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Abstract

The strontium molecular lattice clock: Vibrational spectroscopy with hertz-level accuracy

Kon H. Leung

The immaculate control of atoms and molecules with light is the defining trait of modern ex-

periments in ultracold physics. The rich internal degrees of freedom afforded by molecules enrich

the toolbox of precision spectroscopy for fundamental physics, and hold great promise for appli-

cations in quantum simulation and quantum information science. A vibrational molecular lattice

clock with systematic fractional uncertainty at the 14th decimal place is demonstrated for the first

time, matching the performance of the earliest optical atomic clocks. Van der Waals dimers of

strontium are created at ultracold temperatures and levitated by an optical standing wave, whose

wavelength is finely tuned to preserve the delicate molecular vibrational coherence. Guided by

quantum chemistry theory refined by highly accurate frequency-comb-assisted laser spectroscopy,

record-long Rabi oscillations were demonstrated between vibrational molecular states that span the

entire depth of the ground molecular potential. Enabled by the narrow molecular clock linewidth,

hertz-level frequency shifts were resolved, facilitating the first characterization of molecular hy-

perpolarizability in this context. In a parallel effort, deeply bound strontium dimers are coher-

ently created using the technique of stimulated Raman adiabatic passage. Ultracold collisions of

alkaline-earth metal molecules in the absolute ground state are studied for the first time, revealing

inelastic losses at the universal rate. This thesis reports one of the most accurate measurement

of a molecule’s vibrational transition frequency to date, which may potentially serve as a sec-

ondary representation of the SI unit of time in the terahertz (THz) band where standards are scarce.

The prototypical molecular clock lays the important groundwork for future explorations into THz

metrology, quantum chemistry, and fundamental interactions at atomic length scales.
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Chapter 1: Introduction

1.1 Quantum clocks in a nutshell

The study of light and matter is intricately connected to the development of quantum metrol-

ogy. Atomic and molecular spectra serve as ideal frequency standards. Every atom or molecule of

the same element or composition is alike, and they exist in abundance throughout the universe as

“cosmic pendulums” — according to our best understanding of physics, their unperturbed spectra

should be Poincaré invariant. Quantum clocks were first seriously considered by Rabi, who, in

his 1945 Richtmeyer Lecture, proposed the extension of his molecular beam resonance method

to cesium atoms where microwaves tuned to a precise atomic frequency drive the transition of

choice (also called the “clock transition”). Shortly after, in 1949, the National Bureau of Standards

(now the National Institute of Standards and Technology) unveiled the world’s first quantum (and

molecular) clock with ammonia molecules based on its characteristic inversion transition. The ab-

rogation of ephemeris time (based on Earth’s orbit around the Sun) made way for the world’s first

atomic timescale when in 1967, the General Conference on Weights and Measures voted to define

the SI second as “the duration of 9 192 631 770 periods of radiation” corresponding to the unper-

turbed ground state hyperfine splitting of 133Cs; i.e., the unit of Hz (= 1-cycle per second implying

2𝜋-radians per second) is such that this particular transition frequency is exactly 9 192 631 770

Hz. At the time of this writing, cesium fountain clocks realize the SI second with fractional accu-

racies in the low 10−16 and are the primary standards. The technical term “accuracy” is reserved

for clocks that realize the standard second [1]; i.e., a clock whose unperturbed transition frequency

in Hz has been measured against existing standards. When comparing the systematic frequency

shifts of two clocks that outperform the current best standards, or whose clock frequencies are not

yet known in Hz, the appropriate analogous term to accuracy is “systematic uncertainty”.
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Many techniques in modern atomic, molecular, and optical physics were invented to tackle the

challenge of making a better quantum clock. This typically involves gaining quantum control over

the oscillator’s external and internal degrees of freedom. Laser cooling, now the workhorse of

many modern experiments to cool atoms and molecules to the 𝜇K-regime, greatly diminishes fre-

quency shifts due to thermal motion. It is also usually the first step in creating ultracold gases with

high phase-space densities. Equally important are techniques that manipulate or trap the atoms

or molecules, such as the optical trapping of neutral particles. Particles held in a small region of

space, with long-lived clock transitions, can be interrogated by electromagnetic radiation for long

periods of time, thereby enabling finer frequency resolutions (i.e., narrower linewidths, 𝛿 𝑓 ) due to

the Fourier uncertainty principle. Simultaneously interrogating a large number of particles reduces

quantum projection noise (the fundamental variability in determining whether clock excitation has

occurred, due to the stochastic nature of projective population measurements [2]), which for un-

correlated particles scales as ∼ 1/
√
𝑁 where 𝑁 is the number of particles. “Instability” refers to the

statistical variation of the measured clock frequencies, and is a measure of the level of precision

accrued over a given averaging time. The fractional instability of a quantum clock can be written

as1

𝜎𝑦 (𝜏) ∼
𝛿 𝑓

𝑓clock
√
𝑁

1
√
𝜏
∼ 1
𝑄
√
𝑁𝜏

, (1.1)

where 𝜏 is the averaging time (proportional to the number of successive measurements), 𝑓clock is

the clock frequency, and 𝑄 ≡ 𝑓clock/𝛿 𝑓 is the oscillator quality factor (𝑄-factor). Today’s best

oscillators are optical electronic transitions in atoms, with 𝑄 > 1014. Typically 𝑁 ∼ 103 atoms are

probed in a standing wave of laser light (called an optical lattice). In these optical lattice clocks,

fractional instabilities below the 10−18 level have been demonstrated after several hours of aver-

aging. Reliable clockwork and measurement of optical frequencies are enabled by femtosecond

optical frequency combs, which provide a coherent link between optical and microwave frequen-

cies.
1Often in time and frequency literature, “y” denotes frequency-domain measurements (e.g. on a frequency counter),

while “x” denotes time-domain measurements (e.g. on a time interval counter).

2



𝑒−

Electronic Vibration Rotation Hyperfine Translation

~100 THz ~5 THz ~5 GHz ~100 MHz ~10 kHz

(a)

(b)

Optical lattice potential

Figure 1.1: (a) Cartoon illustration of a molecular lattice clock. Diatomic molecules (pairs of
orange balls) at ultracold temperatures are held by an optical lattice (red curve) and probed with
lasers along the lattice axis. (b) Hierarchy of transitions in a diatomic molecule and the typical
transition frequencies. The rich internal structure opens up novel pathways in quantum science.

1.2 Ultracold molecules as clocks and sensors

By analogy with atomic lattice clocks, we can build molecular lattice clocks where the quantum

oscillator involves the (de-)excitation of rotational or vibrational motion in the molecule or both.

These rovibrational degrees of freedom are absent in atoms (where transitions involve either the

electron or nuclear spin) and presents a very rich physical system to study [Fig. 1.1]. Using lattice-

clock techniques for molecular spectroscopy inherits many benefits of that architecture, such as the

ability to resolve narrow molecular spectra and measure molecular energies with unprecedented

accuracy.

From a purely metrological standpoint, the transition frequencies of rovibrational transitions

are at least an order of magnitude smaller than optical electronic transitions. Equation (1.1) thus

implies that a rovibrational molecular clock would have worse instability than an optical clock for

the same length of interrogation time and particle numbers. Nevertheless, molecular clocks remain

of interest within the frequency metrology community as they naturally realize THz frequency

3



standards, filling the gap in the 0.1 THz to 10 THz band where few secondary representations of the

SI second currently exist. Equally important from a physicist’s perspective, molecular clocks are

attractive because molecular spectra offer enhanced sensitivities to several phenomena proposed

by well-motivated extensions to the Standard Model.

For example, molecular spectra are intimately connected to the electron-to-proton mass ratio,

𝜂 ≡ 𝑚𝑒/𝑚𝑝, and the coupling of ultralight dark matter with ordinary matter may lead to a time

variation in 𝜂 [3–5]. Like a stretched spring, molecular vibrations arise due to the restoring force

provided by the electronic molecular potential, 𝑉 (𝑅), where 𝑅 is the internuclear separation. Near

the classical turning point, we can approximate 𝑉 (𝑅) by a harmonic potential whose energy levels

form a vibrational ladder with an angular frequency spacing of 𝜔𝑒 ∼
√︂(

𝜕2𝑉
𝜕𝑅2

)
/𝜇2 ∝ 𝜂1/2, where

𝜇2 is the reduced mass of the dimer. Similarly, suppose we model a diatomic molecule as a rigid

rotor with moment of inertia 𝜇2𝑅
2, to first approximation. In that case, the levels in the rotational

ladder will be separated by an angular frequency ∼ ℏ/(𝜇2𝑅
2) ∝ 𝜂1. On the other hand, electronic

transition frequencies depend solely on the fine-structure constant (𝛼fs). By monitoring transitions

with different sensitivities (or scaling) to 𝜂 and 𝛼fs, it becomes possible to detect changes in these

fundamental constants over time, and constrain some classes of dark matter.

As another example, highly accurate molecular spectroscopy can set bounds on possible fifth

forces at the length scale of a chemical bond (≈ 1Å) [6, 7]. Assuming hypothetical hadron-hadron

interactions mediated by a new scalar boson between the nucleons of the two nuclei (having nu-

cleon numbers 𝐴1 and 𝐴2), one may effectively model this with a Yukawa potential

𝑉5(𝑅) = ℏ𝑐𝛼5𝐴1𝐴2
𝑒−𝑅/𝜆5

𝑅
, (1.2)

where 𝛼5 represents the coupling strength of the new interaction, and 𝜆5 is the Compton wave-

length of the boson. The presence of 𝑉5(𝑅) would shift the rovibrational energy levels proportion-

ately with 𝐴1𝐴2. One promising way to constrain the size of 𝛼5 is through the measurement of

isotopologue shifts and making the comparison with quantum chemistry models.
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This thesis describes experiments with a vibrational molecular lattice clock using ultracold di-

atomic strontium (Sr2) molecules. Strontium has several properties well suited for the fundamental

physics applications described above. As a group 2 (alkaline-earth metal) element in the periodic

table, the spins of the two outermost electrons are oppositely paired (spin singlet) with zero or-

bital angular momentum in the ground state of the strontium atom, resulting in a closed shell. It

follows that the molecular bonding of two strontium atoms in the ground state is mainly due to

van der Waals forces, and the resulting ground potential in Sr2 is a single isolated curve2 that is

amenable to modeling. Moreover, in a closed shell molecule, the energy levels in the ground poten-

tial are extremely insensitive to external static electric or magnetic fields, enabling accurate clock

frequency measurements without meticulously characterizing stray background fields. A closely

related property is that homonuclear molecules do not couple strongly to blackbody radiation,

which might otherwise quench molecular state lifetimes or lead to large ac Stark frequency shifts

due to the room-temperature environment. Dimer combinations consisting of strontium atoms with

even nucleon numbers have no net nuclear spin3 (𝐼 = 0). This implies the absence of hyperfine

structure, greatly simplifying the observed spectra. While ab initio theoretical calculations of Sr2

are not yet at the level of accuracy achieved for the simplest molecules (e.g., hydrogen isotopo-

logues), they are comparatively more tractable than for dimers of alkaline-earth-like elements such

as ytterbium (which has an unfilled 𝑓 shell).

There are also practical benefits from working with strontium. For example, optical lattice

clocks based on strontium and other divalent atoms are poised to be primary standards when the SI

second gets redefined in terms of an optical frequency. As such, there is a plethora of literature and

technical expertise on matters ranging from measured physical properties, experimental techniques

for quantum state control, and the production of ultracold gases of strontium and similar divalent

atoms.
2Contrast this to bi-alkali metal molecules, e.g., KRb. Alkali metals have an unpaired valence electron. Thus the

combination of ground state K and Rb results in two distinct (singlet or triplet) potentials.
3In fact, due to the Pauli exclusion principle, all even–even ground state nuclides have zero nuclear spin; i.e., even

number of protons, and even number of neutrons.
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1.3 Outline of this thesis

• In Chapter 2, I briefly review the structure of atomic and diatomic strontium and outline the

experimental apparatus for producing ultracold 88Sr2 molecules via narrow-line photoasso-

ciation and the detection scheme based on photofragmentation. A theoretical treatment of

trapped particles in a one-dimensional optical lattice is given, along with relevant experi-

mental techniques such as carrier thermometry and resolved sideband spectroscopy.

• In Chapter 3, I present up-to-date results on our spectroscopy of the electronic ground poten-

tial 𝑋1Σ+
𝑔 , and the singly excited potentials (1)0+𝑢 and (1)1𝑢 that asymptote to the intercom-

bination line. Next, I describe the stabilization of the metrological grade master laser to a

high finesse optical cavity and the working principle of an optical frequency comb. Finally,

I construct a model of light-molecule interactions based on the optical Bloch equations, sup-

plementing the discussion with experimental observations of phenomena such as two-photon

Rabi oscillations, Autler-Townes doublets, electromagnetically induced transparency, etc.

• In Chapter 4, I report the efficient creation of an ultracold gas of strontium molecules in the

absolute rovibrational ground state, accomplished using stimulated Raman adiabatic pas-

sage. Transition strength measurements of 𝑋1Σ+
𝑔 to (1)0+𝑢 lines are presented. I further

describe the exploration of two-body collisions with absolute ground state molecules.

• In Chapter 5, I report a vibrational molecular clock with 4.6×10−14 systematic uncertainty. I

begin by outlining the magic wavelength protocol, discussing factors that limit the molecular

lifetime, and making the connection between polarizability and transition strength. Transi-

tion strength measurements of 𝑋1Σ+
𝑔 to (1)1𝑢 lines are presented. Finally, I describe the full

systematic evaluation of the molecular clock and the measurement of its absolute frequency

with 13-digit precision via the GPS satellite constellation.
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Chapter 2: Molecular structure and production of ultracold 88Sr2 in an

optical lattice

Since the early 2000s, two main approaches have been successful in the creation of molecules

at ultracold temperatures of ∼ 1 𝜇K or lower (for excellent reviews up to the present state-of-the-

art, see Refs. [8–10]). The first, bottom-up approach starts with a trapped sample of laser-cooled

constituent atoms that are subsequently associated into molecules. Because the laser cooling of

atoms is very robust, the resulting molecules often inherit high phase-space densities. The second,

top-down approach begins with a cryogenic buffer gas beam of slow-moving molecules that are

directly cooled with lasers (or other optoelectric methods). However, efficient photon cycling

requires the molecular bond length to remain essentially unchanged upon electronic excitation, a

feature not present in 88Sr2. Therefore, the former approach is adopted in our experiments.

2.1 88Sr atomic structure and laser cooling

A complete account of the experimental apparatus can be found in Ref. [11]. Here, I give a

summary of the cooling sequence. The relevant level structure of 88Sr (an alkaline-earth metal)

is illustrated by Fig. 2.1(a), showing characteristic singlet and triplet states due to having two

valence electrons in its outermost electronic shell. 88Sr also has zero nuclear spin (𝐼 = 0), and

therefore the levels have no further sub-structure. The electronic ground state has the term symbol

1𝑆0; i.e., total electronic spin 𝑠 = 0, total electronic angular momentum 𝑙 = 0, resulting in total

electronic angular momentum 𝑗 = 0. Comprehensive tables of atomic strontium transitions and

their transition strengths can be found in Ref. [12].

Singlet-singlet transitions are the strongest, and the 1𝑆0 ↔ 1𝑃1 transition at 461 nm is used to

decelerate a beam of hot strontium atoms emanating from an oven heated to above 450 ◦C, Zeeman
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Figure 2.1: (a) Simplified strontium atom level diagram (not to scale), showing the relevant transi-
tions for laser cooling (461 nm blue and 689 nm red). Bracketed values are the respective natural
linewidths. Gray arrows indicate decay channels plugged with the repumpers (679 nm and 707
nm). (b) Cartoon illustration of a magneto-optical trap. High current coils in the anti-Helmholtz
configuration (currents flow in opposite directions) produce a spatially varying quadrupole 𝐵-field.
Circularly polarized cooling light propagates along the 𝐵-field gradient, through the coils, and ad-
dresses the atoms (shown only for the �̂�-axis) (c) Working principle of a type-I magneto-optical
trap (MOT) for the 𝑆 ↔ 𝑃 cooling transitions in strontium. Atoms away from the center of the
MOT experience both restoring and Doppler cooling forces when the laser light is slightly red-
detuned from the transition.
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slowing the atoms to be within the capture velocity of the first-stage “blue” magneto-optical trap

(MOT) that also operates on the strong 461 nm transition. A three-dimensional (3D) MOT uses a

spatially varying quadrupole magnetic field and six circularly polarized counter-propagating beams

along all three axes to generate the restoring and dissipative forces, as illustrated by Figs. 2.1(b,c).

This cools the atoms close to the Doppler limit, achieving temperatures ∼ ℏΓ𝑎/(2𝑘𝐵), where Γ𝑎

is the natural linewidth of the cooling transition. For the 461 nm transition, Γ𝑎 ≈ 2𝜋 × 32 MHz

resulting in a temperature of ∼ 800 𝜇K. This is still much hotter than the typical depths of an

optical trap with today’s technology. For divalent atoms such as strontium, it is a common strategy

to implement a second-stage “red” MOT, which cools using the intercombination line 1𝑆0 ↔ 3𝑃1

at 689 nm. This is a singlet-triplet transition involving the spin flip of an electron (𝑠 = 0 → 𝑠′ = 1)

that is allowed due to spin-orbit coupling1. Thus, it has a narrower linewidth at Γ𝑎 ≈ 2𝜋 × 7.4 kHz

implying a Doppler temperature of ∼ 0.2 𝜇K. Under realistic conditions, we normally achieve

atom temperatures of about ∼ 2 𝜇K, inferred from the time-of-flight expansion2 of the atomic gas.

Typical atom numbers captured in the red MOT are ∼ 106, which may improve by refilling the

strontium source in the oven. At this point, the atoms are cold enough to be loaded into the optical

lattice trap and photoassociated into molecules.

2.2 88Sr2 molecular structure and selection rules

2.2.1 Molecular term symbols

For diatomic molecules with strong spin-orbit coupling, the total electronic orbital (l1 + l2) and

spin (s1 + s2) angular momenta of the composite two-atom system are coupled and not conserved.

Thus, the eigenvalues Λ and Σ of the projections of (l1 + l2) and (s1 + s2) onto the internuclear

axis respectively are not good quantum numbers. However, the sum Ω = Λ + Σ is a good quantum

number. J is the operator representing the total angular momentum of the molecule in the space-

1The valence electrons are moving close to relativistic speeds due to the large proton number in strontium.
2The Gaussian width of a freely expanding thermal cloud evolves as 𝜎𝑗 =

√︃
𝜎2

0, 𝑗 + 𝑡2 𝑘𝐵𝑇Sr, 𝑗/𝑚Sr. For short times-

of-flight, the cloud still “remembers” the shape of its trap and 𝑘𝐵𝑇Sr, 𝑗 = 𝑚Sr𝜎
2
𝑗
/(1/𝜔2

trap,j + 𝑡
2), where 𝜔trap, 𝑗 and 𝑇Sr, 𝑗

are the angular trap frequency and temperature of the atomic cloud in the 𝑗 direction, and 𝑡 is the time-of-flight.
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fixed (or lab) frame; i.e., the sum of the rotation of the nuclei (about their center of mass and

an axis perpendicular to the internuclear axis) and the total angular momentum of the electrons.

The eigenvalue of (J · J) is 𝐽 (𝐽 + 1), and the eigenvalue of the projection of J onto the space-

fixed quantization axis is 𝑀 . Since the total angular momentum is conserved, 𝐽 and 𝑀 are good

quantum numbers. Note that Ω can also be thought of as the eigenvalue of the projection of J onto

the internuclear axis in the body-fixed (or molecule) frame; i.e., in this frame, the molecule is not

rotating, and the total angular momentum comes solely from the electrons. Putting it all together,

an angular momentum state of the dimer is fully specified by |𝐽, 𝑀,Ω⟩.

To categorize the different situations that arise when angular momenta in a molecule couple

together, physicists and chemists use Hund’s cases which describe idealized limiting cases. Actual

molecules often do not fall strictly into a particular Hund’s case. Note that for each 𝐽, the size of

the Hilbert state space is the same regardless of the choice of Hund’s case basis sets [13, 14].

Molecular term symbols in Hund’s case (c) are written as

|Ω|+/−
𝑔/𝑢 .

The superscript “+/−” denotes the reflection symmetry of the electronic wavefunction about a

plane containing the internuclear axis and is only written for Ω = 0 states. The subscript “𝑔/𝑢” de-

notes gerade (German for even) or ungerade (German for odd) symmetry from the inversion of the

electronic wavefunction through the center point of symmetry and is only written for homonuclear

molecules (identical nuclei).

Molecular term symbols in Hund’s case (a) are written as

2𝑆+1 |Λ|+/−
𝑔/𝑢 ,

where 𝑆 is the total electronic spin quantum number3. The superscript “+/−” is only written for

Λ = 0. Analogous to atomic term symbols, |Λ| = 0, 1, 2, ... are written as Σ,Π,Δ, ....

3The eigenvalue of |s1 + s2 |2 is 𝑆(𝑆 + 1).
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Terms symbols are prefixed by either letters or bracketed numbers, with “𝑋” being reserved

for the absolute ground potential. Letters are capitalized if the excited potential has the same spin

multiplicity as 𝑋 , and non-capitalized if otherwise. Empirically, the letters ascend alphabetically

in order of increasing energy, e.g., 𝐴, 𝐵, 𝐶, ..., but older literature may not follow this convention.

Bracketed numbers, e.g., (1), (2), ..., usually clarify this ambiguity.

