)sin(Ωt)]eiωt = E0[J0eiωt + J1(β)ei(ω+Ω)t − J1(β)ei(ω−Ω)t] (4.16)

We can now use the transfer function from equation 4.8 to obtain the reflected field:
ER = REI . As the photo detector measures intensity and not electric field, we compute
the intensity of the reflected light:

IR =
1
2
[R(ω)Ec +R(ω + Ω)EseiΩt +R(ω−Ω)Ese−iΩt]2 (4.17)

Where the indices c and s have been introduced for the reflected field of the carrier and
side bands respectively. After some algebra and taking the approximation Ω >> FWHM
we find:

IR =IcR(ω)2 + Is[R(ω + Ω)2 +R(ω−Ω)2]

+ 2
√

Ic Is

[
Im
{
R(ω)R∗(ω + Ω} −R∗(ω)R(ω−Ω)

}]
sin(Ωt)

+ terms ∝ sin(2Ωt)

(4.18)

Since we are interested in Im{R}, we introduce a band pass filter centered around Ω
to isolate the term in the second line. The filtered signal is now proportional to the PDH
error signal ε(ω), oscillating at the modulation frequency Ω. Lastly, the photo diode
signal gets mixed down with a reference signal with frequency Ω to obtain the DC error
signal ε(ω).1

1Note that the photodiode signal has to be mixed with a reference with the right phase. In order to control
this relative phase, a delay box is introduced in the reference signal path.
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Figure 4.5: a) PDH error signal for Ω = 0.02 · FSR, F = 5000. b) Measured error signal
for the F = 644 700 cavity. Since the unlocked laser linewidth is much larger
than FWHM, this signal looks very different from sweep to sweep.

Ifilter = ε(ω)sin(Ωt)

ε(ω) = 2
√

Ic Is

[
Im
{
R(ω)R∗(ω + Ω)−R∗(ω)R(ω−Ω)

}] (4.19)

Figure 4.5 is a plot of ε(ω) and we immediately recognize the similarity to Im{R(ω)}
plotted in figure 4.3. On resonance, the carrier experiences a frequency-dependent
phase shift and interferes with the side bands, which are entirely reflected (since
Ω >> FWHM). This interference exhibits a beating pattern and thus oscillates at Ω.
By measuring this beat note, the PDH technique allows us to access the phase of the
reflected light, which is now encoded in a signal oscillating at frequency Ω. Since Ω
is much smaller than the light frequency ω, it is now possible to measure the cavity
response on a photo detector.

4.1.3 Setup and Locking Procedure

The narrow error signal derived above allows one to reduce the linewidth of a laser
significantly by locking it to a cavity resonance. Initially, we bought a commercial ECDL
by Sacher Lasertechnik, which turned out to have severe issues with internal ground
loops introducing 60 Hz noise to the laser. Since Sacher was not able to fix the problem,
we decided to construct a new ECDL instead, based on a design by our Postdoc Stanimir
Kondov, which turned out to work very well for our application. Details regarding the
design of the ECDL can be found in appendix A.1.
In order to reach high finesse and a laser lock limited by the thermal noise floor of
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4.1 Clock Laser

the cavity, the resonator has to be in vacuum (1× 10−7 torr). The cavity was bought
in combination with a vacuum housing, ion pump and temperature control from SLS.
Since it was already set up when I joined the lab, the setup will not be discussed in this
thesis and it is referred to SLS for further information [28].2

Mode Matching

To maximize the coupling efficiency, the Gaussian mode of the laser has to match the
fundamental mode of the cavity, since the coupling efficiency is proportional to the
overlap integral between laser field and cavity mode field [29]. In order to match the
modes, one first has to calculate the size and location of the cavity mode waist. The
radius of curvature R(z) of an eigenmode matches the radii of curvature r1 and r2 at the
two mirrors. In this way, the waist will occur at the same position after a round trip,
corresponding to a stable mode. Since the first mirror of our cavity is flat, the waist is
located at the first mirror (z = 0). It is then easy to calculate the mode waist ω0 and the
mode Rayleigh range zR using Gaussian beam optics [24]:

R(L) = L

[
1 +

(
zR

L

)2
]
= r2 (4.20)

zR = L
√

r2

L
− 1 = 0.2 m (4.21)

w0 =

√
λzR

π
= 223 µm (4.22)

To match the beam, the waist is measured at the EOM position with a camera. A
Matlab script then iteratively shifts lenses f2 and f3 and calculates the new waist and
its position. The program finds several solutions that lead to mode matching, giving a
good starting point for the lens placement. Once the lenses are placed at the calculated
position, a camera is placed at the same distance from the PBS as the first cavity mirror.
Slight adjustments of f2 and f3 are made to focus on the camera with the desired waist.3

Alignment

To align the cavity, it is useful to install a camera at the back of the cavity to identify
different modes. The following steps are taken:

2Our model features a notched cavity design and an ultra low expansion glass (ULE) spacer defines the
distance between the two mirrors.

3Note that equation 4.22 describes the waist of the electric field. The camera measures the waist of the
intensity, and thus 2w0.
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Figure 4.6: Optics setup for PDH locking and schematic of the electronics used to extract
the error signal.

1. Looking through the back window of the cavity, one can observe a concentric
aperture indicating the mirror edges. With the help of a second person, one can
align an iris with its center matching the center of the mirror.

2. The iris is almost closed and the laser is aligned to the iris using the penultimate
mirror.

3. The last mirror is adjusted to overlap the reflected light with the incoming beam.
Iterate steps 2 and 3 until both are satisfied.

4. Now the laser frequency should be scanned slowly (∼1 Hz) while looking at the
camera. Usually, higher modes are observed first. The lowest observed mode
should be maximized. This usually makes even lower modes visible. Reiterate
until the TEM00 mode is observed and maximize it.

5. At this point, one can look at the photodiode signal and increase the signal height
of the TEM00 mode by walking the last two mirrors.

6. Once the signal is high enough to lock the cavity, one should optimize the trans-
mitted power while the laser is locked. The mode matching can be optimized by
adjusting the lenses.

7. If the alignment is satisfactory, one can put two irises in the beam path and thus
"save" the alignment, since two fix points completely define the beam alignment.
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4.1 Clock Laser

If a component is bumped or has to be changed, one can simply align the beam to
the irises and get a good enough alignment to quickly restore the lock.

The alignment of the cavity is quite sensitive and it can be difficult to align it from
scratch. This is due to the fact that the unlocked laser has a linewidth of ∼500 kHz,
i.e. much larger than the cavity linewidth of 2.3 kHz. Therefore, we use a different
wavelength (650 nm) for which the finesse is much lower for pre-alignment. Once the
TEM00 is observed, we switch to the 780 nm laser and can start the fine alignment at
step 4.
The laser light is guided to a vibration isolated platform (Minus K, Model 250BM-1)
through a polarization maintaining single mode fiber. An electro-optical modulator
(EOM) is driven by a direct digital synthesizer (DDS) and modulates the laser phase.
Since the aperture of the EOM is too small for the laser beam, a 1 : 1 telescope is used
to focus the beam onto the EOM. The second mirror of the telescope and a third lens
are used for mode matching to the cavity and are therefore mounted onto an adjustable
cage.
To detect the reflected light, one uses a polarizing beam splitter (PBS) and a λ/4 wave
plate. The reflected light passes the wave plate twice and thus has a polarization
orthogonal to the incoming beam. It is picked up using the PBS and focused onto a
photodiode. The output of the phodiode is then bandpassed and mixed down using the
same DDS signal that also drives the EOM. In addition, a balun is introduced to break
possible ground loops.