2.2.2 Ground electronic potential asymptoting to 1𝑆0 + 1𝑆0

The ground electronic potential of Sr2 asymptotes to the 1𝑆0 + 1𝑆0 dissociation threshold, and

has the term symbol 𝑋0+𝑔 in case (c) notation. It is easy to see why: Ω = 0 because 𝑙1, 𝑙2, 𝑠1, 𝑠2 of the

constituent atoms are zero so there is no electronic angular momentum to project, and the reflection

and inversion symmetries must be “+” and gerade as the atoms are in identical electronic states.

The generalization of arguments like these to arrive at the possible molecular term symbol(s) given

those of the constituent atoms is called the Wigner-Witmer correlation rules. Even though the

ground state has Λ = 0 and 𝑆 = 0, it is not uncommon to see the potential labeled with the case (a)

term symbol 𝑋1Σ+
𝑔 in literature. Figure 2.2(a) shows the empirical 𝑋1Σ+

𝑔 potential from Ref. [15]

obtained via Fourier-transform spectroscopy.

Here, the total electronic angular momentum is zero, so J is purely due to the rotation of the

nuclei (i.e., for 𝑋 states, 𝐽 is also the rotational quantum number 𝑁). For homonuclear dimers with

bosonic atoms (e.g., 88Sr), spin-statistics forces 𝐽 to be even for 0+𝑔 states, and odd for 0+𝑢 states.

The argument is as follows. Exchanging the identical bosonic nuclei is equivalent to performing a

parity transformation on the entire molecular rotational wavefunction (which includes the nuclei),

followed by the inversion of the electronic wavefunction. The rotational wavefunctions of a sym-

metric top4 are Wigner D-functions; i.e., ⟨𝜙, 𝜃, 𝜒 |𝐽, 𝑀,Ω⟩ =

√︃
2𝐽+1
8𝜋2 𝐷

𝐽∗
𝑀Ω

(𝜙, 𝜃, 𝜒), here {𝜙, 𝜃, 𝜒}

are the Euler angles that bring the space-fixed frame into alignment with the body-fixed frame

[21]. For Ω = 0, the Wigner D-functions reduce to the spherical harmonics with parity eigenvalues

(−1)𝐽 . By definition, inversion of the electronic wavefunction gives a factor of (+1) for gerade

4A dimer is technically a trivial case of a symmetric top.
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states and (−1) for ungerade states. But the overall product must be (+1) since the atoms are

bosons. Therefore 𝐽 must be even in 0+𝑔 , and odd in 0+𝑢 .

This implies that 𝐽 must be even in the 𝑋1Σ+
𝑔 ground potential of the bosonic dimer. All

63 bound vibrational states with 𝐽 = 0, 2 in 88Sr2 have been found in our experiment, and their

energies are reported in Sec. 3.6. The fact that odd 𝐽 is absent in our ground state spectra can be

considered as a verification of the spin-statistics theorem.

2.2.3 Excited electronic potentials asymptoting to 1𝑆0 + 3𝑃1

From the Wigner-Witmer rules, the possible molecular states that can arise from the combi-

nation of an atom in 1𝑆0 with another atom in 3𝑃1 are 3Σ+ and 3Π, with no restriction on the

inversion symmetry. This results in a total of four potentials that asymptote to 1𝑆0 + 3𝑃1, namely

𝑎3Σ+
𝑢 , 𝑐3Π𝑢, 3Σ+

𝑔 and 3Π𝑔. Just as for atomic Sr, the heavy mass of the nucleus leads to strong

spin-orbit mixing of the excited singlet and triplet rovibronic states in molecular Sr2. To properly

account for experimental observations, Skomorowski et al [16] found it necessary to admix the

ungerade 𝑎3Σ+
𝑢 , 𝑐

3Π𝑢 with the higher lying ungerade potentials 𝐴1Σ+
𝑢 , 𝑏3Σ+

𝑢 , 𝐵1Σ+
𝑢 , and 𝐵′1Π𝑢.

This results in spin-orbit coupled potentials, and among them, the (1)0+𝑢 and (1)1𝑢 potentials that

asymptote to 1𝑆0 + 3𝑃1 are at the core of our experimental work so far. This ab initio model was

later refined based on measurements of deeply bound (1)1𝑢 states in our experiment (see Secs. 3.6

and 4.2.1), and fitted to the Morse/Long-range form [Fig. 2.2(b)].

Deeply bound rovibrational states of (1)1𝑢 that lie below the potential minimum of (1)0+𝑢 are

mostly of 𝑎3Σ+
𝑢 character. Mid-to-weakly bound states existing in the overlap region of (1)0+𝑢 and

(1)1𝑢 may be subject to Coriolis coupling which mixes different Ω states — this is especially so

for near degenerate states such as the well-known pair that are bound by ≈8.3 GHz in 88Sr2. As

deeply bound states of (1)1𝑢 have few decay channels, they are predicted to have relatively narrow

linewidths ∼ 10 kHz (although experimental observations have yet to confirm this).

(1)0+𝑢 is the lower branch of the avoided crossing between 𝐴1Σ+
𝑢 and 𝑐3Π𝑢 [Fig. 2.2(b)].

Deeply bound rovibrational states of (1)0+𝑢 inherit a large component from 𝐴1Σ+
𝑢 (asymptoting
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to 1𝑆0 + 1𝐷2), and thus have singlet-singlet-like transitions to 𝑋1Σ+
𝑔 states. On the other hand,

weakly bound states of (1)0+𝑢 have dominant 𝑐3Π𝑢 character and possess narrower linewidths. The

situation is complicated at the avoided crossing, but theory predicts alternating singlet and triplet

characters for successive vibrational states [16]. For transitions between deeply bound 𝑋1Σ+
𝑔 states

and weakly bound (1)0+𝑢 states, calculations reveal that (2)0+𝑢 plays an important role as its depth

extends below 1𝑆0 + 3𝑃1. A three-channel model consisting of (1)0+𝑢 , (1)1𝑢, and (2)0+𝑢 reproduces

the observed order of magnitude of these transition strengths [19].

Shallow-to-shallow transitions realize the simplest case of Dicke subradiance and superra-

diance. Very close to the dissociation threshold, we may approximate the molecular electronic

wavefunction as the tensor product of two atomic electronic wavefunctions. For the ground state,

this is simple: |Sr2⟩𝑔 ≈ |1𝑆0⟩|1𝑆0⟩. For the excited state, there are two ways to symmetrize

such a wavefunction: |Sr∗2⟩(𝑔/𝑢) ≈
(
|1𝑆0⟩|3𝑃1⟩ ∓ |3𝑃1⟩|1𝑆0⟩

)
/
√

2. As alluded by the subscripts,

these wavefunctions possess gerade (g) and ungerade (u) inversion symmetries5. Multiplying out

the transition dipole matrix element ⟨Sr2 |𝑔 𝑑 (1)0 |Sr∗2⟩(𝑔/𝑢) we see that ⟨Sr2 |𝑔 𝑑 (1)0 |Sr∗2⟩𝑔 ≈ 0 and

⟨Sr2 |𝑔 𝑑 (1)0 |Sr∗2⟩𝑢 ≈
√

2 × ⟨1𝑆0 |𝑑 (1)0 |3𝑃1⟩. Therefore, 𝑔 → 𝑔 transitions from the ground state are

quasi-forbidden, whereas 𝑔 → 𝑢 transitions from the ground state are enhanced by a factor of
√

2

(hence the transition rate will be twice as fast, |
√

2|2 = 2). This is exactly Dicke subradiance and

superradiance, respectively. For this reason, weakly bound excited states correlating to 1𝑆0 + 3𝑃1

with gerade symmetry (0+𝑔 , 1𝑔) are subradiant, while those with ungerade symmetry (0+𝑢 , 1𝑢) are

superradiant (with roughly twice the atomic linewidth). Subradiant transitions to (1)1𝑔 from 𝑋1Σ+
𝑔

have been observed in weakly bound dimers of both Yb2 and Sr2 [22], with narrow linewidths as

small as <100 Hz limited by predissociation to 3𝑃0. Gerade (1)0+𝑔 states may have even narrower

linewidths, but these are yet to be found despite substantial experimental effort.

For the excited states, J is not solely due to nuclear rotations. From the argument in the previous

subsection, we see that 𝐽 must be odd for (1)0+𝑢 of the bosonic dimer. In contrast, for |Ω| = 1, the

parity operator acts differently on the rotational wavefunctions, and so 𝐽 can take on any positive
5Inversion results in |1𝑆0⟩|3𝑃1⟩ → (−1) × |3𝑃1⟩|1𝑆0⟩ as the 𝑃 state has odd parity.
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integer for (1)1𝑢 (i.e., 𝐽 ≠ 0 or else it would imply Ω = 0, which is not the case for 1𝑢).

Selection rules originate from the Wigner-Eckart theorem. The electric dipole (𝐸1) selection

rules for a molecular transition are Δ𝐽 = 0,±1 except 𝐽 = 0 → 𝐽′ = 0, |ΔΩ| ≤ 1, Δ𝑀 = 0,±1

depending on the probe laser polarization, and 𝑔 ↔ 𝑢 for homonuclears. These selection rules may

be broken in the presence of mixed quantization, where there is competition between the externally

applied magnetic field and the electric field of the trapping laser in establishing a quantization axis

[23]. Note that 𝐽 = 0 → 𝐽′ = 0 is strictly forbidden for all multipoles, and that Δ𝑀 ≠ 0 for 𝑀 = 0

if Δ𝐽 = 0. For more details on alkaline-earth metal molecular structure or angular momentum

theory, see Refs. [24–27].

2.3 Photoassociation and photofragmentation

2.3.1 Narrow-line photoassociation (state preparation)

Photoassociation (PA) occurs when two particles scatter into a bound molecular state under

the assistance of light. Laser light tuned near a PA resonance dramatically affects the interparticle

scattering length, creating an optical Feshbach resonance. In the context of this thesis, one-photon

PA binds two colliding 1𝑆0 strontium atoms into an excited rovibrational molecular state near the

1𝑆0 + 3𝑃1 threshold. It is succinctly described by the chemical equation:

Sr + Sr + 𝛾 → Sr∗2,

where 𝛾 represents the photon and the (*) superscript implies that the molecule is electronically

excited.

As explained in the previous subsection, weakly bound molecular states close to the 1𝑆0 + 3𝑃1

threshold (and with ungerade state symmetry for homonuclears) have natural linewidths that are

approximately twice that of the atomic 3𝑃1, resulting in a spectrum of narrow and isolated lines

below the intercombination, first observed in the seminal work of Zelevinsky et al [28]. For this

reason, laser-based PA via spontaneous emission in alkaline-earth metal gases can be performed
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with reduced off-resonant atomic scattering losses compared to alkali metals.

Successful PA is indicated by the reduction6 of atoms in the trap as the PA laser is scanned

across the PA resonance [29, 30]. The excited molecule subsequently decays, and the population

is redistributed depending on the branching ratios given by Fermi’s golden rule (transitions with

larger transition strengths have larger branching ratios). If the dominant decay channel involves

a bound molecular state in 𝑋1Σ+
𝑔 , then PA results in efficient ground state molecule formation.

A simple kinematic argument indicates that the photoassociated molecules will have 2× larger

temperatures than the initial atomic cloud.

Bound-to-bound transition strengths are proportional to the square of the overlap integral of

the vibrational wavefunctions called the Franck-Condon factor (FCF); see Sec. 4.2.1. The bonding

between 𝑆 and 𝑃 states is usually of the resonant dipole type with a long-range potential varying

as ∼ 𝐶3/𝑅3 plus additional terms. In contrast, two 𝑆 states are held together by van der Waal

forces with long-range behavior ∼ 𝐶6/𝑅6. The narrow linewidth (Γ𝑎) of 3𝑃1 facilitates ground

state molecule production because 𝐶3 ∝ Γ𝑎 is small, so the long-range part of both excited and

ground potentials scale predominantly as ∼ 1/𝑅6, leading to good Franck-Condon overlap between

weakly bound ground and excited states (i.e., large FCF). To list a few examples in 88Sr2, PA to

(1)1𝑢 (𝑣′ = −1, 𝐽′ = 1) or (1)0+𝑢 (−4, 1) efficiently creates the least bound vibrational states 𝑋 (𝑣 =

−1, 𝐽 = 0, 2), while PA to the adjacent (1)1𝑢 (−2, 1) or (1)0+𝑢 (−5, 1) efficiently creates 𝑋 (𝑣 =

−2, 𝐽 = 0, 2). Negative values of the vibrational quantum numbers (𝑣 and 𝑣′) imply the convention

where we count downward, starting with −1, from the respective dissociation thresholds.

In this thesis, we perform PA after the atoms are loaded into a one-dimensional (1D) optical

lattice from the red MOT. The PA laser is coaligned axially with the lattice, and the typical PA

laser beam intensity and pulse duration are ∼ 15 W/cm2 and 2 ms. Care should be taken for the

choice of PA parameters. Even though the PA laser is red detuned from the atomic resonance, off-

resonant scattering eventually diminishes the overall molecule production efficiency, and laser-

induced dipole forces may cause breathing modes in the gas. Moreover, long PA durations risk

6The on-resonance loss curve should look non-exponential; i.e., 𝑑𝑛/𝑑𝑡 = −𝑘2𝑛
2.
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contaminating the sample with molecules in the unwanted (and undetected) vibrational states or

stretched rotational sub-levels, as the atoms are continuously cycled through the excited state.

Even in an ideal situation, PA to 𝐽′ = 1 creates a mixture of 𝐽 = 0, 2 ground state molecules.

Theoretically, for Ω′ = 1 → Ω = 0 the rotational factor (see Sec. 4.2.1) results in the decay from

𝐽′ = 1 to 𝐽 = 0 being two times more likely than to 𝐽 = 2. The opposite is true for Ω′ = 0 → Ω = 0,

which favors decay to 𝐽 = 2 over 𝐽 = 0. Therefore we expect the ratio of 𝐽 = 0 to 𝐽 = 2 ground

state molecules to be distributed 2:1 if we PA using a 1𝑢 state, and 1:2 using a 0+𝑢 state. This

has to be weighed against practical considerations, as 1𝑢 states are generally more sensitive to

changes in the magnetic field than 0+𝑢 . In either case, we can prepare a high purity 𝐽 = 0 sample by

photodissociating7 the unwanted 𝐽 = 2 molecules at (or above) the 1𝑆0+3𝑃1 threshold8 with a weak

laser frequency component added to the PA laser (via an acousto-optic modulator or electro-optic

modulator).

2.3.2 State-selective photofragmentation (detection)

Photofragmentation (also called photodissociation) is the process where a molecule is broken

apart into its constituents by light. The angular distribution of the fragments contains plentiful

information about the original molecular state and the continuum channel(s). The level of control

afforded by ultracold molecule experiments has led to several new insights discovered by our

group. A detailed overview of photodissociation (PD) and the novel features exhibited in the

ultracold regime can be found in previous theses [19, 31, 32] and publications [30, 33–36].

The current work uses PD as a state-selective detection scheme for generating a spectroscopic

signal. One-photon PD of ground state 𝑋1Σ+
𝑔 molecules above the 1𝑆0 + 3𝑃1 dissociation threshold

may be thought of as the time-reversed process of PA:

Sr2 + 𝛾 → Sr + Sr∗ + 𝜖 .
7Conversely, clearing 𝐽 = 0 without photodissociating 𝐽 = 2 is not possible, unless through an excited state that

has binding energy (wrt 1𝑆0 + 3𝑃1) greater than the rotational splitting of 𝐽 = 0, 2.
8Again, recycling these molecules through a rovibrational excited state risks vibrational contamination or optical

pumping into dark stretched rotational sub-levels.
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The excess energy 𝜖 above the threshold is equally distributed and carried away as kinetic energy

by the atoms. That is, 𝜖 = 1
2𝑚Sr𝑣

2
Sr +

1
2𝑚Sr𝑣

2
Sr = 𝑚Sr𝑣

2
Sr, where 𝑚Sr is the mass of a strontium

atom and 𝑣Sr is the speed of the atomic photofragment after dissociation. Note that 𝜖 is equivalent

to the frequency difference of the dissociation laser with respect to the threshold multiplied by

the Planck constant; i.e., it is set by the laser frequency. By performing near-threshold (𝜖 ≈ 0)

dissociation of a specific rovibrational ground state, the resulting slow-moving atomic fragments

can be absorption imaged with high-fidelity [Fig. 2.3] via the 1𝑆0 ↔ 1𝑃1 cycling transition at 461

nm, providing a state-sensitive signal directly correlated with the number of molecules that were

present in the trap. Molecules in other states are either not photodissociated because 𝜖 < 0, or have

fragments spatially separated from the spectroscopic signal as they emerge at much higher speeds.

For electric dipole (𝐸1) PD of 𝐽 = 0 ground states, it can be easily shown (either classically

[21] or quantum mechanically [19]) that the photofragment angular distribution takes the simple

form9

𝜎(𝜃, 𝜙) = 1 + 𝛽20𝑃2(cos 𝜃), (2.1)

where 𝜃 is the polar angle relative to the dissociation laser polarization (or whatever defines the

quantization axis for the process), 𝜙 is the azimuthal angle, 𝑃2(𝑥) ≡ (3𝑥2 − 1)/2 is the second

Legendre polynomial, and −1 ≤ 𝛽20 ≤ 2 is the anisotropy parameter that depends on 𝜖 and the

transition strengths to the outgoing channels (1)0+𝑢 and (1)1𝑢. We note that 𝛽20 = +2 for ΔΩ = 0

(parallel), while 𝛽20 = −1 for |ΔΩ| = 1 (perpendicular).

For parallel dissociation, the polarization of the dissociation laser is essentially imprinted onto

the direction of the emerging photofragments (after a finite expansion time). Due to the presence

of a repulsive10 barrier of roughly 20 MHz for (1)1𝑢 arising from the resonant dipole interaction

(∼ 𝐶3/𝑅3), we expect near-threshold PD to be mostly parallel involving just the 𝑋 → 0+𝑢 channel.

However, if 𝜖 is above the barrier, PD changes to perpendicular as the 𝑋 → 1𝑢 channel is stronger

for weakly bound 𝑋 states.

9Assuming that the dissociation laser has linear polarization aligned to the quantization axis. Alternatively, at zero
𝐵-fields and large Rabi frequencies, the polarization of the dissociation laser defines the PD quantization axis.

10The resonant dipole interaction is attractive and approximately twice as large in the case of (1)0+𝑢 [28].
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Figure 2.3: Absorption images of slow-moving photofragments of lattice-confined 𝑋 (𝑣 = 62)
molecules (with line-of-sight nearly along the 1D lattice axial direction) after a small expan-
sion time (∼ 150 𝜇s) and almost-nulled magnetic field. The dissociation laser is tuned closely
to 𝑋 (62, 0) → 1𝑆0 + 3𝑃1. (a) Possessing a smaller binding energy, 𝐽 = 2 molecules emerge at
greater speeds than 𝐽 = 0 molecules, forming blurry outer rings with an angular distribution rem-
iniscent of a dipole. (b) Wiping 𝐽 = 2 molecules with an additional frequency component on the
PA laser leaves a purified sample of 𝐽 = 0 molecules. Suppose its atomic fragments (dark spot)
are allowed to expand further either by waiting a long time before imaging or increasing 𝜖 . In that
case, the image will reveal the 𝐽 = 0 photofragment angular distribution, which also resembles a
dipole (not shown, but see Ref. [34]).
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Figure 2.4: Signal proportional to the recovered atom number (red points) versus photodissoci-
ation pulse duration at fixed laser intensity. Here, (𝑂𝐷max, 𝜎𝑎, 𝜎𝑏) are free parameters. Due to
thermal effects, a small excess kinetic energy, 𝜖 , is inevitably imparted, and the cloud distribution
eventually changes from Gaussian to a dipolar angular distribution as the fragments separate. To
accurately determine the dissociation efficiency for the operational pulse duration, we fit (dashed
blue) only to short pulse durations where the cloud resembles a singly peaked Gaussian. Typical
dissociation pulse durations for 𝑋 (62, 0) state detection are < 150 𝜇s at ∼ 10 W/cm2 dissociation
laser intensities.
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We may model the optical density (OD) of the slowing moving photofragments [Fig. 2.3(b)] as

a 2D Gaussian,

𝑂𝐷 (𝑎, 𝑏) = 𝑂𝐷max exp
[
−(𝑎 − 𝑎0)2

2𝜎2
𝑎

]
exp

[
−(𝑏 − 𝑏0)2

2𝜎2
𝑏

]
+ background,

where 𝑎 and 𝑏 are arbitrarily chosen orthogonal axes in the fitting of the absorption images. To

reduce statistical variation on 𝑂𝐷max and the extracted widths of the cloud (𝜎𝑎, 𝜎𝑏), in the fits we

fix the center points (𝑎0, 𝑏0) using instances where the cloud is imaged with high optical density

as a reference.

When we employ 𝑂𝐷max as a spectroscopic signal that is proportional to the total number

of molecules in the trap, the dissociation time and (𝜎𝑎, 𝜎𝑏) are kept fixed. By taking the integral∫ ∫
d𝑎d𝑏 𝑂𝐷 (𝑎, 𝑏), using the definition of optical density and the Beer-Lambert law, it is possible

to express the number of recovered atoms (𝑁at) in terms of the fit parameters,

𝑁at =
2𝜋𝜎𝑎𝜎𝑏
𝜎res

𝑂𝐷max, (2.2)

where 𝜎res ≡ 3𝜆2
res/(2𝜋) ≈ 1.014 × 10−13 m2 is the resonant absorption cross-section for 𝜆res =

461 nm light. Note that to convert the widths (𝜎𝑎, 𝜎𝑏) from units of image pixels to units of

physical length, the magnification of the camera system needs to be measured (e.g., by observing

a free-falling cloud of atoms and using the known local gravitational acceleration).