Residual Amplitude Modulation

One major source for locking errors in the PDH scheme is residual amplitude modula-
tion (RAM). Although the photodiode is band pass filtered at the modulation frequency,
there are RAM effects that can be demodulated with the locking signal and thus perturb
the DC error signal, leading to locking errors.
Two flat surfaces along the optical path can introduce an etalon. The resulting inter-
ference changes the DC offset of the error signal and is highly temperature dependent.
A good strategy is to slightly tilt all optical elements. In our case it turned out to be
difficult to completely eliminate an etalon formed by the EOM crystal and the cavity
incoupling mirror. Since the focus is at the EOM position, the flat wave front favors
etaloning. To fully eliminate the etalon, an optical isolator can be introduced in the
etalon path.
Another important RAM effect can be induced by the EOM. For a polarization deviating
from the z-cut axis of the EOM, the light will exhibit RAM, reaching a maximum for
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45° polarization relative to the z-cut axis [30]. In order to minimize this effect, a Glan
Thompson polarizer with extinction ratio of 1 : 10 000 is used. It should be noted that the
higher than expected finesse of our cavity actually helps to diminish RAM effects, since
changes in the DC offset lead to a smaller locking error for smaller cavity linewidths.
To further eliminate RAM, is also possible to servo on the EOM voltage to align the
principal axes of the crystal to the polarization [30].

Locking Procedure

In order to lock the laser, we us a Vescent D2-125 laser servo. In its simplest form, a servo
relates input and output by a transfer function G(ω) which is frequency dependent. The
D2-125 has proportional, dual integral and differential gain (PI2D) and the different
gain corners can be individually adjusted [31]. The gains and servo settings are adjusted
to optimize the transfer function and obtain a stable lock and good noise suppression
(see figure 4.7).
Since the laser linewidth is so much larger than the cavity linewidth it can be very hard
for the servo to catch the lock. A useful trick turned out to work very well and makes
locking quite easy. One simply brings the laser somewhat close to resonance and then
turns on the lock. Most likely the laser will not lock, but rather rail to the maximum
servo output immediately. The DC offset is then turned until the servo rails in the
opposite direction. The laser is therefore swept across the resonance and catches lock.
Then the DC error is brought back to zero again to lock the laser exactly on resonance.

4.1.4 Evaluation of the Locking Performance

In order to evaluate the locking performance, one can analyze the spectrum of the error
signal while the laser is locked to the cavity. This measurement is shown in figure 4.7
and reveals a servo bandwidth of ∼800 kHz. The servo parameters have been tuned to
maximize the servo bandwidth and maintain good noise suppression across the whole
servo bandwidth. The lock is very robust against acoustic noise (talking, clapping,
music, etc.) and has been locked for ∼20 h. Hitting the laser table with a metal object
like a screwdriver usually unlocks the laser, which couldn’t be overcome by optimizing
the lock settings.

Evaluating the error signal gives us the servo bandwidth, but it can’t be used to obtain
a reliable measure of the laser linewidth. The optimal method to measure the laser
linewidth γ is self-heterodyne beating [32]. One part of the laser is sent through a long
delay fiber and shifted by an AOM before being recombined with the non-delayed part
on a beam splitter. This interference creates a beat note at the AOM frequency. If the

24



4.1 Clock Laser

200 400 600 800 1000 1200 1400
-120

-115

-110

-105

-100

-95

-90

Figure 4.7: Power Spectral Density (PSD) of the error signal while the laser is locked.
The black line indicates the servo bandwidth. For frequencies below 250 kHz,
a smaller resolution bandwidth was used.

length of the delay fiber is larger than the coherence length of the laser, the two parts
can be treated as independent lasers with the same linewidth. The resulting beat note is
given by the convolution of the two linewidths and has a width of 2γ. This approach is
not feasible for a very narrow laser, since the coherence length for a 1 Hz wide laser is
roughly 1× 108 m, which is about a quarter of the distance from the Earth to the Moon.

Another possibility is to use two independent lasers and beat them against each other,
resulting in a beat note width of γbeat = γ1 + γ2. We have another relatively narrow
laser in the lab, which is also locked to a high finesse cavity (F∼30 000) and is used for
our red MOT at λA = 689 nm. Unfortunately, the resulting beat note frequency with the
λα = 780 nm laser is too high to be detectable. However, we can use a frequency comb
to bridge this gap and indirectly compare the two lasers. To do that, the comb is locked
to λA and the beat note between comb and λα is measured. Details of how the comb
lock is achieved can be found in section 4.3.
The resulting beat note is shown in figure 4.8 and has a width of ∼200 Hz. A range of
5 kHz is swept with a resolution bandwidth of 10 Hz and averaged over 10 sweeps. The
total duration of the measurement is ∼10 s, which corresponds to the typical time it
takes to scan a molecular transition in our experiment.
Since the finesse of the A laser cavity is a lot smaller than for the new α clock laser, this
width is likely dominated by A. The smallest linewidth observed for a single photon
transition with A laser was 150 Hz, but it was not entirely clear if the width is laser
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Figure 4.8: Beat note of α laser with a frequency comb, which is locked to A laser. The
width of the fitted Lorentzian is 208 Hz

limited. Although this result only gives a stringent upper bound of γα = 200 Hz, the
actual width is more likely on the order of 10 Hz or lower, which is achieved by other
groups with a similar setup [33, 34].
Moreover, one can measure the frequency drift of the cavity using the frequency comb.
To do that, the comb is locked to α and the repetition rate is counted for ∼3 h (see
section 4.3). A linear fit yields d fα

dt = 390 mHz/s = 33.7 kHz/d. This is slightly larger
than the 20 kHz/d specified by SLS. SLS measured the zero-crossing temperature of
the cavity spacer to be 50.8 ◦C using a speed of sound measurement. The cavity drift
could potentially be minimized by measuring the zero crossing more carefully using the
frequency comb.
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4.2 Fiber Noise Cancellation and Intensity Stabilization

Once a narrow linewidth is achieved, the light has to be distributed across the experiment
to perform spectroscopy or metrology using the frequency comb. Since our experiment
consists of multiple optical tables, we use optical single mode fibers to distribute the light.
In order to preserve the polarization on passage through the fiber, we use polarization
maintaining (PM) fibers.
In this section we study the effects of single mode fibers on the spectral purity of the
light. A simple test of the fiber induced phase noise is the self heterodyne measurement
discussed in 4.1.4. Since the fiber is much shorter than the coherence length of the laser,
one would essentially expect a zero width for the beat note, since the laser is coherently
compared to itself. Any finite width can therefore be attributed to phase noise induced
in the fiber through acoustic fluctuations.
Acoustic noise in the lab environment changes the refractive index n of the fiber locally,
leading to a time dependence of the optical path length OPL and therefore the laser
phase φ:

OPL(t) =
∫

fiber
n(z, t)dz (4.23)

φ(t) = ωt +
2π ·OPL(t)

λ
(4.24)

In order to cancel this phase noise, we use a modified version of the fiber noise
cancellation (FNC) technique first described in [35]. In addition, our setup includes
intensity stabilization of the fiber output. Both fibers carrying the Raman lasers feature
FNC and intensity stabilization. In addition, the fiber connecting the old clock laser A
and the frequency comb is fiber noise canceled.

4.2.1 Setup

The setup in figure 4.9 is capable of both fiber noise cancellation as well as intensity
stabilization.

The first order of an AOM, driven by a voltage controlled oscillator (VCO) at fAOM =

80 MHz), is coupled to a PM single mode fiber (black arrows). About 10 % of the light
gets reflected at a partially reflecting mirror and travels back through the fiber (red
dashed arrows). Its 0th order than overlaps with a reference beam (black dashed arrows).
The reference beam passes the AOM in 0th order, gets fully reflected and passes the
AOM again, this time in the −1st order. The two beams are therefore shifted against
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Figure 4.9: Setup for FNC and intensity stabilization.

each other by 2 fAOM. The reference beam is independent of any fiber noise, whereas the
probe beam has passed the fiber twice.
The fibers are all shorter than 20 m, corresponding to a fiber passage time of ∼100 ns.
This is much shorter than the typical timescale of acoustic noise (< 20 kHz corresponds
to > 50 µs). Therefore, we assume that the optical path length is the same for both
passes. The width of the beat note between probe and reference is then given by twice
the fiber noise spectrum induced in the optical fiber.
Without FNC, the fiber noise can lead to spectral broadening on the order of 100 Hz
and is highly dependent on the acoustic environment. Furthermore, small details in the
handling of the fibers and how the fibers are fastened can significantly change the noise
behavior.
The beat note is detected using a fast photodiode (bandwidth 1.2 GHz) and mixed with
a DDS signal at 2 fAOM to produce a DC error signal for the lock. This error signal is
then fed into an analog PI controller.4 The output of the servo is added onto a DC set
point and is applied to the Vtune input of the VCO.

4Designed by Stanimir Kondov, adapted by Kon Leung.
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In order to integrate intensity stabilization into the same setup, the VCO output is
followed by a voltage controlled variable attenuator. The fiber output power is monitored
by branching off a small portion of the light using a beam sampler and detected with
a photodiode. To lock the intensity, we use a commercial servo box (Newport, Model
LB1005-S).

4.2.2 Evaluation of Cancellation Performance
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Figure 4.10: PSD of the out of loop beat note for FNC and the unlocked system. The
left figure is a high resolution scan of the peak. The servo bandwidth is
∼80 kHz, as indicated by the black line.

To evaluate the locking performance, we could simply use the in-loop photodiode
signal. However, a much cleaner test consists of directly comparing the light before and
after the fiber with an additional detector.
To do this, the fiber is simply wound in a circle and the output is recombined with the
light before the fiber on a beam splitter. This way, only a single fiber pass is probed and
the resulting beat note has a width determined exactly by the noise introduced in the
fiber.
Figure 4.10 shows the beat note for both the unlocked and locked system. For tests of
the unlocked system we use a DDS to drive the AOM, since the unlocked VCO output
has a width of several kHz. The PSD clearly shows a great reduction of the noise in the
kHz range and exhibits a servo bandwidth of 80 kHz. The central peak of the locked
system is limited by the resolution bandwidth of the spectrum analyzer (10 Hz).
To see how good the noise suppression works for a particular frequency, one can induce
excess acoustic noise on purpose and measure the response of the lock. To do that, a
simple sine tone is played on a speaker placed near the optical table. A sound pressure
level of 80 dB corresponds to a modulation depth of β∼0.2 and the response function of
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Figure 4.11: Side band suppression for a 80 dB acoustic perturbation.

the fiber is relatively flat between 200-2000 Hz. The sine tone modulates the refractive
index in the fiber and thus leads to phase modulation according to equation 4.23. As
already discussed in section 4.1.2, this imposes side bands onto the laser spectrum. The
side band power is measured relative to the carrier in dB c. The noise suppression is
then defined as the ratio between side band powers for the locked and unlocked system.
Figure 4.11 shows that the suppression is better than −20 dB between 500-1750 Hz, an
important range for many everyday acoustic noise sources.
To get an even better estimate of how stable the transfer through the fiber is, we use
a frequency counter to obtain a time series of frequencies fi for the beat note. The
standard way to analyze the stability in the temporal domain is to compute the so called
Allan deviation [36, 37].
Compared to the standard deviation, the Allan deviation σy has the advantage of
converging for most types of power-law oscillator noise. It computes the difference
between successive measurements for different gate times, where overlapping samples
can be used to improve the statistics. The Allan deviation is defined as follows:

σy =
1
2
〈
(yi+1 − yi)2〉 (4.25)

yi =
fi+1 − fi

τ
(4.26)

where <> denotes the mean value. The beat note was continuously measured over
12 h with a gate time of 1 s. Figure 4.12 shows the Allan deviation, calculated for the
fractional stability of the laser fi−< fi>

fLaser
.
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Figure 4.12: Allan deviation of the fractional instability between two remote locations
with FNC. 1
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τ

slopes are drawn to guide the eye.

Inspection of the time series reveals that 11 cycle slips occurred during the measure-
ment, where we have defined a cycle slip as a deviation from the mean by more than
10σ. It is not quite clear if the cycle slips stem from the lock or simply constitute an error
of the counter, since a very high signal to noise ratio is necessary for reliable counting.
No cycle slips occurred during the first hour of the experiment and the Allan deviation
for this sub-sample is plotted in red for comparison. The full data set averages down
as 1√

τ
, whereas the cycle slip free subset averages as 1

τ , which would be expected for a

white phase noise spectrum. It seems likely that the 1√
τ

dependence is an artifact of the
cycle slips. In any case, the Allan deviation is more than good enough for our purposes.
We estimate the Allan deviation of our new clock laser to be ∼2× 10−15 at 1 s, based on
information by SLS and the results of several other groups [33, 34]. For the full data set,
the Allan deviation averages down to 9× 10−18 and reaches even 5× 10−20 for the cycle
slip-free first hour of the measurement.
To find out if the cycle slips are actual slips in the lock or counting errors, one could
record the servo output and look for correlations between cycle slips and servo output
spikes. If the slips actually correspond to locking errors, one could possibly improve the
system by using a tracking VCO if even higher stability is desired [38].
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4.3 Stability Transfer Using a Frequency Comb

The development of femtosecond frequency combs has revolutionized the field of optical
frequency metrology by linking radio frequency standards to the optical domain. Promi-
nently, it has opened the possibility for optical clocks. Consequently, John L. Hall and
Theodor W. Hänsch were awarded the Nobel Prize in Physics 2005 for its development
[39, 40]. This section gives a short review of frequency combs and concentrates on the
applications of stability transfer and frequency metrology. An in-depth review can be
found in [41].

4.3.1 Elastic Tape Model

Our lab has bought a commercial frequency comb by Menlo Systems (Model FC1500).
It is based on a mode locked fs fiber laser. The output consists of a series of pulses
separated by the cavity round trip time T. The Fourier transform of such a pulse train is
given by a series (comb) of narrow modes, separated by the pulse repetition rate fRR.
The electric field can thus be described as a carrier wave oscillating at ωc, multiplied by
an envelope with periodicity T (see figure 4.13).

E(t) = Re
{

A(t) · exp(−iωct)
}
= Re

{
∑
n

An · exp
[
− i(ωc + nωRR)

]}
(4.27)

Where An are the Fourier components of the periodic envelope function A(t). As the
carrier wave moves at a phase velocity different from the envelope’s group velocity, the
carrier acquires a phase shift relative to the envelope for each pulse. This phase advance
∆φCEO per pulse is called carrier envelope offset (CEO) and translates to a frequency
offset in the spectral domain:

fCEO =
1

2π
fRR∆φCEO (4.28)

The comb spectrum is thus described by the so called elastic tape model, where the comb
tooth number n labels the different modes and is typically chosen so that fCEO < fRR.

fn = fCEO + n fRR (4.29)

If both fCEO and fRR can be locked to a stable reference, the frequency comb can act
as an "optical ruler". One can simply compare a laser with unknown frequency to a
comb tooth m. If m, fCEO, fRR and the beat note are known, one can obtain the absolute
frequency of the laser.
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Figure 4.13: Frequency comb in the temporal (top) and frequency (bottom) domain (not
to scale).

The benefit of this scheme is that it only requires measurements in the RF domain, but
gives access to measurements of optical frequencies. In the Menlo comb, fRR is directly
measured and fCEO is obtained via a so called f-2f interferometer: When the comb light
is frequency doubled (SHG), fCEO is doubled, whereas fRR stays the same. This is due
to the fact that frequency summation is the dominant effect in SHG [42]. If the comb is
now frequency doubled and compared to the original mode 2n, the beat note δ is given
by fCEO.

δ = 2 fCEO + 2n fRR − ( fCEO + 2n fRR) = fCEO (4.30)

In order for this scheme to work, it is necessary that the comb spans an entire octave.
Therefore, a photonic crystal fiber (PCF) is used to generate a broad super continuum
(SC), based on self-phase modulation, which largely preserves the coherent properties of
the light [43, 44]. Finally, since we are interested in the comb spectrum between 650 nm
and 925 nm, the comb output is followed by a SHG unit and a PCF, generating a broad
comb spectrum in the visible range.