Importantly, 𝑁at is twice the total number of diatomic molecules (𝑁mol) multiplied by the disso-

ciation efficiency (𝜂dissoc). To estimate the dissociation efficiency for a given dissociation duration

(𝑡dissoc) and laser intensity used for the photodissociation laser, we freely fit 𝑂𝐷max, 𝜎𝑎, 𝜎𝑏 as the

dissociation pulse time is varied [Fig. 2.4]. As expected, the signal proportional to 𝑁at has the form

𝑦(𝑡) = 𝑦(∞) [1 − exp(−𝑅dissoc 𝑡)] ,
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where 𝑦(∞) and 𝑅dissoc (the dissociation rate) are fitted parameters. Therefore,

𝜂dissoc = 𝑦(𝑡dissoc)/𝑦(∞).

Putting it all together, the total number of molecules in the trap is

𝑁mol =
𝑁at

2𝜂dissoc
=

𝜋𝜎𝑎𝜎𝑏

𝜎res𝜂dissoc
𝑂𝐷max. (2.3)

2.4 Optical lattice trap

2.4.1 The optical dipole force

The optical dipole force arises from spatial gradients in laser intensity [37]. An external elec-

tromagnetic wave can polarize a neutral particle. For an infinitesimal change in the electric field at

time 𝑡, dE(𝑡), the infinitesimal change in the induced electric dipole moment is d𝒅ind(𝑡) = 𝛼dE(𝑡),

where 𝛼 is the polarizability (assumed here to be a scalar for simplicity) of the particle at the wave-

length of the electromagnetic field. This induced dipole, in turn, interacts with the oscillating field

that created it, leading to a time-varying potential for the particle,

𝑈 (𝑡) = −𝛼
∫ E

0
E
′(𝑡) · dE′(𝑡) = −1

2
𝛼E2(𝑡).

Typically, the field oscillates at near-optical frequencies, so we consider the cycle-averaged

𝑈 = −1
2
𝛼

〈
E2(𝑡)

〉
time average . (2.4)

For example, if E(𝑡) = ẐE0 cos(𝜔𝑡), then |𝑈 | = 𝑈0 = 𝛼E2
0/4 where the additional factor of 1/2 is

due to the time-averaging.
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2.4.2 One-dimensional optical lattice

An optical lattice is the interference pattern created by a forward propagating field Efwd and the

retroreflected field Eret. Choosing the Ŷ-direction to be the direction of propagation11, and 𝑦 = 0

to be the location of the focus of the Gaussian beams, the instantaneous electric fields are

Efwd(𝑦, 𝑟, 𝑡) =
𝑤0
𝑤(𝑦) exp

(
−𝑟2

𝑤2(𝑦)

)
[a cos(𝑘𝑦 − 𝜔𝑡) − b sin(𝑘𝑦 − 𝜔𝑡)] , (2.5)

Eret(𝑦, 𝑟, 𝑡) =
𝑤0
𝑤(𝑦) exp

(
−𝑟2

𝑤2(𝑦)

)
[a cos(𝑘𝑦 + 𝜔𝑡) + b sin(𝑘𝑦 + 𝜔𝑡)] , (2.6)

where we have ignored the Gouy phase and arbitrarily chosen the relative phase of the fields for

calculation simplicity without loss of generality12. 𝑘 = 2𝜋/𝜆latt and 𝜔 = 2𝜋 𝑓latt are, respectively,

the angular wavenumber and angular frequency of the lattice laser light. The radial distance 𝑟 ≡
√
𝑥2 + 𝑧2. To be general, the polarization of the electric field is assumed to be elliptical, with semi-

major axis a and semi-minor axis b (i.e., a ·b = 0). For example, if the field were linearly polarized

along Ẑ, then we may write a = ẐE0 and b = 0 where E0 is the amplitude of the field. The 1/𝑒2

Gaussian beam waist13 evolves along 𝑦 as

𝑤(𝑦) = 𝑤0

√√√
1 +

(
2𝑦
𝑘𝑤2

0

)2

. (2.7)

The superposition of the counter-propagating fields results in the standing wave

E2
tot(𝑦, 𝑟, 𝑡) = |Efwd(𝑦, 𝑟, 𝑡) + Eret(𝑦, 𝑟, 𝑡) |2 (2.8)

= 4 cos2(𝑘𝑦)
𝑤2

0
𝑤2(𝑦)

exp
(
−2𝑟2

𝑤2(𝑦)

) [
|a|2 cos2(𝜔𝑡) + |b|2 sin2(𝜔𝑡)

]
. (2.9)

11So that the corresponding Pauli matrices retain their conventional form; i.e., 𝜎𝑥 =

(
0 1
1 0

)
, 𝜎𝑦 =

(
0 −𝑖
𝑖 0

)
,

𝜎𝑧 =

(
1 0
0 −1

)
. These are closely related to Jones calculus, a powerful framework for describing polarized light.

12In practice, the positions of the nodes and anti-nodes are determined by their distance relative to the retroreflecting
mirror, which sets a boundary condition. Also, here, we are assuming no return power losses.

13Note the factor of 2 difference between the definition for 𝑤 with the conventional (mathematical) Gaussian 𝜎.
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Taking the time average over one cycle (2𝜋/𝜔),

〈
E2

tot(𝑦, 𝑟, 𝑡)
〉

time averaged = 4 cos2(𝑘𝑦)
𝑤2

0
𝑤2(𝑦)

exp
(
−2𝑟2

𝑤2(𝑦)

)
× 1

2
[
|a|2 + |b|2

]
. (2.10)

Using Eq. (2.4), we arrive at the form of a 1D optical lattice potential14

𝑈 (𝑦, 𝑟) = −𝑈0 cos2(𝑘𝑦)
𝑤2

0
𝑤2(𝑦)

exp
(
−2𝑟2

𝑤2(𝑦)

)
. (2.11)

To relate the trap depth𝑈0 with the physical beam parameters, we first observe that the irradiance15

of the forward pass beam at the focus is the time average of the Poynting flux,

𝐼fwd(𝑟) =
1
2
𝑐

〈
𝜖0 |Efwd(0, 𝑟, 𝑡) |2 +

1
𝜇0

|Bfwd(0, 𝑟, 𝑡) |2
〉

time average

=
1
2
𝜖0𝑐 × 2

〈
|a|2 cos2(𝜔𝑡) + |b|2 sin2(𝜔𝑡)

〉
time average × exp

(
−2𝑟2

𝑤2
0

)
=

1
2
𝜖0𝑐 ×

[
|a|2 + |b|2

]
× exp

(
−2𝑟2

𝑤2
0

)
(2.12)

≡ 𝐼fwd,0 exp

(
−2𝑟2

𝑤2
0

)
, (2.13)

where 𝜖0 (𝜇0) is the vacuum permittivity (permeability), 𝑐 is the speed of light in vacuum, and in

the second step we used the fact that E = 𝑐B for a plane wave16. The total radiation power is the

integral of the irradiance over 𝑟 ,

𝑃latt =

∫ ∞

0
d𝑟 2𝜋𝑟𝐼fwd(𝑟) = 𝐼fwd,0

𝜋𝑤2
0

2
. (2.14)

We note that 𝑃latt corresponds to the power measured by a power meter in the path of the forward

14Ignoring gravity. In lattice clocks, the lattice is usually oriented along gravity to suppress tunneling. It is horizontal
for practical reasons for the experiments in this thesis (and prior).

15Colloquially, irradiance is also called the “intensity”. See Ref. [38] for a careful discussion of numerical factors.
16This is a good approximation near 𝑦 = 0.
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pass beam. Comparing Eqs. (2.12) and (2.14), we find

𝐼fwd,0 =
2𝑃latt

𝜋𝑤2
0
=

1
2
𝜖0𝑐 ×

[
|a|2 + |b|2

]
, (2.15)

which for linear (or pure circular) polarization has the familiar form 𝐼fwd,0 = 𝜖0𝑐E2
0/2.

Substituting Eq. (2.15) into (2.10), we therefore identify the lattice depth to be

𝑈0 =
4𝛼𝑃latt

𝜋𝑤2
0𝜖0𝑐

. (2.16)

We note that the local intensity at the anti-nodes is 4 × 𝐼fwd,0 due to constructive interference.

2.4.3 Tight confinement in a 1D lattice

Let us theoretically examine the quantum mechanics of a particle of mass 𝑀 in an optical

lattice. Near the focus (𝑦 ≈ 0), we may approximate

𝑈 (𝑦, 𝑟) ≈ −𝑈0 cos2(𝑘𝑦) exp

(
−2𝑟2

𝑤2
0

)
≡ −𝑈0(𝑟) cos2(𝑘𝑦). (2.17)

Concentrating on the axial (𝑦) direction, the energy levels (𝐸𝑛) are obtained by solving the time-

independent Schrödinger equation

[
− ℏ2

2𝑀
𝜕2

𝜕𝑦2 +𝑈 (𝑦, 𝑟)
]
𝜙𝑛 (𝑦) = 𝐸𝑛𝜙𝑛 (𝑦). (2.18)

Since 𝑈 (𝑦, 𝑟) is periodic along 𝑦 with lattice sites (“pancakes”) separated every 𝜋/𝑘 = 𝜆latt/2,

Bloch’s theorem tells us that the wavefunctions take the form

𝜙𝑛 (𝑦) = 𝑒𝑖𝑞𝑦𝑢𝑛,𝑞 (𝑦), (2.19)
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where ℏ𝑞 is the crystal momentum and 𝑢𝑛,𝑞 (𝑦) are functions with periodicity17 𝜆latt/2 labeled by

the band index 𝑛. For this potential, 𝑢𝑛,𝑞 (𝑦) can be calculated rather straightforwardly. To do so,

we notice that the effect of the momentum operator (pop,𝑦) on 𝜙𝑛 (𝑦) is

pop,𝑦𝜙𝑛 (𝑦) = −𝑖ℏ 𝜕
𝜕𝑦

[
𝑒𝑖𝑞𝑦𝑢𝑛,𝑞 (𝑦)

]
= 𝑒𝑖𝑞𝑦

[
ℏ𝑞 + pop,𝑦

]
𝑢𝑛,𝑞 (𝑦). (2.20)

Therefore, the Schrödinger equation (2.18) reduces to

[
1

2𝑀
(
ℏ𝑞 + pop,𝑦

)2 +𝑈 (𝑦, 𝑟)
]
𝑢𝑛,𝑞 (𝑦) = 𝐸𝑛,𝑞𝑢𝑛,𝑞 (𝑦), (2.21)

where we add the subscript 𝑞 to remind ourselves that the energies depend on 𝑞 (i.e., energy bands

will form in momentum space). Next, the periodicity of 𝑢𝑛,𝑞 (𝑦) and 𝑈 (𝑦, 𝑟) allows us to expand

them as Fourier series (up to a normalization constant),

𝑢𝑛,𝑞 (𝑦) =
∑︁
𝑙

𝑐𝑙𝑒
𝑖(2𝑙𝑘𝑦) , (2.22)

𝑈 (𝑦, 𝑟) =
∑︁
𝑚

𝑉𝑚𝑒
𝑖(2𝑚𝑘𝑦) , (2.23)

with 𝑙, 𝑚 being integers. Our goal now is to find the Fourier coefficients 𝑐𝑙 .

For our potential

𝑈 (𝑦, 𝑟) = −𝑈0(𝑟) cos2(𝑘𝑦) = −𝑈0(𝑟)
[
𝑒𝑖(2𝑘𝑦) + 𝑒−𝑖(2𝑘𝑦) + 2

]
/4. (2.24)

Hence, in Eq. (2.23) only 𝑉+1 = 𝑉−1 = −𝑈0(𝑟)/4 and 𝑉0 = −𝑈0(𝑟)/2 are non-zero. Intuitively,

this makes sense: a lattice with periodicity 2𝜋/(2𝑘) will scatter momentum ±2𝑘 . Substituting both

Fourier series into Eq. (2.21) and comparing Fourier terms, we find

[
𝐸r(𝑞/𝑘 + 2𝑙)2 +𝑉0

]
𝑐𝑙 +𝑉+1𝑐𝑙−1 +𝑉−1𝑐𝑙+1 = 𝐸𝑛,𝑞𝑐𝑙 , (2.25)

17That is, 𝑢𝑛,𝑞 (𝑦) = 𝑢𝑛,𝑞 (𝑦 + 𝜆latt/2)
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where 𝐸r ≡ ℏ2𝑘2/(2𝑀) = ℎ2/(2𝑀𝜆2
latt) is called the recoil energy (it serves as a natural unit to

express trap energies).

Equation (2.25) can be recast as a matrix equation,

�̃� c = 𝐸𝑛,𝑞c, (2.26)

where �̃� is an infinite-dimensional, tri-diagonal square matrix that has the form

�̃� =

©«

. . . 𝑉−1 0 0 0

𝑉+1 𝐸r(𝑞/𝑘 + 2(𝑙 − 1))2 +𝑉0 𝑉−1 0 0

0 𝑉+1 𝐸r(𝑞/𝑘 + 2𝑙)2 +𝑉0 𝑉−1 0

0 0 𝑉+1 𝐸r(𝑞/𝑘 + 2(𝑙 + 1))2 +𝑉0 𝑉−1

0 0 0 𝑉+1
. . .

ª®®®®®®®®®®®®¬
.

Similarly, the vector of Fourier coefficients c is

c =

©«

...

𝑐𝑙−1

𝑐𝑙

𝑐𝑙+1
...

ª®®®®®®®®®®®®¬
.

Algebraically, we may also write

ℎ̃𝑙,𝑙′ =



𝐸r(𝑞/𝑘 + 2𝑙)2 +𝑉0, if 𝑙 = 𝑙′

𝑉±1, if |𝑙 − 𝑙′| = 1

0, otherwise

(2.27)

Diagonalizing �̃� returns the eigenvalues 𝐸𝑛,𝑞 and the corresponding eigenvectors c. For each c, the
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Figure 2.5: Ground state probability density of a particle in an idealized optical lattice shown for
5 lattice sites. Here, 𝑛 = 1, 𝑞 = 0. Localization occurs as the trap depth increases, and the local
wavefunction at each lattice site approaches that of a simple harmonic oscillator.

Bloch wavefunction is constructed using Eqs. (2.22) and (2.19). In practice, most coefficients in c

are negligible. A deeper trap necessitates a larger number of Fourier components for an accurate

calculation. For 𝑈0 ∼ 500 𝐸r, we truncate �̃� to about 40 × 40. The energy width of the 𝑛-th band

is the difference of the maximum and minimum value of 𝐸𝑛,𝑞 as a function of 𝑞.

Figure 2.5 shows a plot of |𝑢1,0 |2 for various trap depths 𝑈0. As 𝑈0 increases, the probability

density localizes, and the local wavefunction (called the Wannier function, the Fourier inverse of

the Bloch wavefunctions) at each site approaches that of the harmonic oscillator. Thus a deep

optical lattice can be approximated as an array of harmonic microtraps. Since the positions of

the lattice anti-nodes are set by the position of the retro-reflecting mirror, which is clamped onto a

massive body, spectroscopy in deep lattices will be recoil-free (analogous to the Mössbauer effect).

For weak confinement, the width of the energy bands leads to decoherence and peak broadening

effects in clock spectroscopy, and tunneling can open up 𝑠-wave collisions even with fermions by

making them distinguishable. Further information can be found in literature (e.g., Refs. [39, 40]).

2.4.4 Carrier and sideband transitions, the Lamb-Dicke regime

Having established that an array of harmonic microtraps is a good approximation for the sites of

a deep optical lattice, we expand Eq. (2.17) to leading order for the central microtrap (i.e., around
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𝑦 ≈ 0 and 𝑟 ≈ 0),

𝑈 (𝑦, 𝑟) = −𝑈0 cos2(𝑘𝑦) exp

(
−2𝑟2

𝑤2
0

)
≈ 𝑈0

(
−1 + 𝑘2𝑦2 + 2𝑟2

𝑤2
0
− 2𝑟2

𝑤2
0
𝑘2𝑦2 − 𝑘4𝑦4

3
− 2𝑟4

𝑤4
0
+ . . .

)
, (2.28)

≈ 𝑈0𝑘
2𝑦2 + 2𝑈0

𝑤2
0
𝑟2 −𝑈0 + . . . . (2.29)

Making the correspondence to the harmonic potential and ignoring the cross terms, we thus define

the axial and radial trap angular frequencies

2𝜋 𝑓ax ≡ 𝜔ax ≡

√︄
1
𝑀

𝜕2𝑈 (𝑦, 𝑟)
𝜕𝑦2 = 𝑘

√︂
2𝑈0
𝑀
, (2.30)

2𝜋 𝑓rad ≡ 𝜔rad ≡

√︄
1
𝑀

𝜕2𝑈 (𝑦, 𝑟)
𝜕𝑟2 =

2
𝑤0

√︂
𝑈0
𝑀
. (2.31)

A related quantity is 𝑓ax/ 𝑓rad = 𝜋
√

2(𝑤0/𝜆latt) which is the aspect ratio of a microtrap18. The

three quantities 𝑓ax, 𝑓rad and 𝜆latt completely specifies the trap geometry. The trap depth may be

expressed in terms of the axial trap frequency as

𝑈0 =
1
2
𝑀 𝑓 2

ax𝜆
2
latt, (2.32)

𝑈0/𝐸r = 𝑀
2 𝑓 2

ax𝜆
4
latt/ℎ

2. (2.33)

If the trap frequencies are obtained using a sample of molecules, then 𝑀 = 2𝑚Sr is the mass of the

dimer, and Eq. (2.32) gives the trap depth for the molecules.

Figure 2.6 shows the energy diagram for a particle in a harmonic trap. Interrogation of the par-

ticle’s internal states may alter its motional quantum number (𝑛ax for the axial direction, 𝑛rad for the

radial direction19). A transition that leaves 𝑛 unchanged is called a carrier transition, while a transi-

tion that changes 𝑛 by +1 (−1) is called the first blue (red) sideband transition. Suppose the probed
18Since 𝑤0 ≫ 𝜆latt, the sites of a 1D lattice are often described as “pancakes”.
19Note for each value of 𝑛rad, there are 𝑛rad + 1 degenerate radial motional states; c.f., 2D harmonic oscillator.
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transition is much narrower than the separation of the sidebands relative to the carrier. In that case,

the spectroscopy is in the resolved sideband regime, permitting the direct measurement20 of 𝑓ax

and 𝑓rad.

In our experiment, we have so far observed two types of molecular transitions narrow enough

for sideband spectroscopy; the 𝑋 → 1𝑔 subradiant transitions, and the 𝑋 → 𝑋 Raman transi-

tions. In both cases, the transition rate is proportional to the square of the (effective) Rabi angular

frequency (Ω0) and a matrix element involving the motional states (|𝑛ax, 𝑛rad⟩),

Ω2 = Ω2
0

���⟨𝑛′ax, 𝑛
′
rad |𝑒

𝑖Δkprb·Rop |𝑛ax, 𝑛rad⟩
���2 , (2.34)

where ℏΔkprb = ℏ{Δ𝑘prb,𝑥 ,Δ𝑘prb,𝑦,Δ𝑘prb,𝑧} is the net momentum imparted by the probe(s) in each

direction and Rop = {xop, yop, zop} is the position operator vector. We note that for two-photon

transitions |Δkprb | is dependent on the relative angle between the probes, and whether it is a Λ

(Raman) or a Ξ (ladder) system; see also Eqs. (3.36) and (4.2). Following Ref. [41], the matrix

element can be expanded in terms of the generalized Laguerre polynomials, 𝐿 (𝛼)
𝑛 (𝜂2),

⟨𝑛′ax, 𝑛
′
rad |𝑒

𝑖Δkprb·Rop |𝑛ax, 𝑛rad⟩ =
∏

𝑗∈{𝑥,𝑦,𝑧}
⟨𝑛′𝑗 |𝑒

𝑖𝜂 𝑗 (�̂� 𝑗+�̂�†𝑗 ) |𝑛 𝑗 ⟩, (2.35)

=
∏

𝑗∈{𝑥,𝑦,𝑧}
𝑒
−𝜂2

𝑗
/2
𝜂
|Δ𝑛 𝑗 |
𝑗

√√
(𝑛<

𝑗
)!

(𝑛>
𝑗
)! 𝐿

( |Δ𝑛 𝑗 |)
𝑛<
𝑗

(𝜂2
𝑗 ). (2.36)

In the first step, the position operators for each direction ( 𝑗 ∈ {𝑥, 𝑦, 𝑧}) are expressed as harmonic

oscillator creation and annihilation operators, and we define the Lamb-Dicke parameters

𝜂 𝑗 ≡ Δ𝑘prb, 𝑗

√︄
ℏ

2𝑀𝜔 𝑗

=
Δ𝑘prb, 𝑗

2𝜋

√︄
ℎ

2𝑀 𝑓 𝑗
, (2.37)

where the trap frequencies 𝑓 𝑗 are 𝑓𝑥 = 𝑓𝑧 = 𝑓rad and 𝑓𝑦 = 𝑓ax. In the second step, 𝑛>
𝑗

(𝑛<
𝑗
) is

20An alternate method involves observing the parametric heating resonances of the molecules by modulating the
trap depth (e.g., modulating the lattice laser power using an AOM). In principle, trap losses will happen at twice the
sideband frequencies, but sometimes subharmonics or higher harmonics may occur. This method does not require
narrow transitions or the resolved sideband regime.
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the greater (smaller) of the values 𝑛′
𝑗

and 𝑛 𝑗 , and Δ𝑛 𝑗 ≡ 𝑛>
𝑗
− 𝑛<

𝑗
. Spectroscopy along the axial

direction is typically in the Lamb-Dicke regime (i.e., 𝜂𝑦 ≡ 𝜂ax < 1) as the axial confinement is

strong, but this is not the case along the weaker radial direction (𝜂𝑥 = 𝜂𝑧 ≡ 𝜂rad ≫ 1).