4.3.2 Stability Transfer

Since the clock transitions that we want to probe are two-photon transitions, the relevant
measure for metrological capability is the relative fractional stability between the two
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4 Laser Stabilization

Raman lasers. Ideally, one would therefore phase lock the two and obtain essentially
perfect relative phase coherence. However, there are no suitable detectors for transition
energies on the order of 20 THz, which makes it impossible to detect a beat note between
the two lasers. Instead, we use the frequency comb to transfer stability from a stable
clock laser (master) to the second laser (slave). It has been shown that in principle this
scheme can be used to transfer stability on the order of 10−18 [45].
For current experiments, we use the old clock laser A at 689 nm as a master, which has a
linewidth of < 200 Hz and a slave laser at 651 nm. The idea is to lock fRR to the master
and then lock the slave to the frequency comb while fCEO is locked to an RF reference.5

To analyze how this works, let’s first consider the beat note between master and comb:6

δMC = 2 fCEO + nM fRR − fM = const. = 0 (4.31)

This beat note is used to lock fRR through feedback on a cavity piezo element and
an intra-cavity EOM, allowing for high enough bandwidth to obtain a proper phase
lock. This lock "fixes" the beat note δMC to a constant that we choose to be zero for
convenience. The beat note with the slave will then be given by:

δSC = 2 fCEO + nS fRR − fM

= 2 fCEO

(
1− nS

nM

)
+

nS

nM
fM − fS = const. = 0

(4.32)

where we have substituted fRR from equation 4.31.
This beat note is fixed to a constant again through a phase lock, this time through
feedback on the current and piezo of the slave laser. If we solve equation 4.32 for fS, we
see that fS is now proportional to fM.

fS = 2 fCEOβ +
nS

nM
fM (4.33)

where we have introduced the important factor β = 1− nS
nM

.
If fCEO and fM have a stability (linewidth) of ∆ fCEO and ∆ fM respectively, the slave laser
will inherit the following stability (if we assume the uncertainty introduced by fRR to be
small):

∆ fS = 2β∆ fCEO +
nS

nM
∆ fM (4.34)

5Note that all RF sources used in the locking of the comb are referenced to a Rubidium clock, which in
turn is referenced to a GPS signal to compensate long term drifts. The Allan deviation of the Rubidium
clock is specified to be 2× 10−11 at 1 s.

6Since we use the doubled light, the comb has twice the CEO of the original comb.
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4.3 Stability Transfer Using a Frequency Comb

Finally, we can compute the relative stability.

∆rel = 2β∆ fCEO + β∆ fM (4.35)

Since β < 1, the relative stability is actually better than the stability of the master, at
least in the optimal case of ∆ fCEO = 0. However, it is important to note that the more
relevant fractional relative stability will be the same as the fractional stability for the
master laser.

∆rel

fM − fS
=

∆ fM

fM
(4.36)

In fact, the fractional stability is the metrological quantity that is inherited in all
locking schemes. This is also the reason why one uses an optical references instead of
simply locking fRR to an RF clock: The fractional stability of our clock laser at short
time scales is O(104) times better than the stability of the Rubidium clock in our lab.

4.3.3 CEO Subtraction

As discussed in the previous section, the fRR lock has a high enough bandwidth to
achieve a proper phase lock, which is why we neglected ∆ fRR in the stability calculation.
fCEO is also phase locked to a stable RF reference, but since the fast feedback branch
(EOM) is reserved for fRR, the CEO locking bandwidth (pump current feedback) is
limited to ∼5 kHz. According to Menlo, this is not enough to implement proper phase
locking and thus leads to a very broad CEO linewidth of ∆ fCEO∼100 kHz. According
to equation 4.34, this heavily impairs the stability transfer and would impose a limit of
∆ fS∼10 kHz for our current wavelengths.
Menlo therefore includes the option for a CEO subtraction lock. The idea is that the
comb has a very well defined spacing ( fRR), but a jittering offset ( fCEO). However, the
comb appears completely stable in a jittering reference frame. If fCEO is subtracted from
all beat notes, one jumps exactly in this jittering reference frame. If we subtract fCEO

from equation 4.31 and 4.32 and carry out the following calculation, ∆ fCEO does not
contribute to the relative stability anymore.

Unfortunately, Menlo only includes single CEO subtraction, while we would have to
subtract 2 fCEO since we use a frequency doubled comb. Attempts to modify the internal
locking electronics of the comb by e.g. dividing the beat notes by two before mixing
with the CEO failed, since it was not possible to achieve sufficient signal to noise ratios
(SNR).7

7The internal band pass filters and amplifiers are all optimized for specific locking schemes and frequen-
cies.
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Figure 4.14: CEO signal measured with a bandwidth of 1 kHz (left) and 10 Hz (right).
The center is at 20 MHz.

With the construction of the new clock laser we finally obtained an independent way to
evaluate the stability transfer and we decided to examine the CEO signal and different
subtraction schemes more closely.
Surprisingly, the CEO turned out to be much narrower than expected when we measured
it on a spectrum analyzer with smaller bandwidth than the one integral to the comb rack
(delivered by Menlo). Indeed there is a broad background with a width of ∼260 kHz,
but a very narrow feature (limited by the 10 Hz bandwidth) can be measured, which
has very high SNR and doesn’t stem from RF leakage (see figure 4.14). Since the SNR of
the narrow peak is > 30 dB, one could suspect that the CEO subtraction doesn’t matter
at all.
To test different subtraction schemes, fRR is locked to A laser at 689 nm and a beat note
with the new clock laser α is observed.8 Note that the same subtraction is performed on
both laser beat notes with the comb.
The results are depicted in figure 4.15. In order to subtract the CEO twice, we use a feed
forward scheme. The CEO signal is frequency doubled and fed to an AOM. The master
laser passes the AOM in first order and therefore the CEO cancels out in the beat note
with the comb. The different schemes are explained in table 4.2.

The conclusion we draw from this test is that the CEO subtraction hardly seems to
matter at all, as expected from the narrow feature in the CEO signal (figure 4.14). For
all schemes a very narrow feature is visible, which has the same width (∼200 Hz) for
all schemes. The much broader pedestal has a width of ∼100 kHz, close to the width
of the CEO pedestal. However, there’s no notable difference between the schemes with
0xCEO and 1xCEO subtraction, except for the SNR. Most likely, the different SNR is

8This is the same scheme used to evaluate the locking performance of the new clock laser in section 4.1.
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Figure 4.15: Beat note between comb and the new clock laser for different CEO subtrac-
tion schemes.

just a manifestation of different SNRs of the fRR error signal, leading to a better overall
lock. This becomes evident if the 1x20 MHz scheme is examined. This scheme doesn’t
subtract the CEO, but uses the same filters and amplifiers as the 1xCEO subtraction
scheme. Since this control scheme appears to yield very similar locking performance as
the 1xCEO scheme, it seems likely that the differences only arise due to different SNRs
of the error signal.
The schemes with 2xCEO subtraction exhibit a qualitatively different pedestal, which
could indicate that the CEO is indeed fully subtracted. Nonetheless, the pedestal

Scheme Explanation Subtraction
0xCEO Standard scheme 0x

1x20 MHz
Menlo scheme for CEO subtraction,

CEO replaced by 20 MHz signal from a DDS
0x

1xCEO Single CEO subtraction using the Menlo scheme 1x
1XCEO AOM Single CEO subtraction using an AOM 1x
2xCEO AOM Double CEO subtraction using an AOM 2x
1xCEO AOM

+1xCEO
Single subtraction using the Menlo scheme

& single subtraction using an AOM
2x

Table 4.2: Explanation of the different CEO subtraction schemes.
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4 Laser Stabilization

suppression is worse than for the other schemes. A better solution for the AOM
subtraction would be a double pass configuration, since it is less sensitive to alignment
and no frequency doubling is needed. Frequency doubling introduces harmonics which
weren’t filtered out with appropriate band pass filters. Unfortunately, setting up a
double pass would have required major changes in the optical setup for an otherwise
relatively quick test, but for future tests it should be the preferred solution.
In conclusion, the combs performance seems to be much better than specified by Menlo.
Indeed, the company was rather surprised to see these results. It seems to be reasonable
to continue without CEO subtraction (or even use the 1x20 MHz scheme) and simply
optimize the error signal to be as clean as possible. Ultimately, the best test would be to
scan a narrow two-photon resonance and compare the different schemes.