By writing out the Laguerre polynomials in Eq. (2.36) and keeping only leading order terms,

we will ultimately find that sideband transitions are suppressed by a factor ∼ 𝜂2
𝑗

relative to the

carrier, and that the blue sideband will always be stronger than the red sideband (intuitively because

�̂�
†
𝑗

��𝑛 𝑗 〉 = √︁
𝑛 𝑗 + 1

��𝑛 𝑗 〉 and �̂� 𝑗 |𝑛⟩ 𝑗 =
√
𝑛 𝑗

��𝑛 𝑗 〉). For spectroscopy along the axial direction,

Ω2 ≈



Ω2
0, Δ𝑛ax = 0 (carrier),

Ω2
0 𝜂

2
ax (𝑛ax + 1), Δ𝑛ax = +1 (blue sideband),

Ω2
0 𝜂

2
ax 𝑛ax, Δ𝑛ax = −1 (red sideband).

(2.38)

Figure 2.7 shows exemplary axial and radial sideband spectra excited using Raman clock transi-

tions. To enhance the axial sideband spectra, the Raman probes counter-propagate along the axial

direction to increase the Lamb-Dicke parameter21. To impart momentum along the radial direc-

tion and acquire the radial sidebands, one of the co-propagating Raman probes is intentionally

misaligned from the other so that they cross at a small angle at the molecules.

The axial sidebands are asymmetric, with the sharp edges facing away from the carrier. This

feature is due to the coupling between the weak radial confinement and the tight axial motion.

Including the lowest order, axial-radial cross term −𝑟2𝑦2(2𝑈0𝑘
2/𝑤2

0) in Eq. (2.30) leads to a dis-

tortion (or shift) in the axial trap frequency as a function of 𝑟,

𝑓 ′ax(𝑟) ≃ 𝑓ax

√︄
1 − 2𝑟2

𝑤2
0

⇒ 𝑓 ′ax(𝑟) − 𝑓ax ≈ − 𝑓ax𝑟
2

𝑤2
0
.

Thus, the thermal probability distribution in 𝑟 (and hence 𝑛rad) smears out the observed axial side-

bands resulting in a Boltzmann tail falling toward the carrier. Operationally, the sharp edges of the

axial sidebands correspond very well to the expression in Eq. (2.30). A rigorous quantum mechan-

21Counter-propagating Raman: |Δ𝑘 𝑝,𝑦 | = 2𝜋/𝜆↓ + 2𝜋/𝜆↑. Co-propagating Raman: |Δ𝑘 𝑝,𝑦 | = 2𝜋/𝜆↓ − 2𝜋/𝜆↑.
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Figure 2.6: Each black curve represents the external potential that traps a molecule in a given
rovibronic state. Tightly confined molecules have quantized motional trap states (horizontal lines,
shown for 𝑛 = 0, 1, 2 in increasing energy) that can be separately addressed in the resolved sideband
regime. (a) The molecule makes a rovibronic transition from the initial molecular state (bottom
curve) to the final molecular state (top curve), mediated by the absorption of a single photon. The
arrows represent the type of motional state transition, shown here for a molecule starting in 𝑛 = 1.
Red arrow, red sideband (Δ𝑛 = −1); black arrow, carrier (Δ𝑛 = 0); blue arrow, blue sideband
(Δ𝑛 = +1). (b) For Raman transitions, one way of interpreting sideband spectroscopy is to think
of the final molecular state that is coupled by the downleg (or anti-Stokes) as being dressed (upper
dotted curve and lines). Carrier and sideband transitions occur, as in (a), when the upleg is scanned
across the Raman resonance.
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Figure 2.7: (a) Axial sidebands excited by counter-propagating laser beams, interrogating the
𝑋 (62, 0) → 𝑋 (61, 0) Raman transition. This pair of states is naturally near-magic, permitting
the trap depth of 𝑋 (62, 0) to be determined over a wide range of lattice wavelengths. (b) Radial
sidebands excited by co-propagating laser beams, intentionally misaligned by a slight relative an-
gle, driving the Raman transition 𝑋 (62, 0) → 𝑋 (0, 0) in a magic wavelength lattice. The upleg
was stepped for both traces. The left, middle, and right peaks are the corresponding red sideband,
carrier transition, and blue sideband. Black points are single shots of the experiment. The dotted
lines are guides to the eye.
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ical derivation [42] obtains the following axial sideband lineshape (sharp edge centered at 𝛿 𝑓 = 0,

with the Boltzmann tail falling toward positive22 frequency shifts 𝛿 𝑓 > 0):

𝑝sideband(𝛿 𝑓 ) ∝


|𝛿 𝑓 |3 exp [−4𝑈0 𝛿 𝑓 /(𝑘𝐵𝑇 𝑓ax)] , 𝛿 𝑓 > 0

0, otherwise
(2.39)

where 𝑘𝐵 is the Boltzmann constant, and 𝑇 is the molecular ensemble temperature. Alternatively,

it is possible to perform numerical fitting to the sidebands using the method in Refs. [43, 44].

The ratio of the areas under the blue and red axial sidebands (𝐴bsb/𝐴rsb) can be utilized for

thermometry23. For sideband thermometry, it suffices to fit skewed Gaussians to estimate the area

under the curves. From Eq. (2.38), we see that

𝐴bsb
𝐴rsb

=
⟨𝑛ax⟩ + 1
⟨𝑛ax⟩

. (2.40)

Straight-forward calculation using the partition function of a harmonic oscillator gives

⟨𝑛ax⟩ =
1

exp
(
ℎ 𝑓ax
𝑘𝐵𝑇

)
− 1

. (2.41)

Combining the formulas, we get

𝑇 =
ℎ 𝑓ax

𝑘𝐵 ln (𝐴bsb/𝐴rsb)
. (2.42)

Lastly, we note that the observed frequency separation (2 𝑓sb) of the red and blue sidebands is

not necessarily the same as 2 𝑓ax when the probed molecular states have different polarizabilities

(i.e., in a non-magic wavelength trap). To see this, consider the trap energies of a particle in its

22For a lineshape with a tail falling in the opposite direction, substitute 𝛿 𝑓 → −𝛿 𝑓 .
23Sideband thermometry is more susceptible to molecule number and laser power fluctuations than carrier ther-

mometry. Moreover, it only measures the axial thermal distribution ⟨𝑛ax⟩, whereas carrier thermometry samples both
⟨𝑛ax⟩, ⟨𝑛rad⟩.
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initial (unprimed) and final (primed) states:

𝐸 (𝑛ax, 𝑛rad) ≈ −𝑈0 + ℎ 𝑓ax

(
𝑛ax +

1
2

)
+ ℎ 𝑓rad (𝑛rad + 1) , (2.43)

𝐸′(𝑛′ax, 𝑛
′
rad) ≈ −𝑈′

0 + ℎ 𝑓ax

√︂
𝛼′

𝛼

(
𝑛′ax +

1
2

)
+ ℎ 𝑓rad

√︂
𝛼′

𝛼

(
𝑛′rad + 1

)
, (2.44)

where 𝛼, 𝛼′ are the polarizabilities of the particle in the initial and final internal states respectively.

Taking the axial sidebands as an example, half of the separation between the red (𝑛′ax − 𝑛ax = −1)

and blue (𝑛′ax − 𝑛ax = +1) axial sidebands is

𝑓sb ≈ 𝑓ax

√︂
𝛼′

𝛼
. (2.45)

In practice, we measure 𝑓sb for various 𝑃latt to obtain the slope 𝑓 2
sb/𝑃latt. At the same time, by

measuring the carrier line center at various 𝑃latt (which shifts due to the polarizability difference),

we get the slope of the differential light shift (𝐿0); see Figs. 2.8(a,b). From Eq. (2.32),

𝐿0 ≡
(𝑈0 −𝑈′

0)/ℎ
𝑃latt

=
𝑀𝜆2

latt
2ℎ

𝑓 2
ax

(
1 − 𝛼′

𝛼

)
1
𝑃latt

. (2.46)

Rearranging Eq. (2.46), we get

𝛼′

𝛼
= 1 − 2ℎ

𝑀𝜆2
latt

𝐿0

𝑓 2
ax/𝑃latt

= 1 − 4𝐸r
ℎ

𝐿0

𝑓 2
ax/𝑃latt

. (2.47)

Since the differential light shift 𝐿0𝑃latt and 𝑓 2
ax both depend linearly on lattice intensity, this method

of expressing the polarizability ratio is agnostic to any geometric parameters that are difficult to

access experimentally (e.g., lattice beam waist). Substituting Eq. (2.47) into Eq. (2.45), we find

that the raw sideband frequency will have to be corrected by an additional term to give the trapping

frequency of the initial state (a similar argument holds for 𝑓rad)

𝑓 2
ax
𝑃latt

≈
𝑓 2
sb

𝑃latt
+ 2ℎ𝐿0

𝑀𝜆2
latt
. (2.48)
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Because 𝑓sb → 𝑓ax as 𝐿0 → 0, we can circumvent the need to apply Eq. (2.48) by scanning a

naturally near-magic Raman transition like 𝑋 (62, 0) → 𝑋 (61, 0). Note that for Raman transitions,

the sign of 𝐿0 is positive (negative) if the Raman line centers shift positively (negatively) for

increasing values 𝑃latt when the upleg laser frequency is scanned. The signs are reversed if the

downleg is scanned instead.

2.4.5 Carrier thermometry

A narrow carrier line is thermally broadened in a non-magic wavelength trap. Consider the

value of 𝐸′(𝑛ax, 𝑛rad) −𝐸 (𝑛ax, 𝑛rad). In addition to the overall shift in central value [Eq. (2.46)], the

frequency shifts 𝑛ax 𝑓ax(
√︁
𝛼′/𝛼 − 1) and 𝑛rad 𝑓rad(

√︁
𝛼′/𝛼 − 1) become compounded for increasingly

higher motional states 𝑛ax, 𝑛rad.

The thermal probability distribution for 𝑛ax, 𝑛rad is therefore imprinted onto the carrier spec-

trum, resulting in an asymmetric lineshape that can be leveraged for highly accurate thermometry

[42, 45]. A quantum mechanical derivation for the carrier lineshape [42] implies that (shape edge

centered at 𝛿 𝑓 = 0, and tail falling toward positive 𝛿 𝑓 ):

𝑝carrier(𝛿 𝑓 ) ∝


(𝛿 𝑓 )2 exp (−𝐵𝛿 𝑓 ) , 𝛿 𝑓 > 0

0, otherwise
(2.49)

where

𝐵 ≡ ℎ

𝑘𝐵𝑇

(√︁
𝛼′/𝛼 − 1

) . (2.50)

For accurate carrier thermometry, the differential polarizability should be maximized (i.e., 𝛼′/𝛼 is

as large as possible) while keeping other sources of broadening minimal (e.g., effects due to probe

power, magnetic field, etc.).

As an illustrative example, Fig. 2.8(a) shows a carrier spectrum for the 𝑋 (62, 0) → 𝑋 (0, 0)

Raman transition at a non-magic wavelength, fitted with Eq. (2.49). These states span the entire

ground potential and have maximal polarizability difference, 𝛼′−𝛼. The carrier fit also returns the
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Figure 2.8: (a) Vibrational clock transition 𝑋 (62, 0) → 𝑋 (0, 0) in a non-magic wavelength lattice
far from any 𝑋 → 1𝑢 resonances (𝜆latt = 1005.6 nm for this dataset). The Raman probe beams
are co-propagating along the lattice and are detuning by one cavity FSR (approximately 1.5 GHz)
from (1)0+𝑢 (11, 1). This is closer to resonance than normal clock operating conditions to gain a
larger effective Rabi frequency to drive the thermally broadened transition. The thermal tail of the
carrier line shape can be utilized for accurate thermometry. Here, 𝛼′/𝛼 > 1 and the upleg laser
frequency is stepped across the two-photon resonance, while that of the downleg is kept fixed.
The spectroscopic signal is proportional to the number of 𝑋 (62, 0) molecules. Since the signal is
depleted exponentially over the interrogation time, and the depletion rate more accurately reflects
𝑝carrier, we take the natural logarithm of the signal before making the lineshape fit. Each black
point is averaged over three consecutive experimental scans of the line. (b) Measured differential
lattice light shift (black squares) due to the polarizability difference of 𝑋 (0, 0) and 𝑋 (62, 0). The
carrier line positions (roughly the location of the sharp edge) at various lattice powers are deter-
mined from the carrier lineshape fit. Error bars denote 1𝜎 statistical uncertainties. The slope of
the linear fit is 𝐿0. See main text for details.
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position of the sharp edge, giving the differential light shift when plotted against various 𝑃latt, as

shown in Fig. 2.8(b). The slope of the linear fit is 𝐿0; see Eq. (2.46).

To invert Eq. (2.50) and extract the ensemble temperature 𝑇 from the fit coefficient 𝐵, we

require the value of 𝛼′/𝛼 at the same lattice trap wavelength where the carrier lineshapes are

recorded. A clever way to obtain 𝑓 2
ax/𝑃latt is to scan the 𝑋 (62, 0) → 𝑋 (61, 0) Raman transition

[Fig. 2.7(a)]. This pair of adjacently bound states have polarizability ratios very close to unity over

a large range of lattice trap wavelengths (𝛼61/𝛼62 = 1.000932(29) at 914 nm [46]), permitting

accurate measurement of the axial trapping frequency 𝑓ax of (essentially) 𝑋 (62, 0) as a function

of 𝑃latt under diverse experimental conditions. Plugging the measured slopes 𝐿0 and 𝑓 2
ax/𝑃latt into

Eq. (2.47) gives 𝛼′/𝛼 = 𝛼
b.g.
0 /𝛼62 = 1.404(7) at 1005.6 nm; the baseline polarizability ratio of

𝑋 (0, 0) against 𝑋 (62, 0) in this case (see also Sec. 5.3).
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Chapter 3: Frequency comb assisted spectroscopy of the states 𝑋1Σ+
𝑔 , (1)0+𝑢 ,

and (1)1𝑢

3.1 Spectroscopy laser system

3.1.1 Master laser, and the Pound-Drever-Hall technique

For the majority of experiments in this thesis, an extended cavity diode laser (ECDL) acts as

the master laser; i.e., a metrological grade laser with the best optical coherence in the lab, serving

as a stable phase reference for other important lasers. This exceptional phase stability is realized by

stabilizing the ECDL using the Pound-Drever-Hall (PDH) technique to a high finesse reference

cavity1 formed by two fused-silica mirrors2 optically bonded to an ultra-low expansion (ULE)

glass spacer3. The ULE spacer defines the cavity length (approximately 10 cm), resulting in a

free spectral range (FSR) of approximately 1.497 GHz, measured by locking the master laser to

adjacent cavity modes and determining the change in laser frequency using the frequency comb

(see next subsection). Both fused-silica mirrors are 1" in diameter and 0.25" in thickness, and each

is optically contacted with a 1" ULE backing ring to reduce thermally induced mirror deformation

[47]. Laser light enters the cavity at the plano-plano mirror, while the other mirror is plano-concave

with 50 cm radius of curvature. The back surfaces of both mirrors are applied with anti-reflective

coating to minimize etalon effects. The finesse (F ) is > 3 × 105 around 780 nm (measured from

ring-down experiments [48]). In principle, this implies a cavity linewidth of FSR/F ≲ 5 kHz.

When the laser is on resonance with a cavity mode, the intracavity power is larger than the input

power by a factor ∼ F . Empirically, the resonance frequency of the cavity is dependant on the

input laser power [49]. As such, care should be taken not to use excessive laser power under

1Full commercial system including vacuum housing purchased from Stable Laser Systems.
2Fused-silica substrates have lower thermal noise floors than ULE.
3ATF 6020-4 notched cavity. Notched cavities are less sensitive to vibrations than cylindrical cavities.

37



lock conditions4. The cavity rests horizontally relative to gravity, and the structure is supported at

judiciously selected stress points by Viton balls on a Zerodur block.

The cavity and its supporting structure are placed under vacuum conditions (< 10−7 Torr). The

vacuum housing windows are anti-reflection coated for light at 780 nm (specified < 0.2% reflection

coefficient for normal incidence), again to prevent spurious etalons. The housing offers two-stage

temperature control, and we set the cavity temperature (𝜏) at the zero crossing temperature (𝜏c) of

the ULE spacer’s coefficient of thermal expansion. We determine 𝜏c by locking the repetition rate

of an optical frequency comb to the master laser (see next subsection). The absolute frequency

of the master laser ( 𝑓laser) was measured at various 𝜏, as shown in Fig. 3.1. 𝜏 was changed at 24-

hour intervals so that the cavity and its neighboring structure are given enough time to equilibrate.

The fractional change in the laser frequency (Δ 𝑓laser/ 𝑓laser) has a turning point at 𝜏c, where the

sensitivity to temperature fluctuations is minimal [50],

Δ 𝑓laser
𝑓laser

= −𝑎
2
(𝜏 − 𝜏c)2 − 𝑏

3
(𝜏 − 𝜏c)3 + . . . . (3.1)

We determine 𝜏c = 39.6(3) ◦C. Lastly, the entire vacuum housing and optical (and optoelectronic)

elements for PDH stabilization are mounted on a passive vibration isolation platform (Minus K

250BM-1). The floating platform is completely covered by an air-tight enclosure. The single-

mode polarization maintaining fiber delivering light from the master laser into the enclosure is short

(20 cm) and surrounded by a 1" thick flexible rubber foam pipe tube to passively reduce fiber phase

noise due to perturbations from the ambient environment. Under these conditions, consolidated

daily measurements of the absolute frequency of the master laser over several months reveal a

linear5 cavity drift rate of 0.03 Hz/s. This linear drift is removed with real-time feedforwarding

using an AOM in the optical path between the master laser and the reference cavity. The frequency

synthesizer that performs this linear compensation updates every second.

PDH laser stabilization to an optical cavity is a powerful and widely used technique to achieve

4Typical input laser powers into the cavity under locking conditions are ∼ 20–60 𝜇W.
5Note that an exponentially decaying drift rate would better model the aging of the cavity over years.
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Figure 3.1: Fractional change of the master laser (relative to an arbitrary value) versus the cavity
temperature setpoint (corresponding to “Out1” or “Inside” on the PTC10 temperature controller).
The coefficient of thermal expansion has a zero crossing around 39.6(3) ◦C. Recorded during
December 2019.

Hz-level laser linewidths. For a useful technical reference, see Ref. [51]. Essentially, the cavity

stores previously resonant laser light, the leakage of which is compared with the present state of the

laser to generate an error signal. In an ideal situation with no losses, when laser light is exactly on

resonance with a cavity mode, all the power of the incident laser beam will be transmitted through

the cavity, and no power is reflected. This is because the total reflected field is the superposition

of the so-called promptly-reflected field (the first reflection at the incident mirror) and the so-

called leakage field (the coherent sum of multiple reflections inside the cavity that emanates out

of the incident mirror). On resonance, the promptly-reflected and the leakage fields have the same

frequency and are 𝜋-radians out of phase, resulting in complete destructive interference. However,

when the laser frequency is slightly off-resonance, the resulting phase difference leads to a small

amount of laser power being reflected from the cavity. The phase and amplitude of this reflected

field encode the sign and magnitude of the frequency deviation with respect to the cavity mode,

respectively. Detection of this field can thus be used to actively servo the laser back onto resonance

with the cavity. In practice, the phase of an optical field is difficult to detect in real-time. Instead,

the frequency or phase of the laser is modulated (i.e., dithered) to sample the derivative of the
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Figure 3.2: Cartoon illustration of the optical setup for PDH locking to the high-finesse cavity.

cavity mode profile, thereby determining which side of the resonance the laser frequency is on.

A scheme of the optical (and optoelectronic) elements is shown in Fig. 3.2. An optical isolator

is installed in the optical path prior to the cavity to suppress etalon effects, which would otherwise

result in a non-uniform baseline in the error signal. Note while an additional photodiode for inten-

sity stabilization has been installed, for the experiments in this thesis, the incident laser intensity

at the cavity is not actively stabilized to keep the apparatus simple; the free-running intensity drift

is fewer than 5%. In our setup, a weakly driven resonant electro-optic modulator (EOM) creates

frequency6 modulation (FM) sidebands on the laser. This frequency is usually large (e.g. 30 MHz)

to provide immunity to external RF interference in the lower frequency bands. Let us consider the

limit where the modulation frequency is much larger than the cavity mode linewidth, as is typi-

cally the case for high-finesse cavities. When the carrier is on resonance with a cavity mode, it

is fully transmitted. The sidebands, however, are reflected toward the photodiode. Now consider

6Strictly speaking, an EOM creates a phase modulation, but for the present discussion, we may ignore this distinc-
tion.
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the situation when the carrier is slightly detuned from a cavity mode. A small percentage of the

carrier also makes it back to the photodiode, and a beat with the sidebands at the EOM modulation

frequency is detected. The phase of this beat, which contains the phase of the reflected field, can

be detected with conventional RF electronics because it is a microwave frequency. This is done by

demodulating the beat signal with an RF mixer or a phase detector, thereby creating the PDH error

signal [Fig. 3.3(a)]. Note that the discriminators of the sidebands have the opposite sign from that

of the carrier, and it is possible to erroneously lock these sidebands to the cavity if the sign and in-

put offset on the servo is set incorrectly7. The cavity transmission when the carrier laser frequency

is locked to the lowest order (TEM00) Gaussian mode of the cavity is always the brightest, most

intense. A quantitative account of the PDH error signal and its generation is given in Ref. [52].

The error signal is subsequently fed to a high-bandwidth analog servo controller (Toptica FALC

pro), which actuates directly on the current driving the ECDL laser diode to tune its emission

frequency. In this manner, fast phase fluctuations of the laser relative to the cavity resonance are

actively nulled. The servo also provides a slower auxiliary output that is used to actuate on a piezo

element on the ECDL to correct for longer-term frequency drifts. Figure 3.3(b) shows an example

noise spectrum of the in-loop photodiode (beat) signal centered at the EOM modulation frequency

when the lock is engaged, obtained by picking off a small portion of the signal with an RF coupler.