4.3.4 Metrology with a Frequency Comb

Once a very good relative stability between the two Raman lasers is achieved, one can
precisely measure the energy differences of the vibrational levels in the ground state
potential. The energy difference is simply given by the difference between the two laser
frequencies f1 and f2:

∆ν = f2 − f1 = (n2 − n1) fRR − δ2 + δ1 (4.37)

where f1 and f2 have been substituted using equation 4.31 and 4.32. n1,2 label the
comb teeth closest to f1,2 and δ1,2 include all frequency offsets between the lasers and
the comb teeth n1,2. These offsets include a locking offset to the next comb tooth, double
pass AOM frequencies, offsets due to the FNC AOM and a shutter AOM offset. For
f1, there is an additional offset, since it is phase locked to the master laser. It is very
important to include all these frequencies with the correct sign.

Determination of the Comb Tooth Number n

To calculate ∆ν using equation 4.37, one first has to determine the comb tooth numbers
n1 and n2. The simplest way is to use a wave meter to obtain an estimate for the laser
frequency fL. The beat note between comb and laser is given by:

δ = 2 fCEO + n fRR − fL (4.38)

n =
δ− 2 fCEO + fL

fRR
(4.39)
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4.3 Stability Transfer Using a Frequency Comb

As an example we take the α laser and our current setup. Note that the CEO has a
negative value (per definition). The relevant numbers are δ = 60 MHz, fCEO = −20 MHz,
fL = 384.585 04(3)THz and fRR = 250.014 367 401(1)MHz, giving n = 1 538 252.14(24).
Since our blue MOT laser is locked to the Sr 1S0 →1 P1 transition, which is very well
known, we can use this information to calibrate the frequency offset of the wave meter.
On this particular day, an offset of 35 MHz was calculated, leading to n = 1538252.0002,
which is even closer to an integer. This method was repeated for the 689 nm laser on
different days, giving similar results and indicating that the calibration method works
very well.

Clock Operation

Once the comb teeth are known, one has to constantly count the repetition rate while
the two-photon transition is scanned and the lasers are held on resonance by adjusting
the AOM frequencies. Using equation 4.37, a time series of frequencies is obtained. One
then operates the clock for a long time, O(d), to average and obtain a smaller statistical
error.
In addition, systematic effects such as black body radiation, Raman light shifts, residual
lattice shifts, magnetic field, density, residual Doppler shift, etc. have to be precisely
measured, controlled and compensated for in the final result.
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5 Autler-Townes Spectroscopy of Deeply
Bound Ground States

The experiments outlined in section 1.1 require precise metrology of the vibrational levels
in the ground state potential. Since 〈v1|v2〉 = 0 in diatomic, homonuclear molecules
and the binding energies of deeply bound states are in the THz regime, one has to use
two-photon transitions for spectroscopy.
In order to find the deeply bound states, Autler-Townes spectroscopy is employed.

5.1 Lambda Scheme

In our case we want to drive a transition between two vibrational states in the ground
state potential via some intermediate state in the excited 0+u potential (see figure 3.2).
This system is effectively a three-level lambda system, since the Rabi rates are small
compared to the vibrational spacing.
If we define the zero energy at the deepest level, the Hamiltonian of the system in figure
5.1 is given by equation 5.1 (in the rotating wave approximation) [46].

|1i (v = 6)

⌦a

�a

⌦b

�b

|3i (v0 = �4)

|2i (v = �1)

Figure 5.1: Three-level system in lambda configuration. The zero energy point is chosen
at the deepest state v = 6.
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5 Autler-Townes Spectroscopy of Deeply Bound Ground States

Ĥ =
h̄
2

 0 0 Ωb

0 2δ Ωa

Ωb Ωa 2∆

 (5.1)

where the detunings are defined as ∆ = ∆b and δ = ∆b − ∆a to simplify the matrix.
Let’s further simplify the matrix by assuming two-photon resonance: ∆a = ∆b, i.e. δ = 0.
When we compute the eigenvalues of this Hamiltonian, one notices that one of the
eigenvalues is still the same as in the uncoupled case. The other two eigenvalues are
split by the off-diagonal interaction terms:

E0 = 0

E± =
h̄
2
(∆±

√
∆2 + Ω2

a + Ω2
b)

(5.2)

Even for zero detuning ∆ = 0, these so-called "dressed" states are still split by the
Rabi frequencies. This effect is called Autler-Townes splitting and can be used to
spectroscopically locate deeply bound states [47].
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Figure 5.2: Autler-Townes peak locations for the deeply bound state X(6, 0). For each
detuning ∆, the probe laser is swept to obtain an absorption spectrum (an
example is shown in the inset). The peaks are fitted and the peak location is
plotted against ∆. The red and blue lines represent the uncoupled system.
Red symbolizes the two-photon transition and blue the one-photon peaks.
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5.1 Lambda Scheme

In order to find these states, one "parks" a weak (Ωa << Ωb) probe laser on resonance
with the excited state and then searches with a strong pump laser in the vicinity of the
expected transition. Once the pump laser hits the resonance, Autler-Townes splitting
will occur and thus lift the probe absorption. In order to find the resonance, the shift
has to be larger than twice the linewidth of the probe.

∆±
√

Ω2
a + Ω2

b + ∆2

2
> 2Γ (5.3)

To increase the sensitivity of this scheme, one therefore has to maximize the pump Rabi
frequency Ωb and thus its power. Also, the method is more sensitive for states with
a larger dipole matrix element and Franck-Condon factor, as well as for a narrower
probe transition. For the states and laser powers in question, the condition reads
∆ > O(10 MHz), i.e. one can search with a relatively large step size of O(1 MHz).
Once the resonance is found, one can measure the splitting as a function of ∆ and obtain
the avoided crossing depicted in figure 5.2.

Adiabatic Elimination

The eigenstates of the coupled three-level system are superpositions of the bare eigen-
states and can be expressed by mixing angles θ and φ.

|a0〉 = cos(θ) |1〉 − sin(θ) |2〉
|a+〉 = sin(θ)sin(φ) |1〉+ cos(θ)sin(φ) |2〉+ cos(φ) |3〉
|a−〉 = sin(θ)cos(φ) |1〉+ cos(θ)cos(φ) |2〉 − sin(φ) |3〉

(5.4)

The mixing angles are given by:

tan(θ) = −Ωb

Ωa
tan(2φ) =

−
√

Ω2
a + Ω2

b

∆
(5.5)

For large detuning ∆ >>
√

Ω2
a + Ω2

b, φ→ 0 and the eigenstates simplify:

|a0〉 = cos(θ) |1〉 − sin(θ) |2〉
|a+〉 = |3〉
|a−〉 = sin(θ) |1〉+ cos(θ) |2〉

(5.6)
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5 Autler-Townes Spectroscopy of Deeply Bound Ground States

The bare eigenstate |3〉 is now also an eigenstate of the coupled system, i.e. a stationary
state. This hints at why the intermediate state can be adiabatically eliminated. |3〉 is
essentially a dark state and its population does not change. Heuristically, this means that
two photons are absorbed coherently without creating population in the intermediate
state |3〉.
In the Schrödinger picture we can write for the ci coordinates in the uncoupled basis:

ih̄
∂

∂t

c1

c2

c3

 =
h̄
2

 Ωbc3

2δc2 + Ωac3

Ωbc1 + Ωac2 + 2∆c3

 (5.7)

For the large detuning limit, we now set ċ3 = 0, since |3〉 is a stationary state. Solving
for c3 and reinserting into the two remaining equations yields an effective Hamiltonian
in the now reduced system:

Ĥe f f = −
h̄
2

[
Ω2

b
2∆

ΩaΩb
2∆

ΩaΩb
2∆

Ω2
a

2∆ − 2δ

]
(5.8)

Comparing to a two-level system, one obtains an effective Rabi rate:

Ωe f f =
ΩaΩb

2∆
(5.9)

The diagonal terms describe the Stark shifts. The differential light shift on resonance is
thus given by:

∆ωdi f f =
1

4∆
(Ω2

b −Ω2
a) (5.10)

This approximation is called adiabatic elimination [48]. The resonance that satisfies
this approximation will be called "two-photon resonance" in the further discussion.
Since excited state population leads to increased scattering and light shifts, the clock

transition will be operated in this regime, where ∆ >>
√

Ω2
a + Ω2

b.