A general rule of thumb is that all electronic or RF components (e.g., the servo controller,

current controller, photodiode, length of cables, etc.) should have at least an order-of-magnitude

larger bandwidth than the desired locking bandwidth. To cut possible ground loops, we use RF

baluns8 at the mixer inputs, and cable lengths are kept as short as possible. The stabilized laser has

a high degree of optical phase stability. The laser linewidth can only be rigorously determined by

comparison with another laser of similar performance (via a low noise frequency comb as a transfer

oscillator if necessary). Unfortunately, this is not currently feasible in the lab9. Nevertheless, from

7For less demanding, non-metrological applications, FM sidebands present a feature, rather than a complication.
A rather common experimental trick to deterministically sweep a laser across a large frequency range involves using a
broadband non-resonant fiber EOM to generate large FM sidebands (∼0.1–10 GHz) on top of the smaller FM sidebands
(∼10 MHz) used for PDH locking to a cavity or a gaseous atomic reference cell.

8Minicircuits FTB-1-1*A15+
9The other cavity which stabilizes 689 nm strontium cooling light has a linewidth of about 200 Hz [22].
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analyses of the stability of molecular clock spectra (see Chapter 5), it is quite likely the cavity

linewidth is on the order of a few Hz, and definitely smaller than 100 Hz.

In principle, the PDH error signal is immune to fluctuations in the laser intensity because

of nulled lock-in detection (i.e., on resonance, the laser intensity is zero at the photodiode that

registers the beat note). However, imperfections in a realistic setup can contaminate the error signal

and degrade the achievable lock performance. One chronic limitation of EOM phase modulation is

the concomitant residual amplitude modulation (RAM), which also oscillates at the modulation

frequency. The servo erroneously reacts to RAM because it is indistinguishable from the cavity

response, writing noise onto the laser phase. Detailed quantitative analyses on the effects of RAM,

specifically in PDH laser stabilization schemes, are available in literature [53]. The temperature-

dependent birefringence of the EO crystal has been identified as a leading source of RAM10. If

the input laser beam is not perfectly linearly polarized parallel to the extraordinary axis of the

EO crystal, the crystal acts as a variable waveplate, and the output polarization is perturbed at the

rate of the modulation frequency. Subsequent transmission through a polarizing element, such as

a polarizing beam splitter (PBS), leads to amplitude modulation. As one might imagine, perfect

polarization alignment to a time-varying axis is challenging to achieve in realistic situations.

While well-established methods exist to actively cancel or stabilize RAM [54, 55], these ap-

proaches generally utilize nearly dc electric fields applied to a non-resonant EOM, which neces-

sitates large voltages. In the current version of our setup, we opted for an off-the-shelf free-space

resonant EOM as it can be easily driven by standard RF synthesizers11. Therefore, we undertake

passive strategies to reduce the effect of RAM. As the birefringence is temperature dependent, we

thermally contact the EOM outer housing with a copper block to increase the thermal mass of

the crystal’s immediate environment. The EOM is fixed on a 5-axis stage which is mounted on a

ceramic post to insulate the structure from the colder optical breadboard. The air-tight box around

10Other sources include etalon effects between the surfaces of the EO crystal or other optical elements, scattering
effects, and spatial inhomogeneity of the laser beam sampling different regions of the EO crystal. To mitigate the
latter, the beam should not be clipped (e.g., by irises or optical elements), and ideally should not be focused onto the
photodiode.

11Essentially, a simplistic view of a resonant EOM is that it has an RLC tank circuit which amplifies the input ac
electric field on resonance.
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(b)

(a)

Figure 3.3: (a) PDH error signal for locking the ECDL to the high finesse cavity, obtained by
sweeping the laser across the cavity mode and recording the in-loop photodiode signal on an oscil-
loscope triggered to the sweep. As the cavity linewidth is extremely narrow and the free-running
laser frequency drifts very quickly, it is difficult to achieve clean traces. Blue trace, data; red trace,
simulated error signal for F = 3 × 105. Inset: Magnified portion of the carrier error signal dis-
criminator. (b) Noise spectrum measured by the in-loop photodiode with the lock is engaged. The
servo bumps are exaggerated here for visual clarity (their heights are slightly lower for normal
gain settings). The locking bandwidth is about 1.5 MHz. The input offset on the servo is adjusted
to minimize the central spike (note that this action modifies the frequency lock point of the laser
relative to the cavity mode).
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the entire optical setup also further helps mitigate convective heat exchange from the hustle and

bustle of the lab. The next step involves careful alignment of the laser polarization to the crystal’s

extraordinary axis. To do so, we monitor the signal from the photodiode for PDH locking on a

spectrum analyzer centered at the EOM modulation frequency. Importantly, the laser is tuned far

away from a cavity mode (ideally in the middle of two cavity modes) to decouple the photodiode

signal from the cavity response. The RAM signal appears as a small narrow peak at the modu-

lation frequency and may be verified by turning the modulation off or blocking the laser beam.

With the Glan-Thompson (GT) prism initially removed, a pair of half and quarter waveplates (in

series before the EOM) are rotated iteratively to minimize the RAM peak on the spectrum ana-

lyzer, while simultaneously maintaining maximum incident power on the photodiode (e.g., using

the half waveplate before the optical isolator). Once an optimal setting is found, the GT prism

with a high extinction ratio (105:1) is installed between the waveplates and EOM, and oriented

to maximize the transmitted beam through the EOM [Fig. 3.2]. Slight adjustments on the 5-axis

stage on which the EOM is mounted and sequential re-optimization of the cavity alignment using

the penultimate and final mirrors may be necessary. Again, as the orientation of the extraordinary

axis is temperature dependent, this entire process is repeated whenever the ambient conditions of

the lab change throughout the seasons, or before a clock frequency measurement campaign. While

this passive strategy is sufficient for this thesis, as the demand for greater stability inevitably grows,

we anticipate that active RAM servo will become necessary for future work.

3.1.2 Optical frequency comb, and the lab time base

The optical frequency comb is one of the most significant inventions of the past twenty years.

Developed at the turn of the new millennium, frequency combs establish a direct experimental link

between optical and microwave frequencies, and are vastly simpler to operate than archaic and

unwieldy frequency chains. Among the known physical quantities, the phase accumulation of a

wave can be determined with exceptional accuracy because it is measured solely using the method

of counting, which has no fundamental bound on its uncertainty. Conceptually, a frequency value
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Figure 3.4: (a) Electric field as a function of time of a pulsed mode-locked laser; carrier wave
(red), pulse envelope (dotted gray). (b) The corresponding frequency comb spectrum in Fourier
space (green lines). Comb envelope functions after various non-linear processes are illustrated by
the dotted gray cartoon curves. Starting from the fundamental comb spectrum centered around the
laser carrier (1560 nm), a supercontinuum can be generated. Note that the actual 𝑓 –2 𝑓 interfer-
ometry involves broadened comb light in a highly-nonlinear fiber ranging from 1 to 2 𝜇m, unlike
what is shown. The number of comb teeth and their spacing are not drawn to actual scale.
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given in terms of a standardized unit is just the ratio of two integers, of which the denominator

is set and defined. Therefore, the accuracy of a physical measurement fundamentally depends on

how closely we can realize the idealized definition of the unit with real physical apparatus. As

the progenitor quantum device, atomic clocks are unparalleled in their level of fractional stability,

accuracy, reproducibility, and transportability. For this reason, in the current definition of the SI

system of units, the second (unit of time) remains the only quantity referencing a physical object

(the hyperfine clock transition in the cesium atom). In contrast, all other SI units (except for the

mole) are tethered to the SI second and defined by the fundamental constants of nature; i.e., speed

of light, Planck constant, elementary charge, Boltzmann constant, Avogadro constant, luminous

efficacy of 540 THz green light. As discussed in Chapter 1, the larger the operating frequency of a

clock, the more “ticks” (phase cycles) are available for counting in a given length of interrogation

time, and the easier it becomes to make a highly stable and accurate clock. Optical frequency

combs provide the crucial piece of clockwork for frequency metrology above microwave frequen-

cies by enabling accurate measurements of optical-optical and optical-microwave frequency ratios.

Although other techniques also exist, the archetypal frequency comb is generated by a mode-

locked pulsed laser. In our lab, the frequency comb is a piece of commercial equipment based

on a femtosecond erbium-doped fiber laser12. The central idea is that a train of pulses emitted by

a mode-locked laser at repeated intervals (Δ𝑡RR) is a comb of evenly spaced spectral lines in the

frequency-domain [Figs. 3.4(a,b)]. Due to dispersion in the laser cavity, there is a phase offset

(Δ𝜙CEO) between the carrier and the envelope that accumulates from pulse-to-pulse. This phase

offset introduces a frequency offset 𝑓CEO ≃ 1/(Δ𝑡CEO) to the comb teeth, called the carrier-

envelope offset, such that they are not exact harmonics of the repetition rate 𝑓RR ≃ 1/(Δ𝑡RR).

The frequency of the 𝑁-th comb tooth is given by the comb equation [56, 57]

𝑓
(1×)

comb = 𝑁 𝑓RR + 𝑓CEO. (3.2)

Note that the sign of 𝑓CEO may be positive or negative as it is technically a beat between the comb

12Menlo FC1500-250-ULN, with custom add-ons. Upgraded from an older model that we had before 2021.
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with itself [Eq. (3.4)]. Each comb tooth may be considered a continuous wave laser, with a well-

defined phase relationship with the other comb teeth. If Δ𝑡env is the duration of the pulse envelope,

then the resulting comb will be spread around the carrier frequency of the mode-locked laser with

width ∼ 1/(Δ𝑡env). For our comb, this fundamental output13 is centered around 1560 nm with a

full width at half maximum (FWHM; −3 dB point) of about 40 nm. This output is amplified by

a fiber amplifier and made octave spanning using a highly non-linear fiber14, which broadens the

spectrum to the range ∼ 1 𝜇m to 2 𝜇m. Sum frequency generation (SFG) in a non-linear crystal

not only shifts the central comb carrier, but also results in a comb spectrum that has a zeroth comb

tooth at twice the frequency of 𝑓CEO,

𝑓
(2×)

comb = 𝑁 𝑓RR + 2 𝑓CEO. (3.3)

This offers a way to extract 𝑓CEO and self-reference the comb using a so-called 𝑓 –2 𝑓 interferom-

eter. Performing sum frequency generation to the ∼ 2 𝜇m part of the broadened comb and beating

it with the undoubled ∼ 1 𝜇m part on a photodiode, the lowest measured frequency will be

𝑓CEO = 𝑓
(2×)

comb − 𝑓
(1×)

comb. (3.4)

Higher harmonics at 𝑓RR− 𝑓CEO, 𝑓RR, 𝑓RR+ 𝑓CEO, ..., are rejected with a lowpass filter. Importantly,

the sign of 𝑓CEO is defined by Eq. (3.4); i.e., if 𝑓 (2×)comb − 𝑓
(1×)

comb is positive (negative), then we say that

the carrier-envelope offset is positive (negative). A practical method of determining the carrier-

envelope offset sign is outlined below, toward the end of this subsection. Typically, the signal-to-

noise of 𝑓CEO at the corresponding locking electronics on the comb rack is >40 dB in a 100 kHz

resolution bandwidth.

For spectroscopy of Sr2 in this thesis, we typically use lasers in the visible and near-infrared

13The M-Comb module (femtosecond, mode-locked, erbium-doped fiber ring laser) has 6 of these comb outputs at
1560 nm. One of which is used to extract 𝑓CEO (with the 𝑓 –2 𝑓 interferometer inside the P250-XPS-WG module). At
the time of writing, 3 out of the remaining 5 outputs are used to generate comb light at our operational wavelengths
through the various add-ons: M-NIR, M-VIS, and HMP780+760 (these are separate ports).

14Note that this is the same process that produces the M-NIR output.
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(NIR). We already saw that a highly non-linear fiber can broaden the fundamental comb to cover

the NIR. To generate comb light in the visible (e.g. < 800 nm), we first amplify the fundamental

comb output around 1560 nm and perform SFG in a non-linear crystal (periodically-poled lithium

niobate, PPLN), producing a narrow band of comb light centered around 780 nm15. To further

broaden this to useful visible wavelengths, the doubled comb is coupled16 into a specially designed

photonic crystal fiber (PCF) where tiny air holes parallel to the fiber core modify the refractive in-

dex, inducing a frequency chirp on the time-domain laser pulses. The result is a supercontinuum17

of comb light in the range ∼ 600–1000 nm.

To detect the beat between a laser and the frequency comb, we implement the free space18

scheme in Fig. 3.5(a). The laser and comb light are coaligned on polarizing beam splitters (PBS).

A diffraction grating with high resolvance (i.e., having a high number of grating lines per unit

length, and oriented so that as many grating lines are illuminated by the laser beams) helps separate

the redundant portion of the comb spectrum from the relevant laser wavelength, so that only comb

teeth in the vicinity of the laser wavelength is incident on the photodiode. This is vital to acquire a

beat note with a high signal-to-noise ratio. In practice, the power ratio of the laser and comb light

is also optimized (using the waveplate at the PBS just before the grating) to maximize the signal-

to-noise ratio of the beat. The incident polarization on the grating should maximize the diffraction

efficiency at the desired wavelength (i.e., s-polarization versus p-polarization). An iris is placed

before the lens to further block the redundant comb spectrum before a lens focuses the beams onto

a high-bandwidth photodiode.

The photodiode outputs the difference (or beat) frequency of the laser light and the nearest

15This process produces the visible HMP (High Power Measuring Port) outputs. Because the spectral power is
concentrated into fewer comb teeth, beats with continuous wave lasers can be very strong (>33 dB, usually almost 40
dB in a 100 kHz resolution bandwidth).

16This fiber coupling should be occasionally optimized (mirror beam walk) to keep the M-VIS power high (>90
mW measured immediately after the PCF with a power meter at a wavelength setting of 780 nm).

17This is the M-VIS output. As the spectral power is spread out over a larger number of comb teeth, it is often
necessary to optimize the diode current values of the fiber amplifier (controlled by the corresponding channel on the
AC1550) to maximize the comb light at the desired wavelength to acquire strong beats (>33 dB in a 100 kHz resolution
bandwidth).

18Free space beat detection has the advantage of not accruing fiber phase noise, an important source of instability
when performing clock spectroscopy.
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Figure 3.5: (a) Optical (left) and RF electronic (right) setups for a phase lock between a laser and
the frequency comb. In the free space beat detection unit, the laser and the comb light are coaligned
and diffracted by a grating with high resolvance. The diffracted order is made to spread in space
to separate out the wavelengths so that only comb teeth around the relevant laser wavelength are
incident on a high bandwidth photodiode. The photodiode detects the beat of the laser and the
comb, among other frequencies suppressed by a low pass and band pass filter in the RF electronic
chain. (b) Laser-comb beat diagram. We typically utilize positive beats; i.e., the frequency of the
laser (vertical red line with diamond) is greater than that of the nearest comb tooth (green lines).
We reiterate that the magnitude of the frequency of the zeroth comb tooth depends on whether
the comb light derives from the fundamental (i.e, undoubled) output or from comb light that has
undergone sum-frequency generation. The number of comb teeth and their spacing are not drawn
to scale.
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comb tooth (with tooth number 𝑁),

𝑓b ≡ 𝑓laser − 𝑓
(𝑠×)

comb (3.5)

By convention, we say that the beat is positive if 𝑓b > 0, and negative if 𝑓b < 0; see also

Fig 3.5(b). Spectrum analyzers and frequency counters only ever measure the magnitude of an RF

frequency. The sign of 𝑓b can be unambiguously determined by observing whether | 𝑓b | increases

or decreases when either the 𝑓laser or 𝑓RR is changed while keeping the other constant19. For

example, if one observes that | 𝑓b | decreases when 𝑓RR is increased (while 𝑓laser is kept essentially

unchanged), then the beat is positive ( 𝑓b > 0). The photodiode signal is filtered by a lowpass filter

(< 𝑓RR/2) to suppress the beats with adjacent comb teeth (𝑁 ± 1), as well as the beat of the comb

with itself and higher harmonics ( 𝑓RR, 2 𝑓RR, . . . ). It is then amplified by low-noise amplifier(s) and

bandpass filtered at the frequency of the microwave reference ( 𝑓LO), which is generated by a direct

digital frequency synthesizer (DDS) that is referenced to a 10 MHz signal from a microwave clock.

To generate an error signal for the phase-locked loop, the laser-comb beat ( 𝑓b) is mixed down to dc

by the reference microwave frequency. This is then fed to a proportional-integral-differential (PID)

servo controller tuned to maximize the overall locking bandwidth. When the lock is engaged, the

servo controls the frequency actuator on the optical device (either the comb or the laser) to ensure

that 𝑓b = 𝑓LO. Note that robust mixing requires that the power supplied to the LO port of the mixer

matches the specified mixer level. For example, an LO power of +3 dBm should be used for a

level 3 mixer. The mixer’s IF port should be as close as possible to the servo controller, ideally

directly connected with coaxial adapters or a very short coaxial cable. The response of the PID

servo naturally filters out high frequencies in the error signal, and a lowpass filter at the IF output

port is generally not needed. Note that while input dc offsets on phase-locked loop error signals

do not affect the frequency lock point, most stable locks tend to have dc offsets close to zero as it

maximizes the lock capture range.

To determine the sign of the carrier-envelope offset, 𝑓CEO and 𝑓RR are first tuned by hand

19One can tell the direction of the change in 𝑓laser on a wavemeter, and that of 𝑓RR on a frequency counter.
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to their operating values. While leaving 𝑓CEO free running, the servo on 𝑓RR is engaged (see

below) to phase lock the nearest comb tooth to a stable laser (e.g. the master laser described in the

previous subsection). This guarantees that the tooth number 𝑁 and the beat frequency are fixed,

𝑓LO = 𝑓b = 𝑓laser− 𝑓 (𝑠×)comb = 𝑓laser−𝑁 𝑓RR−𝑠 𝑓CEO, where the multiplicative constant 𝑠 = 1 or 2 because

the frequency of the zeroth comb tooth depends on whether the comb light has undergone sum-

frequency generation or not; see Eqs. (3.2) and (3.3). Rearranging, we find that 𝑓RR = ( 𝑓laser − 𝑓b −

𝑠 𝑓CEO)/𝑁 . Note that 𝑓RR is always positive because, by definition, 𝑁 ≥ 0 and the frequency of an

electromagnetic wave is positive. Next, we change | 𝑓CEO | by Δ| 𝑓CEO | to observe the corresponding

change in 𝑓RR on a frequency counter with sub-Hz level resolution (a spectrum analyzer is not

sensitive enough to resolve the change). For example, if the carrier-envelope offset is positive,

increasing | 𝑓CEO | will decrease 𝑓RR by a magnitude 𝑠Δ| 𝑓CEO |/𝑁 . In this manner, the sign of the

carrier-envelope offset is unambiguously determined20. As verification of this procedure and a

sanity check, we measure the absolute frequency of the 1𝑆0 → 3𝑃1 intercombination transition of

atomic 88Sr in free space, finding excellent agreement with the published literature values21.

For the experiments in this thesis, a microwave rubidium clock22 serves as the laboratory

timebase. Its “10 MHz” clock outputs are amplified and split while preserving the exquisitely low

phase noise by a 14-channel distribution amplifier23. All important DDS (including those on the

frequency comb rack), various function generators, and frequency counters are referenced to the

+10 dBm outputs of the distribution amplifier. Many of these synthesizers produce microwave sine

waves that act as reference frequencies for phase-locked loops or to drive AOMs that diffract probe

laser beams, so it is essential that the RF frequencies can be traced back to the laboratory timebase.

Rubidium microwave clocks are known to drift over durations of >1 day [1]; i.e., the “10 MHz” ru-

20Note that specious conclusions will be drawn had we also left the repetition rate free running. This is because
actuating 𝑓CEO also slightly actuates 𝑓RR. This gets multiplied by the large comb tooth number 𝑁 , leading to a
substantial change in the beat frequency 𝑓laser − 𝑓comb that can mask the sign of Δ 𝑓CEO.

21The intercombination wavelength is approximately 689 nm. Naturally, this means using the M-VIS comb spec-
trum, whose zeroth comb tooth is at 2 𝑓CEO. Therefore, measuring the intercombination not only checked the sign of
the carrier-envelope offset but also verified our understanding of the doubling effect that sum-frequency generation
has on the carrier envelope offset.

22SRS FS725
23SRS FS735/11
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bidium clock output may not actually be 10 MHz according to a more accurate standard. Over long

periods, the random walk can accumulate rather large frequency offsets. To alleviate this, for day-

to-day operations, we discipline the rubidium clock to the 1 pulse-per-second (PPS) signal from a

GPS disciplined oscillator (GPSDO)24 with a time constant of approximately 18 hours. This elim-

inates the long-term drift of the rubidium clock at the expense of discretized jumps in frequency

(few parts in 1012) every few hours due to its settability. To obtain a calibration of the rubidium

clock below 10−12 for demanding applications (e.g., clock frequency measurements at the 13-digit

level), we instead leave the rubidium clock free-running (i.e., undisciplined and disconnected from

the GPSDO) and measure its average frequency against a dual-band global navigation satellite sys-

tem (GNSS) receiver25 on a time interval counter. In post-process, the fractional frequency offset

of the rubidium clock is then propagated to “post-correct” all synthesizers and frequency counters

that have been referenced to it; see Chapter 5 for full details, as well as a note of how GPS time

relates to International Atomic Time (TAI) and the SI system of units. Future experiments should

benefit from a microwave standard with better instability (e.g., a cesium beam tube standard or a

hydrogen maser).

𝑓laser, the absolute frequency of the laser light where it becomes coaligned with the comb light,

can thus be fully determined in SI units given knowledge of 𝑓b (equal to the synthesized microwave

frequency 𝑓LO when the phase-locked loop is engaged), 𝑁 (rounded to the nearest integer from

initial estimates using a wavemeter), 𝑓RR (using a frequency counter), 𝑓CEO (using a frequency

counter) and its multiplicative factor 𝑠 ∈ {1, 2}, and the corresponding signs of 𝑓b and 𝑓CEO. The

frequency of the laser light at the molecules may be different compared to where it is coaligned

with the comb because of frequency shifters (e.g. AOMs) in the optical paths. These must be

carefully accounted for when determining molecular and atomic transition frequencies.

Figure 3.6 shows the typical overlapping Allan deviation, 𝜎𝑦 (𝜏), of 𝑓CEO and 𝑓RR, computed

24Connor-Winfield FTS500. GPS L1 signal received by an HP 58532A antenna on the roof of the building and
transferred to the lab with the RavenLink RVL-1 optical fiber setup.

25SparkFun ZED-F9T. A Tallysman TW3972XF antenna receives GPS L1 and L2C signals on the roof of the
building and is transferred to the lab directly via a coaxial cable.
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(b) fRR(a) fCEO

Figure 3.6: Overlapping Allan deviation computed for the (a) carrier-envelope offset and the (b)
repetition rate of the optical frequency comb under typical lock conditions. The frequencies are
counted against a free running rubidium timebase.

from a time series of the relevant frequencies logged by a frequency counter26 with 1 s gate time

and referenced to the lab timebase. Here, the rubidium timebase was left free running, or otherwise,

its discretized settability would set a ∼ 10−12 floor, masking the better short-term instability of 𝑓RR

(referenced to the high-finesse cavity). To stabilize 𝑓CEO, we phase lock 𝑓CEO to a synthesized

microwave frequency at 20 MHz, and 𝑓CEO is directly counted. To optically stabilize 𝑓RR, we

phase lock the beat frequency between the master laser and the nearest comb tooth to another

synthesized microwave frequency at 20 MHz. To count 𝑓RR, we utilize a common trick involving

higher harmonics — we mix the 4th harmonic of the repetition rate with a synthesized microwave

frequency at 980 MHz. Recall that simply shining comb light onto a high bandwidth photodiode

generates the repetition rate (and its harmonics) as a beat of the comb with itself. Higher harmonics

of the repetition rate magnify the detected frequency jitter, allowing the fundamental frequency to

26K+K FXM50, a zero dead time Π-type counter. At the time of this writing, our lab has recently procured the
updated K+K FXE model, which can be set to operate in either Π- or Λ-type counting modes, also with zero dead
time. Λ-type counters afford lower measurement noise by internally averaging the input signal. However, as a note
of caution, extra attention should be paid to the Allan deviation estimator computed from a time series recorded by
Λ-type counters, as the estimator may become distorted or modified [58–60]. While there are no strict rules, a quick
survey of literature in our field reveals that metrology groups tend to utilize counters operated in the traditional Π-type
mode to count beat frequencies for absolute frequency measurements, even if it may not be optimal, perhaps for the
sake of clarity and interpretation.
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be determined within a tighter range, potentially below the counter resolution. The frequency

counter records this down-mixed repetition rate at approximately 20 MHz (since 𝑓RR ≈ 250 MHz),

and this should not be confused with the beat of the master laser and the comb.

As expected27, 𝑓CEO averages as white phase noise (𝜎𝑦 (𝜏) ∝ 𝜏−1 where 𝜏 is the averaging

time), reaching a fractional instability of 10−13 in 104 s. The optically stabilized repetition rate,

𝑓RR, averages slightly slower and reaches a floor of ∼ 2 × 10−13 before rising again. This long-

term behavior is almost certainly due to a combination of residual cavity drift not compensated by

the ramped AOM between the master laser and the reference cavity (see the previous subsection)

and the drift of the rubidium standard (through the frequency counter). Both the “ultralow noise”

frequency comb and the frequency counter contribute negligible noise at this level.

As an aside, we note that techniques to cancel out comb noise exist. In fact, a variation was

implemented in Ref. [18] to suppress the noise of an older comb model we had at that time. These

transfer oscillator schemes [61–63] typically involve real-time cancellation of the carrier-envelope

offset and the repetition rate from the laser-comb beats. In the simplest realization, the carrier-

envelope offset is mixed out from the master laser-comb beat (e.g., 𝑓b,1 + 𝑠 𝑓CEO), and the resulting

frequency (e.g., 𝑓laser,1 − 𝑁1 𝑓RR) is plugged into the reference port of a DDS with high bit count.

The tuning word for the DDS is set to synthesize the frequency (𝑁2/𝑁1) × ( 𝑓laser,1 − 𝑁1 𝑓RR) =

(𝑁2/𝑁1) 𝑓laser,1 − 𝑁2 𝑓RR. Next, the carrier-envelope offset for the slave laser-comb beat with the

same sign is similarly subtracted, and the resulting frequency ( 𝑓laser,2 − 𝑁2 𝑓RR) is phase-locked to

the DDS synthesized frequency by actuating on the slave laser. Thus, a direct relationship between

the master and slave laser is established, with the comb frequencies fully subtracted out; i.e.,

𝑓laser,2 = (𝑁2/𝑁1) 𝑓laser,1. In practice, this is limited by the bit count of the DDS in approximating

the scaling factor 𝑁2/𝑁1, and the mixing process may introduce additional phase noise.

27Because both 𝑓CEO and the counter are phase referenced to the same rubidium standard.
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Figure 3.7: Level diagram and relevant couplings for the optical Bloch equation simulation.

3.2 Toy model of light–molecule interactions

3.2.1 Rotating wave Hamiltonian

The archetypal level structure in this thesis involves at most two non-degenerate 𝐽 = 0 ground

states and three excited sub-levels belonging to a 𝐽′ = 1 state. We turn to the optical Bloch

equations (OBE) to model light-molecule interactions.

The Hamiltonian governing the unitary dynamics in the electric dipole (𝐸1) and rotating-wave

approximation can be written as

Hrwa =

©«

𝛿1 0 Ω1
2 𝜖(1),−1

Ω1
2 𝜖(1),0

Ω1
2 𝜖(1),+1 0

0 𝛿2
Ω2
2 𝜖(2),−1

Ω2
2 𝜖(2),0

Ω2
2 𝜖(2),+1 0

(Ω1
2 𝜖(1),−1)∗ (Ω2

2 𝜖(2),−1)∗ −𝑍split 0 0 0

(Ω1
2 𝜖(1),0)

∗ (Ω2
2 𝜖(2),0)

∗ 0 0 0 0

(Ω1
2 𝜖(1),+1)∗ (Ω2

2 𝜖(2),+1)∗ 0 0 +𝑍split 0

0 0 0 0 0 0

ª®®®®®®®®®®®®®®®¬

. (3.6)

As illustrated in Fig. 3.7, {|1⟩, |2⟩} represent the ground states with angular momentum 𝐽 =

0, 𝑀 = 0, while {|3⟩, |4⟩, |5⟩} represents the excited Zeeman sub-levels with angular momentum
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𝐽′ = 1, 𝑀′ = −1, 0, +1, separated by the Zeeman splitting 𝑍split in angular frequency units. Note

that 𝑀 and 𝑀′ are the projection of the respective total angular momentum onto the lab-frame

quantization axis28. We further augment the state space with |6⟩, whose sole purpose is to collect

population decay from |𝑘⟩, where 𝑘 ∈ {3, 4, 5}. This is typical of molecular rovibronic transitions

having non-diagonal Frank-Condon factors.

We introduce the electric fields of the upleg (pump) and downleg (anti-Stokes) lasers

E 𝑗 =
E0, 𝑗

2
(
𝝐 ( 𝑗) 𝑒

−𝑖𝜔 𝑗 𝑡 + 𝝐∗ ( 𝑗) 𝑒
+𝑖𝜔 𝑗 𝑡

)
, (3.7)

where 𝑗 ∈ {1, 2}, 𝜔 𝑗 is the optical angular frequency, E0, 𝑗 is the electric field amplitude, and

𝛿 𝑗 ≡ 𝜔 𝑗 − 𝜔0, 𝑗 is the angular frequency detuning relative to the 𝑀′ = 0 sub-level with transi-

tion frequency 𝜔0, 𝑗 from the corresponding ground state. We pick the convention that the lasers

propagate along the positive Ŷ-direction and write the polarization vectors as

𝝐 ( 𝑗) = Ẑ cos 𝜃 𝑗 + X̂𝑒𝑖𝜙 𝑗 sin 𝜃 𝑗 , (3.8)

where 𝜃 𝑗 is the polar angle relative to Ẑ and the phase 𝜙 𝑗 parameterizes the degree of circular

polarization.

As in quantum optics, the term 𝝐 𝑒−𝑖𝜔𝑡 corresponds to the annihilation operator, while its com-

plex conjugate 𝝐∗ 𝑒+𝑖𝜔𝑡 corresponds to the creation operator. This distinction is the reason why

there is a difference in the polarization dependence of the effective two-photon Rabi frequency for

a Raman transition (Λ-system) versus a consecutive two-photon transition (Ξ-system); see e.g.,

Ref. [64]. Since the transition from | 𝑗⟩ to |𝑘⟩ involves the annihilation of a photon, the angular

28The relative magnitudes of the trap depth and the induced Zeeman splitting determine the quantization axis. For
example, the quantization axis of 𝑋 (𝑣, 𝐽) states are almost always defined by the lattice polarization because these
states have a negligible magnetic moment. On the other hand, the excited states of (1)0+𝑢 and (1)1𝑢 are magnetic,
and it is more appropriate to take their quantization axis to be that of the applied magnetic field. We say there is
mixed quantization when the lattice polarization is not parallel (e.g. perpendicular) to the applied magnetic field. This
situation can lead to apparent violations of 𝐸1 selection rules [23].
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Rabi frequency29 is

Ω 𝑗 ,𝑘 =
E0, 𝑗

ℏ
⟨𝑘 |d · 𝝐 ( 𝑗) | 𝑗⟩, (3.9)

=
E0, 𝑗

ℏ

∑︁
𝑝

(−1)𝑝𝜖( 𝑗),−𝑝 ⟨𝑘 |𝑑 (1)𝑝 | 𝑗⟩, (3.10)

=
E0, 𝑗

ℏ
⟨𝑘 | |𝑑 (1) | | 𝑗⟩

∑︁
𝑝

(−1)𝑝+1−𝑀 ′
𝑘𝜖( 𝑗),−𝑝

©«
1 1 0

−𝑀′
𝑘
𝑝 0

ª®®¬ , (3.11)

=
E0, 𝑗

ℏ

⟨𝑘 | |𝑑 (1) | | 𝑗⟩
√

3
𝜖( 𝑗),𝑀 ′

𝑘
. (3.12)

In the second step, we express the dot product in terms of the spherical tensors 𝑑 (1)𝑝 and 𝜖( 𝑗),−𝑝,

with 𝑝 ∈ {0,±1}. In the third step, we used the Wigner-Eckart theorem for a transition mediated

by the multipole operator (Q) of rank 𝐿 with component 𝐾 between two states labeled generically

as 𝛼 and 𝛽,

⟨𝛽; 𝐽′, 𝑀′|𝑄 (𝐿,𝜆)
𝐾

|𝛼; 𝐽, 𝑀⟩ = (−1)𝐽′−𝑀 ′ ©«
𝐽′ 𝐿 𝐽

−𝑀′ 𝐾 𝑀

ª®®¬ ⟨𝛽(𝐽′) | |𝑄 (𝐿,𝜆) | |𝛼(𝐽)⟩, (3.13)

where the array with round brackets is the Wigner 3-j symbol. The double-barred ⟨𝛽(𝐽′) | |𝑄 (𝐿,𝜆) | |𝛼(𝐽)⟩

is called the reduced matrix element, and it is simply a number (so it has no components). Here,

𝜆 serves as a clarification symbol and is not a quantum number. 𝜆 = 1(0) for electric (magnetic)

multipoles; i.e., the electric dipole operator 𝑑 (1)𝑝 corresponds to𝑄 (1,1)
𝑝 . The effect of centrifugal dis-

tortion on the spatial wavefunctions is implied by the 𝛼(𝐽), 𝛽(𝐽′) labels. The spherical polarization

components of the laser addressing the state | 𝑗⟩ can be written as

𝜖( 𝑗),0 = cos 𝜃 𝑗 , 𝜖( 𝑗),±1 = ∓ 1
√

2
𝑒𝑖𝜙 𝑗 sin 𝜃 𝑗 , (3.14)

where the angles are defined the same as in Eq. (3.8). Note that (𝜖∗)𝑝 = (−1)𝑝 (𝜖−𝑝)∗ is not equal

29In colloquial speech, the angular sense of this rate quantity (because of the division of [Energy] by the reduced
Planck constant ℏ) is understood under the context in which it occurs, and is just referred to as the “Rabi frequency”.
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to (𝜖𝑝)∗, and that 𝝐∗ · 𝝐 =
∑
𝑝 (−1)𝑝 (𝜖∗)𝑝𝜖−𝑝 = 1. In the final step, we make use of the fact that the

3-j symbol is zero except when 𝑝 = 𝑀′
𝑘
, and that the square of the 3-j symbol is independent of

𝑀′ for the special case 𝐽 = 0 and 𝐽′ = 1,

©«
1 1 0

−𝑀′ 𝑀′ 0

ª®®¬
2

=
1
3
. (3.15)

Equation (3.15) is the reason for the intuitive form of the off-diagonal coupling terms (Ω 𝑗 ,𝑘/2)

in our Hamiltonian [Eq. (3.6)]. That is, defining

Ω 𝑗 ≡
E0, 𝑗

ℏ

⟨𝑘 | |𝑑 (1) | | 𝑗⟩
√

3
, (3.16)

we see that the angular Rabi frequencies Ω 𝑗 ,𝑘 = Ω 𝑗𝜖( 𝑗),𝑀 ′
𝑘

(note that 𝜖−𝑝=±1 = −𝜖𝑝=±1).

Transition rates, Autler-Townes splittings, and light shifts grant experimental access to the

quantity
∑
𝑘 |Ω 𝑗 ,𝑘 |2 when the excited Zeeman sub-levels are unresolved, or when the laser is

far detuned that the sub-levels are effectively degenerate. This presents an advantage because∑
𝑘 |Ω 𝑗 ,𝑘 |2 = |Ω 𝑗 |2 is polarization independent for 𝐽 = 0 → 𝐽′ = 1.

3.2.2 Lindblad master equation

The Lindblad master equation for our system is

d
d𝑡
𝝆 = −𝑖[Hrwa, 𝝆] + D1,2(𝝆) +

∑︁
𝑘=3,4,5

L𝑘 (𝝆), (3.17)

where [,] is the commutator.

To put in the relaxation from |𝑘⟩ to the auxiliary state |6⟩, we compute

L𝑘 (𝝆) = −1
2
{G†

kGk, 𝝆} + Gk𝝆G†
k, (3.18)
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where {,} is the anti-commutator, G†
k ≡

√
Γ|𝑘⟩⟨6| are the so-called jump operators30, Γ is the

excited state linewidth (full width at half maximum) in angular frequency units31, and 𝝆 is the

6 × 6 density matrix for the entire state space. Basically, L𝑘 generates decay terms proportional to

−Γ in the diagonals of |𝑘⟩ and −Γ/2 in the off-diagonals between |𝑘⟩ and |6⟩.

In some cases, it is useful to include a phenomenological decoherence rate Γeff which can be

interpreted as the relative linewidth between the upleg and downleg. This is done by computing

D1,2(𝝆) = −Γeff
2

(P1𝝆P2 + P2𝝆P1) , (3.19)

where Pj ≡ | 𝑗⟩⟨ 𝑗 | are projection operators onto the corresponding diagonal element. D1,2 will

generate decay terms proportional to −Γeff/2 in the off-diagonals between |1⟩ and |2⟩.

The best way to approach this is to numerically solve the time evolution of Eq. (3.17) for the

input parameters Ω 𝑗 , 𝛿 𝑗 , 𝜃 𝑗 , 𝜙 𝑗 , 𝑍split, Γ, and Γeff , with the initial condition 𝜌11(𝑡 = 0) = 1 and

zero for all other entries. Nevertheless, it is instructive to examine several limiting cases to build

our intuition.

3.3 One-photon spectroscopy, the scattering lineshape

We first examine the simple case of one-photon spectroscopy. Here, Ω2 = 0, Γeff = 0 and

population is initially in state |1⟩. Writing out the master equation [Eq. (3.17)], we arrive at the

following set of coupled differential equations,

d
d𝑡
𝜌11 = −

∑︁
𝑘

Im
(
Ω∗

1,𝑘𝜌1𝑘

)
, (3.20)

d
d𝑡
𝜌1𝑘 =

(
−Γ

2
− 𝑖(𝛿1 − 𝑍split,𝑘 )

)
𝜌1𝑘 −

𝑖

2
Ω1,𝑘 (𝜌𝑘𝑘 − 𝜌11), (3.21)

d
d𝑡
𝜌𝑘𝑘 = +Im

(
Ω∗

1,𝑘𝜌1𝑘

)
− Γ𝜌𝑘𝑘 , (3.22)

30Note that there is a typo in the expression for the jump operator in Ref. [46]; there should be a Hermitian conjugate.
31The lifetime is 1/Γ. Whenever in doubt about factors of 2𝜋 concerning frequencies or lifetimes, revert back to the

elementary example of a damped driven harmonic oscillator in classical mechanics.

59



where 𝑍split,𝑘 = −𝑍split, 0, +𝑍split for 𝑘 = 3, 4, 5 respectively, and Im() means the “imaginary part”.

Since Γ for deeply bound 0+𝑢 states is typically larger than Ω, hardly any population accumulates

in |𝑘⟩, and we may approximate 𝜌𝑘𝑘 ≈ 0. Open systems do not have a well-defined “steady state”;

as 𝑡 → ∞, all population gets optically pumped into |6⟩. Nevertheless, we are certainly allowed to

analyze the situation approaching quasi-steady-state conditions, where we set d𝜌1𝑘/d𝑡 to zero and

solve for 𝜌1𝑘 using Eq. (3.21). Substituting the result into Eq. (3.20) and taking the special case

where |𝑍split | ≪ Γ (unresolved Zeeman sub-levels) we get,

d
d𝑡
𝜌11 = − Γ |Ω1 |2

Γ2 + 4𝛿2
1
𝜌11. (3.23)

Therefore, the one-photon scattering rate (summed over all sub-levels) due to the upleg laser is

𝑅sc =
Γ |Ω1 |2

Γ2 + 4𝛿2
1
. (3.24)

The population in the initial state (𝑁 ≡ 𝜌11) thus decays as

𝑁 (𝛿1, 𝑡) = 𝑁0 exp [−𝑅sc 𝑡] = 𝑁0 exp

[
−𝑡 Γ |Ω1 |2

Γ2 + 4𝛿2
1

]
. (3.25)

For cases where the states are non-degenerate (|𝑍split | > Γ), we simply replace Ω1 → Ω1,𝑘 and

𝛿1 → (𝛿1−𝑍split,𝑘 ) and sum over 𝑘 to compute 𝑅sc in Eq. (3.24). As shown in Fig. 3.8, simultaneous

fits to Eq. (3.25) of a peak scan (𝑡 kept constant, 𝛿1 varied) and a decay curve (𝑡 varied, 𝛿1 ≈ 0 kept

constant) allow the accurate extraction of |Ω1 |2, Γ, and the line center (where 𝛿1 = 0).
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Figure 3.8: Black points are single instances of the experiment. Solid red lines are simultaneous
fits according to Eq. (3.25). (a) One-photon lineshape for a bound-to-bound transition, shown
for 𝑋 (62, 0) → (1)0+𝑢 (12, 1) at 789 nm. Here, we take the natural logarithm of the spectroscopy
signal (proportional to the number of molecules). The fit function has the form 𝑦 = −𝑡Γ|Ω1 |2/(Γ2+
4(𝑥 − 𝑥𝑐)2) + const., with 𝑡 fixed. (b) One-photon scattering near resonance (𝛿1 ≈ 0 as close as
possible). The number of molecules decays at the rate of the driven excitation. The fit function
has the form 𝑦 = const. × exp

[
−𝑡Γ|Ω1 |2/(Γ2 + 4(𝑥 − 𝑥𝑐)2)

]
, with 𝑥 fixed. The fitting is performed

simultaneously in both plots; i.e., the bound-to-bound laser power is kept the same between both
sets of data, and the fits share the global parameters Γ, |Ω1 |2, and 𝑥𝑐 (the fit line center). Note that
(𝑥 − 𝑥𝑐) = (𝜔1 − 𝜔0,1) ≡ 𝛿1.
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Figure 3.9: Two-photon Rabi oscillations between 𝑋 (62, 0) and 𝑋 (4, 0) (black circles) in a
magic wavelength optical lattice, averaged over 14 consecutive experimental traces. Also shown
are the normalized population decay of 𝑋 (4, 0) (red squares) and 𝑋 (62, 0) (blue triangles) un-
der the same experimental conditions. Black line: fit in the form 𝑦 = 𝐴 exp(−𝑥/𝑇1) [1 +
exp

(
−𝑥/𝑇Rabi

2
)

cos(𝜔𝑥 − 𝜙)], with 𝐴,𝑇1, 𝑇
Rabi
2 , 𝜔, 𝜙 as free parameters. Red and blue lines are

fitted solutions of the rate equation d𝑁/d𝑡 = −𝑘𝛾𝑁𝛾 with 𝛾 = 1 and 2 respectively. 𝑁 is the
molecular number, and 𝑘𝛾 is a free parameter.
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3.4 Two-photon Raman spectroscopy