5.2 Binding Energies

Several deeply bound states X(v, 0) are accessible with our current lasers and are located
using the method described above. Using Autler-Townes spectroscopy, one can obtain
a simple estimate of the binding energy of the states. For this quick measurement,
we simply rely on the wave meter and previous measurements, without involving
the frequency comb. Therefore, the error is on the order of 30 MHz. We transfer the
molecules via the intermediate state 0+u (−4, 1), which has a measured binding energy
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5.2 Binding Energies

v Experiment (THz) Theory (THz) Deviation (MHz)
8 23.0130 23.0135 500
7 24.0311 24.0317 600
6 25.0728 25.0736 800
5 26.1386 26.1393 700
4 27.2282 27.2288 600

Table 5.1: Comparison between experimental and theoretical binding energies for the
deeply bound ground states X(v, 0).

of 1084.093(33)MHz. Together with the intercombination line at 14 504.35 cm, we can
calculate the binding energy:

Eb(v = n)
h̄

= ωb +
Eb(v′ = −4)

h̄
−ωintercombination (5.11)

Table 5.1 shows the measured binding energies compared to theoretical values, which
were calculated by Iwona Majewska and Robert Moszynski using data obtained by
Fourier transform spectroscopy to scale the potential [49]. The data is in excellent
agreement with these calculations, with deviations of less than 1 GHz for all observed
states, corresponding to only 0.004 %.
This should only be taken as a quick consistency check, since the observed linewidths
are still relatively large. The actual metrology will be performed as described in chapter
4.3.4. The narrowest two-photon resonance that we observed with this setup has a width
of 70 kHz. The dominant broadening mechanism is the inhomogeneous AC stark shift
induced by the lattice laser. In order to eliminate this effect, one can use a so-called magic
wavelength, at which the differential light shift of two states is eliminated altogether.
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6 Magic Wavelength Spectroscopy

6.1 Polarizability

The polarizability α is the proportionality constant relating dipole moment and electric
field and leads to an intensity-dependent energy shift. It is in general not the same for
different molecular states. Therefore, molecules in different states experience a different
lattice potential and light shift.
Together with the inhomogeneous trap, this leads to a broadening of ∼70 kHz for
the two-photon transition and also introduces a large systematic error. The transition
frequency experiences a shift of ∆ω0 [50]:

∆ω0 = −1
2
(α1 − α2)|E|2 (6.1)

where α1 and α2 are the polarizabilities of the two states.
Since the molecular polarizability is frequency-dependent, one can tune the polarizabilty
of one of the states close to some molecular transition. It is thus possible to match α1

and α2 so that the differential light shift ∆ω0 becomes zero.
The polarizabilty close to resonance can be calculated by taking the steady state expec-
tation value of the dipole operator, which is directly related to the polarizability. The
energy shift considering only a single transition (including damping) is then given by:

∆ω = −1
2

α|E|2 =
∆Ω2

Ω2/2 + ∆2 + γ2/4
= (6.2)

where γ is the natural linewidth. A derivation can be found in appendix A.2.
By measuring the peak location as a function of lattice detuning, one can observe the
polarizability resonance, as illustrated in figure 6.1.

6.2 Magic Wavelength

Currently, we have a lattice laser that is tunable between ∼905-925 nm. The strongest
transitions accessible in this range connect the deeply bound states X(v = 4− 8, 0) with
the 1u potential.
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Figure 6.1: Lattice light shift near the 1u(20, 1) resonance. The error bars are smaller
than the data points.

In order to find these states, we employ a similar method as described in chapter 5. The
two Raman lasers are parked on the two-photon resonance and the lattice is swept with
maximum intensity. When the lattice is close to resonance, it will shift the two-photon
resonance by ∆ω0 and a rise in the recovery signal is observed. Figure 6.1 shows this
shift as a function of the lattice frequency. By fitting to equation 6.1, we obtain the Rabi
frequency and can calculate the dipole matrix element squared (dms in table 6.1). The
dms is obtained using the following formulas [51]:

Ω =
1
h̄

√
dmsE0 (6.3)

E2
0 =

4P
cε0πw2

0
(6.4)

where P and w0 are the total power and waist of the Gaussian lattice profile respec-
tively and the extra factor of 2 comes from the retro-reflected lattice beam. For the fit, γ

is set to zero, since γ << Ω.1

The theoretical predictions for the transition frequencies is very close to the experimen-

1Note that the fit gives the same Ω within error even if γ is included as a fixed parameter or as a fit
parameter.
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6.2 Magic Wavelength

tal value, although worse than for the ground state potential. The mean deviation is
∼500 GHz, corresponding to ∼0.1 %. Note that the experimental error is again limited
by the wavemeter, to ∼30 MHz. The calculations of the dms however differ much further
from our measurements. The calculated value is larger by a factor of 800 on average. A
comparison to the theoretical values can be found in table 6.1.

-6 -4 -2 0 2 4
0

100

200

300

-40 -20 0 20 40 60 80 100 120

-6

-4

-2

0

2

Figure 6.2: Top: The linewidth of the two-photon resonance features a minimum at the
magic wavelength, indicated by the orange line.
Bottom: By taking the difference between the light shifts for two different
lattice intensities, one can measure the magic wavelength as a zero-crossing
in the difference of the two shifts.

Once we have found the resonance, we use two distinct methods to determine the
exact magic wavelength. At the magic wavelength, the inhomogeneous broadening is
lifted and the linewidth features a minimum, as can be seen in the top part of figure
6.2. In addition, one can measure the shift for two different lattice intensities and then
subtract the two shifts. At the magic wavelength, the shift is not power-dependent
anymore, since α1 − α2 = 0. Therefore, the zero-crossing in the bottom part of figure 6.2
corresponds to the magic wavelength. We locate four resonances suitable to implement
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v’ fexp(THz) fth(THz) dmsexp(eao)2 dmsth(ea0)2

22 330.3181 330.902 4.50× 10−8 1.13× 10−4

21 328.1452 328.684 1.62× 10−7 9.70× 10−5

20 325.9588 326.465 2.90× 10−7 4.18× 10−5

19 323.9836 324.247 3.29× 10−7 1.51× 10−6

Table 6.1: Comparison between experiment and theory for the transitions X(6, 0) ↔
1u(v′, 1). The mean deviation of the transition frequencies is ∼500 GHz, i.e.
the calculations are much further off than for the ground state levels. For the
dms values, the deviation is much worse, the theoretical value is larger by a
factor of 800 on average.

this magic wavelength scheme (see table 6.1).

In comparison to the resonances typically used for atomic magic wavelengths, the
transition strengths are much smaller. This leads to several challenges. For the following
discussion we will focus only on the strongest transition, X(6, 0)↔ 1u(19, 1).

Lattice Stabilization

In the past, the lattice laser was locked to a wave meter with a resolution of 30 MHz.
Since the wave meter has a very small readout rate, the servo bandwidth is limited to
several Hz. Because the resonance is relatively steep at the magic wavelength, a jittering
lattice laser leads to an uncertainty in the light shift:

δω0 =
d∆ω0

dω
· γL = 5× 10−5 · γ (6.5)

where γL is the linewidth or jitter of the lattice laser. In other words, in order to
suppress the broadening described by equation 6.5, one has to decrease the linewidth of
the lattice laser. To achieve only 1 Hz uncertainty, the laser linewidth has to be < 20 kHz.
Since we have already locked our frequency comb to an ultra stable laser (section 4.1), we
can simply lock the lattice to the comb as well and ensure γL∼200 Hz. The broadening
δω0 due to the lattice linewidth is then limited to 10 mHz.

6.2.1 Off-Resonant Scattering

The scattering rate close to resonance is given by (derivation in A.2):

Γ =
γΩ2

2Ω2 + 4∆2 + γ2 (6.6)
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6.3 Current Limitations

Since the transition is not very strong, one finds the magic wavelength only 1.2 GHz
away from resonance. For a lattice intensity of 230 mW and a beam waist of 29 µm this
leads to a scattering rate of 0.14 Hz, imposing an upper limit on the linewidth that can
possibly be achieved for the two-photon transition.
Unfortunately, this calculation depends basically linearly on γ, which couldn’t be
obtained from the fit, since γ is much smaller than Ω and we did not obtain data for
the turnaround of the polarizability resonance in figure 6.1. We therefore rely on the
theoretical value of ∼3 kHz. Considering the large deviations of the theoretical values
for the dms, it is unclear how much this scattering rate is to be trusted.
A superior method to estimate the lattice-induced scattering rate is to measure the
lifetime of the deeply bound state, see chapter 7.