3.4.1 Far detuned limit, effective Rabi frequency, and Rabi oscillations

We now focus on two-photon spectroscopy and reinstate Ω2 and Γeff . The master equation

[Eq. (3.17)] gives the following set of coupled differential equations,

d
d𝑡
𝜌11 = −

∑︁
𝑘

Im
(
Ω∗

1,𝑘𝜌1𝑘

)
, (3.26)

d
d𝑡
𝜌1𝑘 =

(
−Γ

2
− 𝑖(𝛿1 − 𝑍split,𝑘 )

)
𝜌1𝑘 − 𝑖

Ω1,𝑘

2
(𝜌𝑘𝑘 − 𝜌11) + 𝑖

Ω2,𝑘

2
𝜌12, (3.27)

d
d𝑡
𝜌12 =

(
−Γeff

2
− 𝑖𝛿

)
𝜌12 + 𝑖

∑︁
𝑘

Ω∗
2,𝑘

2
𝜌1𝑘 − 𝑖

∑︁
𝑘

Ω1,𝑘

2
𝜌𝑘2, (3.28)

d
d𝑡
𝜌2𝑘 =

(
−Γ

2
− 𝑖(𝛿2 − 𝑍split,𝑘 )

)
𝜌2𝑘 − 𝑖

Ω2,𝑘

2
(𝜌𝑘𝑘 − 𝜌22) + 𝑖

Ω1,𝑘

2
𝜌21, (3.29)

d
d𝑡
𝜌22 = −

∑︁
𝑘

Im
(
Ω∗

2,𝑘𝜌2𝑘

)
, (3.30)

d
d𝑡
𝜌𝑘𝑘 = + Im

(
Ω∗

1,𝑘𝜌1𝑘

)
+ Im

(
Ω∗

2,𝑘𝜌2𝑘

)
− Γ𝜌𝑘𝑘 . (3.31)

We define the one-photon (common) detuning Δ ≡ 𝛿2, and the two-photon (Raman) detuning

𝛿 ≡ 𝛿1 − 𝛿2. The reader is reminded that these are angular frequencies. Again, we expect 𝜌𝑘𝑘 ≈ 0

as the population will either be transferred to |2⟩ or optically pumped to |6⟩. In the far detuned

limit where 𝛿1 ≈ 𝛿2 ≡ Δ ≫ |Ω1 |, |Ω2 |, Γ, |𝑍split |, we expect the rate of change of the coherences

d𝜌1𝑘/d𝑡 ≈ 0 and d𝜌2𝑘/d𝑡 ≈ 0. This simplifies the situation, allowing us to solve for 𝜌1𝑘 and 𝜌𝑘2

using Eqs. (3.27) and (3.29),

𝜌1𝑘 ≈
1

2Δ
(
Ω1,𝑘𝜌11 +Ω2,𝑘𝜌12

)
, (3.32)

𝜌𝑘2 = 𝜌∗2𝑘 ≈
1

2Δ

(
Ω∗

2,𝑘𝜌22 +Ω∗
1,𝑘𝜌12

)
. (3.33)
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Substituting Eqs. (3.32) and (3.33) back into Eq. (3.28), we obtain

d
d𝑡
𝜌12 ≈

[
−Γeff

2
− 𝑖

(
𝛿 + |Ω1 |2

4Δ
− |Ω2 |2

4Δ

)]
𝜌12 −

𝑖

2

[∑︁
𝑘

Ω∗
2,𝑘Ω1,𝑘

2Δ

]
(𝜌22 − 𝜌11) . (3.34)

Comparing terms in Eq. (3.34) with the analogous Eq. (3.21), we identify the effective angular

Rabi frequency between the ground states |1⟩ and |2⟩ in our toy model,

Ωeff ≡
∑︁
𝑘

Ω∗
2,𝑘Ω1,𝑘

2Δ
=

∑︁
𝑘

⟨2|d · 𝝐∗2 |𝑘⟩⟨𝑘 |d · 𝝐1 |1⟩
2Δ

. (3.35)

The appearance of 𝝐∗ for the second Raman step is because the downleg creates a photon (see also

the footnote on photon annihilation for Eq. (3.9)). From here, it is easy to see that for the realistic

case of many 𝐽′ excited levels, the effective angular Rabi frequency for a Raman transition is

Ωeff =
∑︁
𝑓

⟨2|d · 𝝐∗2 | 𝑓 ⟩⟨ 𝑓 |d · 𝝐1 |1⟩
2Δ 𝑓

, (3.36)

where | 𝑓 ⟩ is an excited intermediate state, and Δ 𝑓 is the detuning of the Raman probes relative

to | 𝑓 ⟩, addressed from |1⟩, |2⟩. Indeed, on Raman resonance (𝛿 = 0, ignoring the light shifts),

the ground states |1⟩ and |2⟩ undergo Rabi oscillations and the population in the initial state as a

function of time is

𝑁 (𝛿 = 0, 𝑡) ≃ 𝑁0
2

exp (−𝑡/𝑇1)
[
1 + exp

(
−𝑡/𝑇Rabi

2

)
cos ( |Ωeff | 𝑡)

]
, (3.37)

where we have inserted an overall empirical decay factor to account for finite state lifetimes ∼

𝑇1, and define the Rabi “coherence time” 𝑇Rabi
2 ≃ 1/Γeff . Figure 3.9 depicts two-photon Rabi

oscillations between 𝑋 (62, 0) and 𝑋 (4, 0). Here, 𝑇1 = 127(8) ms, and 𝑇Rabi
2 = 77(6) ms (or

equivalently, 19(1) cycles). The oscillations are predominately damped by the loss of 𝑋 (4, 0)

molecules, which has a 1/𝑒 lifetime of 60(2) ms due to lattice-induced one-body losses under the

conditions of that experiment (see also Sec. 5.3.3). 𝑇1 is roughly twice as long as the 1/𝑒 lifetime
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of 𝑋 (4, 0) because the molecules only spend, on average, half the time in this state as they undergo

Rabi oscillations.

Another important takeaway from Eq. (3.34) is its prediction that the Raman resonance will be

light shifted32 by an angular frequency |Ω1 |2/(4Δ) due to the upleg, and −|Ω2 |2/(4Δ) due to the

downleg. In this toy model with just one 𝐽′ = 1 excited state, the total Raman probe light shift is

nulled when the Rabi frequencies are balanced (i.e., |Ω1 | = |Ω2 |).

3.4.2 Weak probe limit, dark resonance, and Autler-Townes doublet

Close to one-photon resonance (Δ ≈ 0) and in the weak probe limit (|Ω1 | ≪ |Ω2 |), we may

approximate 𝜌11 ≈ 1, 𝜌22 ≈ 0, and 𝜌𝑘𝑘 ≈ 0 and we can derive a general analytical expression

for the excitation lineshape when both Raman lasers are applied. Again we examine the simple

case where |𝑍split | ≪ Γ (unresolved Zeeman sub-levels) so that effectively 𝑍split ≈ 0. Discarding

negligible terms 𝑂 (Ω1/Ω2),

d
d𝑡
𝜌11 ≈ −

∑︁
𝑘

Im
(
Ω∗

1,𝑘𝜌1𝑘

)
, (3.38)

d
d𝑡
𝜌1𝑘 ≈

(
−Γ

2
− 𝑖𝛿1

)
𝜌1𝑘 + 𝑖

Ω1,𝑘

2
+ 𝑖Ω2,𝑘

2
𝜌12, (3.39)

d
d𝑡
𝜌12 ≈

(
−Γeff

2
− 𝑖𝛿

)
𝜌12 + 𝑖

∑︁
𝑘

Ω∗
2,𝑘

2
𝜌1𝑘 , (3.40)

Since here 𝜌11 ≈ 1, the first equation immediately implies that the rate of excitation out of |1⟩ is

𝑅sc =
∑
𝑘 Im

(
Ω∗

1,𝑘𝜌1𝑘

)
. Again, to find the excitation rate approaching steady-state conditions, we

set ¤𝜌12 ≈ ¤𝜌1𝑘 ≈ 0. We first solve for 𝜌12 using Eq. (3.40) and substitute the result into Eq. (3.39).

Then, multiplying through by Ω∗
2,𝑘 and taking the sum over 𝑘 allows one to solve for

∑
𝑘 Ω

∗
2,𝑘𝜌1,𝑘 ,

which we substitute back into Eq. (3.39) using the expression for 𝜌12 to solve for 𝜌1𝑘 . Finally,

32See also Eq. (3.46).
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using 𝑅sc =
∑
𝑘 Im

(
Ω∗

1,𝑘𝜌1𝑘

)
, we find

𝑅sc =
Γ

Γ2 + 4𝛿2
1

(3.41)

×
[
|Ω1 |2 −

(∑︁
𝑘

Ω∗
1,𝑘Ω2,𝑘

) (∑︁
𝑘

Ω1,𝑘Ω
∗
2,𝑘

)
|Ω2 |2 − 8𝛿𝛿1 + ΓeffΓ(1 − 4𝛿2

1/Γ
2)

| |Ω2 |2 + (Γ + 2𝑖𝛿1) (Γeff + 2𝑖𝛿) |2

]
.

Note the absolute square in the denominator of the fraction can be expanded to

( |Ω2 |2 + ΓΓeff − 4𝛿1𝛿)2 + 4(Γ𝛿 + Γeff𝛿1)2.

Equation (3.41) has been verified against numerical solutions of the master equation [Eq. (3.17)].

It is also immediately clear from the second term of Eq. (3.41) that the Raman, two-photon effect

vanishes for our case (𝐽 = 0 ↔ 𝐽′ = 1) when the Raman lasers have orthogonal polarizations.

Taking the exponential just as before, the general lineshape in the weak probe limit is

𝑁 (𝛿, 𝛿1, 𝑡) = 𝑁0 exp [−𝑅sc𝑡] . (3.42)

For the ideal case where the Raman lasers have exactly the same polarization (i.e. 𝜃1 = 𝜃2, 𝜙1 =

𝜙2), we have
(∑

𝑘 Ω
∗
1,𝑘Ω2,𝑘

) (∑
𝑘 Ω1,𝑘Ω

∗
2,𝑘

)
= |Ω1 |2 |Ω2 |2 since both ground states have 𝐽 = 0.

Thus Eqs. (3.41) and (3.42) further simplify to

𝑁 (𝛿, 𝛿1, 𝑡) = 𝑁0 exp

[
−𝑡 Γ|Ω1 |2

Γ2 + 4𝛿2
1

(
1 − |Ω2 |2

|Ω2 |2 − 8𝛿𝛿1 + ΓeffΓ(1 − 4𝛿2
1/Γ

2)
| |Ω2 |2 + (Γ + 2𝑖𝛿1) (Γeff + 2𝑖𝛿) |2

)]
, (3.43)

where the single-photon and two-photon effects are separated into distinct terms. If we set |Ω2 | = 0,

we immediately recover Eq. (3.25). Equation (3.43) is also valid in the case where the excited state

structure is very well separated such that one effectively addresses a three-level Λ-system.

As shown in Fig. 3.10, Eq. (3.43) is an excellent fit to the experimental data. Here, the upleg

addresses 𝑋 (62, 0) → (1)0+𝑢 (11, 1) and the downleg addresses 𝑋 (0, 0) → (1)0+𝑢 (11, 1). For

|Ω2 | ≪ Γ and pulse durations within the Raman coherence time (𝑡 ≲ 1/Γeff), as in Fig. 3.10(a),
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Figure 3.10: Progression from EIT (free space) to the Autler-Townes doublet. Black points, single
shot of the experiment. Red lines, fits to Eq. (3.43). The EIT fit in (a) only has two free parameters;
𝛿2, Γeff . This is because 𝑡 is set by the experimental sequence, and |Ω1 |, Γ and the line center (where
𝛿1 = 0) are determined from one-photon spectroscopy. |Ω2 | in (a) is extrapolated from (f), a linear
fit of |Ω2 |2 versus the downleg power. The respective |Ω2 | for the Autler-Townes doublets (b,c,d,e)
may be extracted by fitting either to Eq. (3.43) as an additional free parameter, or to the sum of two
Lorentzians (blue dashed lines), which is a valid approximation when |Ω2 | ≫ Γ.
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we observe the appearance of a narrow peak embedded within the broader one-photon depletion

when we scan the upleg across the excited state33. This phenomenon is called electromagnetically

induced transparency (EIT). The narrow peak34 is called a dark resonance which occurs when

the two-photon condition is met (𝛿 ≈ 0).

For increasingly large downleg laser powers (|Ω2 | ≫ Γ), as in Figs. 3.10(b,c,d,e), the EIT

lineshape progressively becomes an Autler-Townes doublet. The Autler-Townes effect can be

easily understood in the dressed state picture. The downleg laser dresses |2⟩, forming a pair of

dressed states with |4⟩ (ignoring |3⟩ and |5⟩ for simplicity). As a generic feature of quantum

mechanics, the coupling of |2⟩ and |4⟩ by the downleg repels the dressed states.

To understand this analytically, consider the effective Hamiltonian between |2⟩ and |4⟩,

𝐻2 =
©«
Δ

Ω2
2

Ω∗
2

2 0

ª®®¬ .
Diagonalization of this Hamiltonian results in the eigenvalues of the dressed states

𝐷± =
Δ

2
±

√︁
|Ω2 |2 + Δ2

2
. (3.44)

Depletion from |1⟩ occurs when the weak upleg laser addresses the pair of dressed states, resulting

in the appearance of a doublet in the spectrum. Let 𝐷+ (𝐷−) be the line center of the right-side

(left-side) peak relative to the bare resonance35. Hence, we see that

(𝐷+ − 𝐷−)2 = Δ2 + |Ω2 |2 (3.45)

Keeping the downleg laser intensity constant, the square of the doublet separation (𝐷+ − 𝐷−)2

33As mentioned, the sharpness and “height” of the EIT peak depends on the level of light-molecule coherence.
As such, the lattice light will have to be shuttered off momentarily for a non-magic trap during the Raman pulse
to eliminate differential lattice-induced light shifts. Typical pulse durations to achieve results like Fig. 3.10(a) are
≲ 100 𝜇s. Additionally, the relative polarizations of the up and down leg should be made as parallel as possible.

34Often the dark resonance may appear asymmetric due to lattice or probe light shifts, or if the downleg is slightly
detuned from the excited state. In the latter case, the lineshape resembles a Fano resonance.

35Bare resonance being the situation when |Ω2 | = 0
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versus Δ is a parabola whose minimum is |Ω2 |2, as illustrated by Figs. 3.11(a,b). Furthermore, the

plot of (𝐷+ −𝐷−)2 versus 𝐼downleg, the intensity of the downleg (anti-Stokes) laser is a straight line

with a vertical intercept equal to Δ2 (see e.g., Fig. 3.10(f) but note Δ ≡ 𝛿2 ≈ 0 for that dataset).

In either case, we have an all-frequency way36 of determining |Ω2 |2 and the frequency splitting

of the ground states37, especially for states that are not initially populated. Moreover, (𝐷+ − 𝐷−)2

is robust against various effects such as reference cavity drift, the overall trap-induced light shift,

shot-to-shot signal fluctuations, and the fit lineshape for the doublet. By adjusting the experimental

conditions (e.g., applied magnetic field strength) so that we measure the parabola in the regime

where |Δ| > |𝑍split |, the extracted |Ω2 |2 is insensitive to laser polarization and are effectively

between the 𝑀 = 𝑀′ = 0 sub-levels for 𝐽 = 0 and 𝐽′ = 1. Two-photon photoassociation (PA)

starting from a sample of atoms is another example where Autler-Townes splittings were used to

determine bound-to-bound molecular transition strengths [18, 29, 30]; e.g., Figs. 3.11(a,b).

Lastly, we observe that taking the far detuned limit (Δ ≫ |Ω2 |), Eq. (3.44) becomes

𝐷+ ≈ Δ + |Ω2 |2
4Δ

, 𝐷− ≈ − |Ω2 |2
4Δ

. (3.46)

This result is general and implies that a laser, far detuned from a transition between two levels,

induces an angular frequency shift equal to +|Ω2 |2/(4Δ) on the lower state, and −|Ω2 |2/(4Δ) on

the upper state. Generalization to multiple excited levels naturally leads to the microscopic sum-

over-states formula for polarizability (see Sec. 5.1.3).

3.5 Results and analysis

3.5.1 𝑋1Σ+
𝑔

We perform dark-resonance spectroscopy to locate the bound states of 𝑋1Σ+
𝑔 (or 𝑋0+𝑔). The

upleg is locked on resonance with 𝑋 (62, 0) → (1)0+𝑢 (11, 1) and we adjust the laser power and

pulse time such that we achieve nearly full depletion without bleaching the spectroscopic signal
36Complementary to the method involving power broadening and transition rates described in Sec. 3.3.
37From the frequency difference of the up and downleg lasers at the molecules or atoms.
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Figure 3.11: Two-photon PA and Autler-Townes spectroscopy. (a) Autler-Townes doublet as the
upleg is scanned across the free-to-bound PA transition 1𝑆0 + 1𝑆0 → 0+𝑢 (−4, 1), while keeping
the downleg (anti-Stokes) at a fixed detuning, Δ, from the bound-to-bound transition 𝑋 (61, 0) →
0+𝑢 (−4, 1). Here, we start with a sample of lattice-confined atoms. The fit function includes thermal
broadening and skewing effects for PA in a 1D lattice; for details, see Ref. [23]. (b) Top: frequency
splitting of the right- and left-side peaks (corresponding to the location of the color-coded arrows
in the callout for a given Δ), illustrating the avoided crossing. Bottom: the square of the angular
frequency splitting (𝐷+ − 𝐷−)2 plotted against Δ is a parabola with a minimum value of |Ω2 |2.
Residuals have the same units as the plot.
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Figure 3.12: Comprehensive laser spectroscopy of 𝑋1Σ+
𝑔 in 88Sr2. (a) The binding energies of all

63 vibrational states with 𝐽 = 0. (b) The rotational splitting (𝐽 = 2 − 𝐽 = 0) for each vibrational
state. See also Table 3.4.

(photofragments of 𝑋 (62, 0)). When the downleg is on resonance with a 𝑋 → 0+𝑢 transition,

(1)0+𝑢 (11, 1) gets light shifted away, 𝑋 (62, 0) is no longer depleted, and we recover the spectro-

scopic signal.

For 𝑣 = 0–8 and 𝐽 = 0, we gradually lower the downleg power to further narrow the dark

resonance, enabling the vibrational splittings relative to 𝑋 (62, 0) to be determined with sub-MHz

accuracy. For these states, we corrected for the leading lattice light shift systematic and used a

frequency comb to determine the corresponding difference frequencies of the Raman lasers. These

vibrational splittings are reported in Table 3.1.

For spectroscopy of the remaining levels, we use a widely tunable Ti:sapphire laser as the

downleg. To speed up the process of locating the states, here the downleg is rather intense (∼500

W cm−2), and we measure the vibrational splittings by reading off the Raman laser on a wavelength

meter.

Ultimately, we successfully find all 63 vibrational states with 𝐽 = 0 and 2 in 𝑋1Σ+
𝑔 for the 88Sr2

isotopologue. The binding energies relative to 1𝑆0 + 1𝑆0 and rotational splittings are shown in

Figs. 3.12(a,b), and listed in Table 3.4. To calculate the binding energies from the measured vibra-

tional splittings, we take the binding energy of 𝑋 (62, 0) to be 136.6447(50) MHz from Ref. [31].

The short-range behavior of an isolated potential can be modeled with the simple Morse poten-
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tial,

𝑉M(𝑅) = 𝐷𝑒

[
1 − 𝑒−𝛽(𝑅−𝑅𝑒)

]2
− 𝐷𝑒, (3.47)

where 𝐷𝑒 is the potential depth, 𝑅𝑒 = 1
2𝜋

√︁
ℎ/(2𝜇2𝑐𝐵𝑒) is the equilibrium bond length, 𝛽 ≡

2𝜋
√︁

2𝜇2𝜔𝑒𝑥𝑒𝑐/ℎ, and 𝜇2 is the reduced mass of the dimer; i.e. 𝜇2 ≡ (1/𝑚Sr + 1/𝑚Sr)−1 = 𝑚Sr/2,

where 𝑚Sr is the mass of atomic 88Sr.

In the presence of vibrational-rotational interaction, the energy levels can be characterized by

the leading terms of the Dunham expansion (in units of cm−1),

𝐸 (𝑣, 𝐽) = −𝐷𝑒 + 𝜔𝑒
(
𝑣 + 1

2

)
− 𝜔𝑒𝑥𝑒

(
𝑣 + 1

2

)2
+

[
𝐵𝑒 − 𝛼𝑒

(
𝑣 + 1

2

)] [
𝐽 (𝐽 + 1) −Ω2] , (3.48)

where 𝜔𝑒, 𝑥𝑒, 𝐵𝑒 and 𝛼𝑒 are the vibrational, anharmonicity, rotational and vibration-rotation cou-

pling spectroscopic constants respectively. We expect this to be valid for deeply bound states of

𝑋1Σ+
𝑔 . The 𝐽 = 0, 2 rotational splitting for Ω = 0 is

𝐸 (𝑣, 2) − 𝐸 (𝑣, 0) = 6
[
𝐵𝑒 − 𝛼𝑒

(
𝑣 + 1

2

)]
. (3.49)

For a quick comparison of our spectroscopy with older studies involving Fourier transform

spectra in a heatpipe [15, 65], we simultaneously fit the measured binding energies of the first nine

levels (𝑣 = 0–8), plotted against (𝑣 + 1/2), to Eqs. (3.48) and (3.49). The extracted spectroscopic

constants are listed in Table 3.2. We find good agreement with the parameters reported in Refs. [15,

65] that are weighted across several isotopologues.