6.2.2 TA Pedestal

In order to achieve a high lattice power, an ECDL is used to seed a TA chip. A common
complication of this setup is that the TA output spectrum features a very broad pedestal
caused by amplified spontaneous emission (ASE) [52]. The ASE pedestal is ∼20 nm wide
and typically O(102) weaker in power than the central peak. As we have to operate at
relatively small detuning, the pedestal fully covers at least three vibrational transitions,
leading to increased scattering rates.
Since the ASE background is typically multi-mode and we couple the lattice light into
a single-mode fiber, some filtering is achieved. In addition, a transmission grating is
installed before the fiber to spectrally spread the pedestal and alleviate the problem.
Another possibility would be to lock a Fabry-Perot cavity to the laser and to only use
the transmitted light, which would reduce the ASE power by the cavity finesse F .
The effect of the TA pedestal on the ground state lifetime is currently being investigated
in the lab and it is yet unclear how successful the filtering will be. If ASE turns out to
fundamentally limit the clock performance, one could replace the current lattice setup
with a Titanium-Sapphire laser, which yields high power and large tunability without
the need for spectral filtering.

6.3 Current Limitations

Using the magic wavelength technique, it was possible to narrow the two-photon
transition from ∼70 kHz down to 160 Hz, corresponding to an ∼400-fold improvement
in coherence (see figure 6.3).
The limiting factor for this width is still under investigation at the time of writing, but
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6 Magic Wavelength Spectroscopy

in the following, possible limits and how they could be overcome will be discussed.
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Figure 6.3: Narrow two-photon resonance. The Lorentzian fit yields a linewidth of
159 Hz.

1. Lattice scattering: As described in the previous section, the ASE-induced scatter-
ing could be reduced by further filtering or by replacing the lattice laser with a
Titanium-Sapphire laser. Additionally, it might become necessary to look for a
stronger transition to implement the magic wavelength. According to the lifetime
measurements of the deeply bound states (chapter 7), this effect should broaden
by ∼25 Hz. Indeed, the two-photon linewidth of 160 Hz seems to be independent
of lattice intensity so far.

2. Probe laser scattering: Just like the lattice laser, the Raman lasers can also induce
scattering, because they are relatively close to the intermediate state in the 0+u
potential. This problem is easily resolved by far detuning compared to the Rabi
frequencies (adiabatic elimination, see section 5.1).

3. Natural linewidth: Since we address states in the ground state potential, the
natural lifetime should be very large. Indeed, for the shallow bound states,
lifetimes of ∼1 s have been observed and they should be similar for the more
deeply bound states.

52



6.3 Current Limitations

4. Laser linewidth: As discussed in section 4.3.2, the relative stability should be
better than the laser linewidth by the factor β = 1− ω1

ω2
. For the measured laser

linewidth of < 200 Hz and the current Raman frequencies, the relative linewidth
should be ∼10 Hz. Unfortunately, we currently don’t have an independent way
to measure the relative width, which is why the laser linewidth cannot be fully
ruled out to explain the 160 Hz resonance width. Anyhow, the integration of the
new clock laser should improve both short-term and long-term laser stability by at
least one order of magnitude.

5. Raman laser intensities: The Stark shift introduced by the Raman lasers can also
broaden the lines due to power fluctuations and an inhomogeneous laser profile
and can cause a large systematic error. Since the sign of the shift is the same for
both lasers, one can cancel the differential shift by choosing an appropriate power
balance. Additionally, the power stabilization to < 0.1 % described in section
4.2 allows for precise control of systematic shifts. The inhomogeneity can be
circumvented by making the Raman beams much larger than the optical lattice.

6. Density: The density can be controlled both by the 88Sr loading time and the
photoassociation pulse time. No density-dependent effects have been observed so
far.

7. Transverse Doppler shift: In practice, perfect alignment of the Raman beams
and the lattice will not be achieved. For an offset angle ε, a residual Doppler
broadening of ∆res = sin(ε)∆D will persist, where ∆D is the Doppler broadening
due to the transverse temperature in the dipole trap. This broadening is ∼1 Hz
for an alignment of ε = 0.1°. Our setup profits from the co-aligned Raman beams
which reduce the Doppler broadening in a lambda configuration.

8. Magnetic field fluctuations: Active feedback is implemented using compensation
coils. In addition, the absence of nuclear spin and thus hyperfine structure in 88Sr2

should significantly reduce this effect compared to e.g. 87Sr atomic clocks.

In conclusion, it is not yet quite clear what the limiting factor for the 160 Hz linewidth
is. In any case, it seems like lattice scattering caused by the broad ASE spectrum is
currently a main obstacle towards Hz-level spectroscopy.
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7 Coherent Transfer

7.1 Rabi Oscillation

As demonstrated in the last chapter, the coherence can be increased by two orders of
magnitude using a magic wavelength to achieve a state-insensitive trapping potential.
To show that the Raman transfer between vibrational levels in the ground state can be
performed in a coherent way, one can drive Rabi oscillations between the two states. As
described in section 5.1, the three-level system reduces to an effective two-level system
for large detuning. The effective Rabi rate is then given by:

Ωeff =
ΩaΩb

2∆
(7.1)

To observe Rabi oscillations, the population in the shallow bound state is recorded
as a function of Raman pulse time. After a so-called π-pulse, the molecules are fully
transferred to the deeply bound state.
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Figure 7.1: Rabi oscillations between X(-1,0) and X(6,0). The effective Rabi rate obtained
from the fit is Ωeff = 2π · 3.4 kHz.

However, due to the final lifetime of the states and incoherence introduced by the
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7 Coherent Transfer

lasers and residual light shifts, the dynamics follows a damped sinusoidal oscillation,
where the envelope’s time scale is determined by the effective decoherence time of the
system [51].1 Figure 7.1 features several cycles of such an oscillation. Three revivals
are clearly visible until the molecules dephase. In order to achieve a large enough Ωeff,
the Raman powers are significantly increased, leading to a larger intermediate state
population. Since the decay from 0+u is very fast and has many channels, this accelerates
decoherence and thus explains the relatively small dephasing timescale of τ2 = 979 µs.
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Figure 7.2: Lifetime measurement of X(6,0). The exponential fit reveals a lifetime of
19.15 ms.

7.2 Lifetime Measurements

Once the π-pulse time is determined, it is possible to measure the lifetime of the deeply
bound state without the need of a separate recovery laser. The lifetime of the two clock
states is an ultimate limit to the linewidths that one can observe, since lifetime and
linewidth are related via a Fourier uncertainty [51]:

∆ω =
1
T

(7.2)

The following sequence is used:

1. π-pulse: The molecules are transferred to the deeply bound state.

1The data was fitted to the following function: f (t) = A1e−t/τ1 + A2e−t/τ2 sin
[
2π(x − x0)Ωeff

]
. The

parameter τ1 was introduced phenomenologically to account for residual intermediate state population.
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7.2 Lifetime Measurements

2. Wipe: The molecules left in the shallow bound state are wiped away by a short
recovery pulse.

3. Wait: The system is left in the deeply bound state for a variable amount of wait
time.

4. π-pulse: The molecules are transferred back to the shallow bound state.

5. Recovery: The molecules in the shallow bound state are counted (see section 3.3).

The data in figure 7.2 is fit to an exponential function, yielding a lifetime of 19.15 ms
for a moderate lattice power of 160 mW. This is much less than expected from the
scattering rate calculation in section 6.6 (Γ = 0.14 Hz).
Unfortunately, this measurement has not yet been fully repeatable although it seems like
the main culprit are changes in the lattice TA pedestal. Tests with non-magic wavelengths
have indicated that the pedestal could be the limiting factor for the relatively short
lifetimes.
Therefore, the lab currently works towards improved spectral filtering of the lattice
laser, paving the path to Hz-level spectroscopy, which we hope to achieve with the new
clock laser and a next-generation Raman scheme. The new setup should allow access to
the whole rovibrational spectrum of the ground state potential, as outlined in the next
chapter.
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8 Summary and Outlook

Several deeply bound vibrational levels in the ground state potential are located using
Autler-Townes spectroscopy. By tuning the polarizability of one of the states, a magic
wavelength is achieved. The coherence is increased by more than two orders of magni-
tude and it is possible to drive Rabi oscillations across almost the entire ground state
potential. The narrowest observed linewidth for the two-photon resonance is 160 Hz.
Several improvements are made on the technical side to further increase the spectro-
scopic precision.
A new clock laser is constructed, with an estimated linewidth of O(Hz) and 390 mHz/s
drift. Fiber noise cancellation and intensity stabilization are implemented for the two
Raman lasers. In addition, the fiber carrying the clock laser light to the frequency comb
is fiber noise canceled. The FNC systems support stability transfer on the order of 10−18.
Different locking schemes for the frequency comb are analyzed and compared in order
to achieve optimal stability transfer between the Raman lasers.
In order to reduce lattice induced scattering, spectral filtering of the TA output is
established.

The next step will be the integration of the new clock laser into the experiment. The
wavelength of 780 nm is chosen so that the spectroscopy of the entire ground state
potential becomes feasible. Figure 8.1 shows a heat map of the calculated transition
strengths between ground state levels v and 0+u levels v′. The new clock laser at 780 nm
will serve as the first leg of the Raman transition, connecting X(−1, 0)↔ 0+u (14, 1). This
is a relatively strong transition, comparable to the transition that is currently used as the
first leg.
The advantage of this new scheme is that 0+u (14, 1) exhibits large transition dipole
moments with almost all v states in the ground state potential. The transition strengths
are expected to be at least O(103) stronger than for the previous intermediate state
0+u (−4, 1) for all v states. For the absolute ground state X(0, 0) the transition should
even be 1010 times stronger.
Spectroscopy of the entire ground state potential is therefore in reach without switching
the first leg laser. The large transition strengths will drastically simplify Autler-Townes
spectroscopy, since the splitting becomes much larger and one can therefore search with
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Figure 8.1: Heat map of the transition dipole moments between X(v, 0) and 0+u (v′, 1)

a larger step size, according to equation 5.3.
The wavelength to reach X(0, 0) is 720 nm and it should be possible to perform spec-
troscopy of the entire potential with three or four different ECDLs. Therefore, the entire
optics setup for the second leg laser was fiber coupled, allowing a relatively quick switch
between different wavelengths.
The increased frequency stability of the new clock laser and a spectrally filtered lattice
spectrum should allow Hz-level spectroscopy of the vibrational levels in the ground
state potential. To our knowledge, the highest quality factor to date for a molecular
transition was measured in our lab for E1 forbidden subradiant states in 88Sr2 [53].
With the new clock scheme we hope to surpass this record, opening new pathways for
studies of fundamental physics: Searches for drifts in the electron-proton mass ratio and
deviations from nano-scale Newtonian gravity with ultracold 88Sr2 are in reach.
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A Appendix

A.1 A Unibody Littman Laser

In practice, the response bandwidth of the laser as well as the servo bandwidth are
typically limited to the order of 1 MHz. In order to lock to the narrow resonance of a
high finesse cavity, one therefore needs a laser that has a sufficiently small linewidth
to begin with, so that the feedback can effectively cancel phase noise across the whole
laser spectrum.

Laser diode+ 
collimation tube

Thermistor

Grating

Mirror

Figure A.1: Picture of the ECDL housing and the setup in Littman geometry. The grating
can be turned and is fastened using an external screw.

Laser diodes are commonly used, but their internal resonator is usually very short,
which translates to broad resonances and a line-width on the order of 100 MHz. An
elegant way to improve these properties is an external cavity diode laser (ECDL),
especially if wavelength tunability is important.
The design by Stanimir Kondov employs the Littman-Metcalf configuration [54, 55]. The
output of the laser diode is collimated and incident on an external grating. The 0th order
of the grating leaves the ECDL housing, while the 1st order gets reflected back by a
mirror. The mirror forms an external cavity with the output facet of the laser diode. In
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A Appendix

Component Part number Manufacturer
Laser diode SAL-780-060 Sacher Lasertechnik

Collimation tube LT230P-B Thorlabs
Grating GR25-1208 Thorlabs
Mirror BB1-EO3 Thorlabs

Mirror mount SS100T-F2H Newport
TEC TECF1S Thorlabs

Thermistor
ATH10KR8 or

TH10K
Analog Technologies or

Thorlabs

Table A.1: Parts list for the construction of an ECDL in Littman-Metcalf configuration.

order to achieve single mode lasing, the external and internal modes have to overlap,
leading to mode competition. This increases the wavelength selectivity of a single mode,
resulting in spectral narrowing. Since tuning the mirror changes the wavelength that is
fed back to the laser diode, one can tune the ECDL’s wavelength by changing the mirror
angle. The Littman-Metcalf configuration was chosen over a Littrow configuration, since
it features larger wavelength selectivity and therefore smaller linewidth. This is because
the light diffracts twice on the grating during a external cavity round trip. In addition,
the alignment of the output beam is invariant to wavelength tuning, since it is formed
by the 0th order of the grating. A drawback is the lower power output, but only very
small powers are necessary for PDH locking anyway.

The ECDL consists of a uni-body aluminium housing, giving the design a large
thermal mass which is important for temperature stability. The temperature is regulated
by three thermo-electric coolers (TEC) connected in series, that are placed between
the housing and an aluminium base plate. The temperature is measured through
a thermistor enclosed in a small hole inside the laser diode holder. Both current
and temperature control are performed by a commercial laser controller from Vescent
Photonics (Model D2-105). The controller is also capable of two-stage temperature
control. Thermal stability could be increased further by placing a second TEC directly
between housing and laser diode holder and using a second thermistor to monitor
the temperature of the housing. Figure A.1 shows the inside of the ECDL housing,
containing a mount for the laser diode and a collimation tube, the grating and a mirror.
A list of the parts being used can be found in table A.1.
With the current setup, the laser frequency doesn’t deviate by more than 100 MHz in a
24 h period. The power output of 40 mW is more than enough for the PDH lock, which
uses < 100 µW.
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A.2 Polarizability and Scattering Rate

A.2 Polarizability and Scattering Rate

Strictly speaking one would have to consider the full four-level system to calculate
the dynamic polarizability change due to the near-resonant lattice. However, since the
detuning is much larger than the Rabi rates, we will assume a simple two-level system
for the calculation. The Hamiltonian can then be written as:

Ĥ =
h̄
2

[
0 Ω
Ω 2∆

]
(A.1)

where Ω and ∆ are the Rabi frequency and lattice detuning respectively.
The zero-energy point is chosen at the ground state energy and we used the rotating
wave approximation.
The time evolution of the density matrix is given by the commutator of Hamiltonian
and density matrix plus an additional term describing the dissipation of the system.

ρ̇ = − i
h̄
[Ĥ, ρ] + L̂ρ (A.2)

Equation A.2 is called the master equation for an open quantum system. The first term
describes coherent evolution of the closed system, whereas the second term includes
decoherence terms. L̂ is called the Lindblad operator, or dissipator. In our case we want
to describe spontaneous decay of the excited state in the 1u potential. This process is
described by the following dissipator:

L̂ =

[
−γ −γ/2
−γ/2 −γ

]
(A.3)

The diagonal terms simply describe a decay of the population to the ground state, with
a rate γ. The off-diagonal terms can be obtained by demanding trace preservation for ρ

(A more rigorous justification of equation A.3 is explained in [56]).
For the two-level system, it is easy to find an analytical steady state solution for the
density matrix, by setting ρ̇ = 0. One can then compute the expectation value of the
dipole operator in the steady state:

〈d̂〉 = Tr(ρd̂) = (ρ12 + ρ21) 〈1|d̂|2〉 (A.4)

where 〈1|d̂|2〉 denotes the dipole matrix element. The energy shift is then given by:

∆ω = −|E| 〈d̂〉 = ∆Ω2

Ω2/2 + ∆2 + γ2/4
= −1

2
α|E|2 (A.5)
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The scattering rate is simply given by:

Γ = γρ22 =
γΩ2

2Ω2 + 4∆2 + γ2 (A.6)
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