3.5.2 (1)0+𝑢

The quantum chemistry of the excited potentials is particularly rich, and previous work from

our group studied the properties of weakly bound states near the intercombination line [18, 22, 23,

29, 30, 66]. In the current subsection and the next, we concentrate on the deeply bound states of

(1)0+𝑢 and (1)1𝑢.
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Table 3.1: Precise sub-MHz vibrational splittings of the first nine irrotational (𝐽 = 0) levels of
𝑋1Σ+

𝑔 with respect to 𝑋 (62, 0) in 88Sr2. For 𝑣 = 0, 4, 6, 8, we quote measurements from Raman
clock spectroscopy in a magic wavelength lattice (see also Table 5.1). The rest are determined
using dark resonance spectroscopy (line centers extrapolated to zero lattice intensity). Note that
these vibrational splittings are not the binding energies. To obtain the latter, the binding energy of
𝑋 (62, 0) will have to be added to these splittings. Values are given in units of MHz.

𝑋 (𝑣, 0) Vibrational splitting wrt. 𝑋 (62, 0)
0 31 825 183.207 593(5)

1 30 640 159.793(25)

2 29 479 060.993(27)

3 28 341 865.710(26)

4 27 228 546.843(10)

5 26 139 071.677(26)

6 25 073 401.504(10)

7 24 031 492.503(26)

8 23 013 294.901(10)

Table 3.2: Spectroscopic constants of 𝑋1Σ+
𝑔 in 88Sr2 estimated from fitting the measured binding

energies of the first nine states (𝑣 = 0–8) to those of a simple vibrating-rotator.

Spectroscopic constant Value (cm−1)

𝐷𝑒 -1081.6382(7)

𝜔𝑒 40.3186(6)

𝜔𝑒𝑥𝑒 -0.39746(7)

𝐵𝑒 0.017579(6)

𝛼𝑒 -1.76(1)×10−4
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Deeply bound (1)0+𝑢 (𝐽′ = 1) states are accessible from weakly bound ground state molecules

with laser light in the range ∼700–850 nm. We perform one-photon spectroscopy to locate the

states using a highly tunable Ti:sapphire laser. With a sample of 𝑋 (62, 0) molecules, we directly

excite the first 37 vibrational levels of (1)0+𝑢 with 𝐽 = 1. We further measure the binding energies

of 𝑣′ = 9–20 to sub-MHz accuracy with the frequency comb, scanning over each resonance with

an acousto-optic modulator and finding the line centers with the method described in Sec. 3.3. All

known states assigned to (1)0+𝑢 with 𝐽′ = 1, 3 are consolidated in Table 3.5.

There is no experimental hurdle to locating higher excited states beyond those found in this

work. However, we have observed that additional, nearly degenerate states start to appear in the

spectra around -750 cm−1. Some of these almost certainly belong to (2)0+𝑢 , as anecdotally, they are

weaker, necessitating greater laser intensities to completely deplete the initial molecular sample.

For example, starting from 𝑋 (62, 0) molecules, we have found additional resonances when the

laser frequencies are tuned to 413.923,36 THz, 414.726,41 THz, 415.493,19 THz, and 415.826,80

THz. Proper assignment of intermediately bound states and the exploration of (2)0+𝑢 are left to

future work.

As mentioned in Sec. 2.2, the (1)0+𝑢 relativistic potential is mostly a superposition of 𝐴1Σ+
𝑢

and 𝑐3Π𝑢. The effect of the spin-orbit coupling is manifest in the binding energies of (1)0+𝑢 at the

avoided crossing. Figure 3.13 plots the binding energies of the deeply bound states with 𝐽′ = 1

found by direct excitation in this work (black squares). As can be seen, there is a marked alteration

in the trend of the binding energies near −1500 cm−1 with respect to the 1𝑆0 + 3𝑃1 threshold.

For 𝑣′ ≲ 15, there is good agreement with the prescribed Dunham expansion from Ref. [17],

where the potential parameters for 𝐴1Σ+
𝑔 were determined from observations of transitions between

deeply bound vibrational states of the ground and excited potentials with high angular momenta

(𝐽, 𝐽′ ∼ 100). For comparison, we also plot the binding energies computed from solving the

Schrodinger equation using the Morse/Long-range potential and the ab initio potential, taken from

Refs. [18] and [16] respectively. The location of (and the shape of the potential at) the crossing

is challenging to model from first principles. As a result, the total number of vibrational states in
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(1)0+𝑢 is 83 using the Morse/Long-range model, but 110 using the ab initio model.

3.5.3 (1)1𝑢

Deeply bound states of (1)1𝑢 with odd 𝐽′, below the potential minimum of (1)0+𝑢 , are pre-

dominantly of 𝑎3Σ+
𝑢 character and have not been observed before this thesis and Ref. [32]. A

consolidation of all known (1)1𝑢 states so far is given in Table 3.6. Figure 3.14 plots the binding

energies of deeply bound (1)1𝑢 states with 𝐽′ = 1 measured in our experiment.

Owing to vanishing transition strengths from weakly bound 𝑋1Σ+
𝑔 states, without an additional

state preparation step (e.g., STIRAP to deeply bound 𝑋1Σ+
𝑔 states), spectroscopy of the deeply

bound, short-range part of (1)1𝑢 will have to be indirect. Indirect 𝑋 → 1𝑢 transitions are observed

as lattice-driven polarizability resonances (see Sec. 5.3.2). Before Ref. [18], we used the ab initio

model of Ref. [16] to assign the vibrational quantum numbers 𝑣′ by matching the measured binding

energies with the closest values calculated from the model despite substantial discrepancies on the

order of ∼ 10 cm−1, much greater than the typical error from the wavemeter instrument (HighFi-

nesse, WS6-200). At the time, only seven deeply bound (1)1𝑢 levels with 𝐽′ = 1 had been located.

These were labeled as 𝑣′AI = 1–3, 19–22, where the subscript “AI” explicitly reminds us that these

assignments used the less accurate ab initio model and are therefore erroneous.

Another hint that the ab initio (1)1𝑢 model is inadequate in the short-range came from transition

strength measurements, which we will discuss in Sec. 5.3.2. While the binding energy data were

insufficient to determine the 𝑣′ labels (unless the absolute ground vibrational state 𝑣′ = 0 has been

found), it is possible to figure out the differences in 𝑣′. Since (1)1𝑢 is unperturbed in the short-

range, we model its behavior with the simple Morse potential [Eq. (3.47)]. Next, we take the

difference of adjacent vibrational energy levels for 𝐽′ = 1. Using Eq. (3.48), we get

𝐸 (𝑣′ + 1, 1) − 𝐸 (𝑣′, 1) = (𝜔𝑒 − 2𝛼𝑒) − 2𝜔𝑒𝑥𝑒 (𝑣′ + 1). (3.50)

Therefore, plotting this difference against 𝑣′ + 1 should yield a straight line with a slope equal to
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Figure 3.13: Binding energies of deeply bound (1)0+𝑢 states with 𝐽′ = 1 relative to 1𝑆0 + 3𝑃1.
Black squares, measured by direct one-photon excitation from 𝑋 (62, 0) as a result of this work
and Ref. [46]. Purple crosses, extrapolated to 𝐽′ = 1 states using the Dunham expansion and
empirically determined (but isotopologue averaged) potential parameters for 𝐴1Σ+

𝑢 from Ref. [17].
Orange diamonds, calculation using the Morse/Long-range potential from Ref. [18]. Gray open
diamonds, ab initio calculation from Ref. [16].
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Figure 3.14: Binding energies of deeply bound (1)1𝑢 states with 𝐽′ = 1 relative to 1𝑆0 + 3𝑃1.
Black squares, measured either by direct one-photon excitation from deeply bound 𝑋1Σ+

𝑔 states or
from dispersive lattice-driven resonances as a result of this work and Refs. [18, 46, 67]. Orange
diamonds, calculation using the Morse/Long-range potential from Ref. [18]. Gray open diamonds,
ab initio calculation from Ref. [16].
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Figure 3.15: (a) Adjacent vibrational splittings of 1𝑢 (𝑣′, 1), plotted against 𝑣′ + 1. (b) Rotational
splittings between 𝐽′ = 3 − 𝐽′ = 1, plotted against 𝑣′ + 1

2 . Solid red lines are linear fits to the data.
The intercepts with the vertical axis are 𝜔𝑒 − 2𝛼𝑒 and 10𝐵𝑒 respectively. At the time of Ref. [18],
only the states shown in this figure were available. Subsequent experiments in this thesis have
found more deeply bound (1)1𝑢 states, which are listed in Table 3.6.
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−2𝜔𝑒𝑥𝑒 that is insensitive to an overall offset in the 𝑣′ labels [Fig. 3.15(a)]. The best fits, judged

based on the reduced-𝜒2 statistic, are obtained if there are 15 intermediate vibrational states in

between the two groups. This implies that 𝜔𝑒𝑥𝑒 = 0.21150(28) cm−1.

To determine 𝛼𝑒, we measure the rotational splitting of 𝐽′ = 1, 3 for various 𝑣′. Using Eq. (3.48)

for |Ω| = 1, we see that the rotational splitting

𝐸 (𝑣′, 3) − 𝐸 (𝑣′, 1) = 10𝐵𝑒 − 10𝛼𝑒
(
𝑣′ + 1

2

)
, (3.51)

so that plotted against 𝑣′+ 1
2 the slope of the linear fit is −10𝛼𝑒 and insensitive to an overall offset in

the 𝑣′ labels. To attain the required accuracy and precision, we perform one-photon spectroscopy

of 𝐽′ = 1, 3 states using an additional laser on a sample of deeply bound 𝐽 = 2 ground state

molecules38; specifically 𝑋 (6, 𝐽 = 2) for this study. We use short probe pulses (∼ 100 𝜇s) and

low probe intensities to avoid bleaching the signal or power broadening the peaks. We linearly

extrapolate the line centers to zero lattice power and determine the 𝑋 → 1𝑢 resonance frequencies

and rotational splittings with the frequency comb. Table 3.6 lists the measured rotational splittings,

and Fig. 3.15(b) shows the linear fit, from which we extract 𝛼𝑒 = 7.068(11) × 10−5 cm−1.

Next, we observe that for the linear fits in Figs. 3.15(a,b), the vertical intercepts are (𝜔𝑒 − 2𝛼𝑒)

and 10𝐵𝑒, respectively, only if accurate knowledge of the 𝑣′ labels are available. As we will see in

Sec. 5.3.2, we can simultaneously reproduce the measured trends of the transition strengths from

𝑋 (6, 0) and the spectroscopic constants only if the vibrational quantum numbers are 𝑣′ = 5–7,

23–26. With this at hand, we finally extract 𝜔𝑒 = 83.528(13) cm−1 and 𝐵𝑒 = 0.021933(3) cm−1.

The equilibrium bond length is calculated using 𝑅𝑒 = 1
2𝜋

√︁
ℎ/(2𝜇2𝑐𝐵𝑒) = 7.9027(5) 𝑎0. Lastly,

we note that the actual potential depth, 𝐷𝑒, relative to 1𝑆0 + 3𝑃1 will be overestimated by the

standard formula 𝜔2
𝑒/(4𝜔𝑒𝑥𝑒) for the simple Morse model because it does not extrapolate well to

the long-range. Instead, we determine 𝐷𝑒 by fitting the binding energies [Table 3.6] versus 𝑣′ + 1
2

to Eq. (3.48), with 𝛼𝑒, 𝜔𝑒𝑥𝑒, and 𝜔𝑒 held fixed to the values above. The vertical intercept of the

38In the work of Ref. [18], we had not implemented our STIRAP transfer technology. So 𝑋 (6, 2) molecules were
inefficiently prepared with a long stimulated Raman pulse from 𝑋 (62, 0) in a non-magic lattice. We complete a
roundtrip to transfer the population back to 𝑋 (62, 0) for detection.
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quadratic fit is 2𝐵𝑒 − 𝐷𝑒. Knowing 𝐵𝑒, we find 𝐷𝑒 = 6387.89(11) cm−1.

Our measurements imply that the ab initio model underestimates 𝐷𝑒 by approximately 300

cm−1 (5% relative difference); see also Fig. 3.16. This is confirmed in subsequent work (see

Fig. 3.14 and Table 3.6) via the direct one-photon excitation of the predicted bound states (1)1𝑢 (𝑣′ =

1–4, 1) from samples of 𝑋 (0, 0) and 𝑋 (0, 2) created using STIRAP (see Chapter 4). Unfortunately,

the rovibrational ground state (1)1𝑢 (0, 1) was ever-so-slightly out of reach; addressing the state

from 𝑋 (0, 0) requires laser radiation at 1085 nm, which was not available in our lab at the time of

the study.

3.5.4 Morse/Long-range potentials for (1)1𝑢 and (1)0+𝑢

To combine the new insight about the short-range of (1)1𝑢 with the reliability of the ab ini-

tio calculation in the long-range, we recast both the ab initio (1)1𝑢 and (1)0+𝑢 potentials in the

Morse/Long-range (MLR) form [68, 69]. This is because a simultaneous fit of the long-range co-

efficients for both (1)0+𝑢 and (1)1𝑢 potential curves is necessary to correctly describe the heavily

Coriolis-mixed states (1)0+𝑢 (−6, 1) and (1)1𝑢 (−3, 1).

A key strength of the Morse/Long-range form is its ability to accurately bridge between regions

of a potential where data is unavailable. We fit39 to the spectroscopic data shown in Tables 3.5

and 3.6, while fixing the depth 𝐷𝑒 and the equilibrium distance 𝑅𝑒 of the (1)1𝑢 potential at their

empirical values found in the previous subsection.

The Morse/Long-range (MLR) potential as a function of internuclear separation 𝑅 has the form

𝑉MLR(𝑅) = 𝐷𝑒

[
1 − 𝑢LR(𝑅)

𝑢LR(𝑅𝑒)
𝑒−𝜙(𝑅)𝛾𝑝 (𝑅)

]2
, (3.52)

39Note that at the time the fitting was performed, only the states listed in the Supplemental Material of Ref. [18] were
available. A refit with newly available data in this thesis should allow the potential parameters to be more accurately
determined (especially for (1)0+𝑢 in the short- and intermediate-range), which we leave to future work.
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(1)1u

Figure 3.16: Comparision of the ab initio [16] and Morse/Long-range [18] models for the (1)1𝑢
potential. The Morse/Long-range potential is more accurate, especially at short-range, near the
potential minimum.
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where

𝑢LR(𝑅) = −𝐶3

𝑅3 − 𝐶6

𝑅6 − 𝐶8

𝑅8 − 𝐶10

𝑅10 , (3.53)

𝜙(𝑅) = [1 − 𝛾ref
𝑝 (𝑅)]

𝑁∑︁
𝑖=0

(𝛾ref
𝑞 (𝑅))𝑖𝜙𝑖 + 𝛾ref

𝑝 (𝑅)𝜙∞,

𝜙∞ = ln
(

2𝐷𝑒

𝑢LR(𝑅𝑒)

)
,

𝛾𝑝 (𝑅) =
𝑅𝑝 − 𝑅𝑝𝑒
𝑅𝑝 + 𝑅𝑝𝑒

,

𝛾ref
𝑝 (𝑅) =

𝑅𝑝 − 𝑅𝑝ref

𝑅𝑝 + 𝑅𝑝ref
.

The initial conditions for fitting are the ab initio results from Skomorowski et al [16]. Details

regarding the fitting procedure can be found in Refs. [18, 19]. The resulting parameters are given

in the upper half of Table 3.3. The spectroscopic constants for (1)1𝑢 are listed in the lower half of

Table 3.3.
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Table 3.3: Morse/Long-range potential parameters of (1)0+𝑢 and (1)1𝑢 in specified units. Also
listed are the spectroscopic constants determined from deeply bound (1)1𝑢 states.

(1)0+𝑢 (1)1𝑢
𝑅𝑒 (𝑎0) 7.5443 7.9027

𝐷𝑒 (cm−1) 2784 6388

𝐶3 (𝐸h𝑎
3
0) 1.5235661 × 10−2 7.6178307 × 10−3

𝐶6 (𝐸h𝑎
6
0) 3.8947894 × 103 4.0390241 × 103

𝐶8 (𝐸h𝑎
8
0) 4.5157846 × 105 7.7660490 × 105

𝐶10 (𝐸h𝑎
10
0 ) 3.296 × 107 1.3253 × 108

𝑝 9 9

𝑞 4 4

𝑅ref (𝑎0) 8.2987 8.6930

𝜙0 -0.63810976 -1.2454828

𝜙1 3.5917033 -0.19418436

𝜙2 7.7175691 -1.8890781

𝜙3 0.57800325 -3.1121912

𝜙4 -29.3700406 -6.0245946

𝜙5 -23.080778 -5.6268047

𝜙6 54.044018 -3.3425721

𝜙7 91.862114 -0.0028626398

𝜙8 35.061649 0

𝜙9 -2.9283029 0

𝜔𝑒𝑥𝑒 (cm−1) - 0.21150(28)

𝜔𝑒 (cm−1) - 83.528(13)

𝐵𝑒 (cm−1) - 0.021933(3)

𝛼𝑒 (cm−1) - 7.068(11)×10−5
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3.6 Spectroscopy tables

In this section, we list the binding energies and rotational splittings of all known states in 88Sr2

with 𝐽 = 0, 1, 2, 3, 4, belonging to the potentials 𝑋1Σ+
𝑔 (or 𝑋0+𝑔), (1)0+𝑢 , and (1)1𝑢. All values

are given in units of MHz, unless otherwise stated. A dash (-) indicates that the state has not yet

been observed at the time of writing. A cross (x) indicates that the state is not predicted to exist.

Ref. [70] refers to this thesis. Note that “wrt.” is shorthand for “with respect to”.

To calculate the binding energies of the excited states in (1)0+𝑢 and (1)1𝑢 relative to the 1𝑆0+3𝑃1

dissociation threshold in 88Sr, we use the 1𝑆0 → 3𝑃1 intercombination transition frequency from

Refs. [71, 72], the binding energy of 𝑋 (62, 0) from Ref. [31], the vibrational splitting between

𝑋 (62, 0) and 𝑋 (61, 0) from Ref. [23], and the binding energies of various deeply bound 𝑋1Σ+
𝑔

states given in Table 3.4.

Errata:

• For (1)1𝑢 (6, 1), the value reported in Ref. [18] is erroneous due to a numerical rounding

error. This has been revised in this thesis.

• For (1)0+𝑢 (𝑣, 1), 𝑣 = 13, 16, 18, 19 and 20, the values reported in Ref. [46] are possibly

erroneous due to inaccurate wavemeter calibration, leading to the misidentification of the

comb teeth numbers. These have been revised in this thesis.

[Tables start on the next page.]
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Table 3.4: 𝑋1Σ+
𝑔 wrt. 1𝑆0 + 1𝑆0, values in units of MHz.

𝑋0+𝑔 (𝑣) |𝐸𝐽=0 | 𝐸𝐽=2 − 𝐸𝐽=0 Ref.

0 31 825 319.852(5) 3 146(1) [70]

1 30 640 296.437(28) 3 125(10) [70]

2 29 479 197.638(27) 3 095(10) [70]

3 28 342 002.355(26) 3 060(10) [70]

4 27 228 683.489(11) 3 024(10) [70]

5 26 139 208.322(26) 2 986(10) [70]

6 25 073 538.149(11) 2 957(1) [70]

7 24 031 629.148(26) 2 925(10) [70]

8 23 013 431.546(11) 2 892(1) [70]

9 22 018 900(120) 2 860(10) [70]

10 21 048 000(120) 2826(10) [70]

11 20 100 500(120) 2 782(10) [70]

12 19 176 600(120) 2 757(10) [70]

13 18 276 000(120) 2 722(10) [70]

14 17 398 800(120) 2 686(10) [70]

15 16 544 800(120) 2 653(10) [70]

16 15 713 900(120) 2 606(10) [70]

17 14 906 100(120) 2 574(10) [70]

18 14 121 300(120) 2 552(10) [70]

19 13 359 300(120) 2 499(10) [70]

20 12 620 100(120) 2 469(10) [70]

21 11 903 600(120) 2 427(10) [70]

22 11 209 700(120) 2 386(10) [70]

Continued on next page
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Table 3.4 – continued from previous page

𝑋0+𝑔 (𝑣) |𝐸𝐽=0 | 𝐸𝐽=2 − 𝐸𝐽=0 Ref.

23 10 538 300(120) 2 353(10) [70]

24 9 889 287(120) 2 309(10) [70]

25 9 262 568(120) 2 280(10) [70]

26 8 658 009(120) 2 230(10) [70]

27 8 075 549(120) 2 190(10) [70]

28 7 515 067(120) 2 149(10) [70]

29 6 976 461(120) 2 102(10) [70]

30 6 459 628(120) 2 059(10) [70]

31 5 964 469(120) 2 025(10) [70]

32 5 490 845(120) 1 967(10) [70]

33 5 038 674(120) 1 928(10) [70]

34 4 607 839(120) 1 890(10) [70]

35 4 198 199(120) 1 830(10) [70]

36 3 809 659(120) 1 790(10) [70]

37 3 442 049(120) 1 735(10) [70]

38 3 095 249(120) 1 690(10) [70]

39 2 769 099(120) 1 640(10) [70]

40 2 463 424(120) 1 585(10) [70]

41 2 178 039(120) 1 540(10) [70]

42 1 912 719(120) 1 480(10) [70]

43 1 667 229(120) 1 425(10) [70]

44 1 441 289(120) 1 365(10) [70]

45 1 234 579(120) 1 300(10) [70]

46 1 046 739(120) 1 250(10) [70]

Continued on next page
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Table 3.4 – continued from previous page

𝑋0+𝑔 (𝑣) |𝐸𝐽=0 | 𝐸𝐽=2 − 𝐸𝐽=0 Ref.

47 877 339(120) 1 180(10) [70]

48 725 889(120) 1 120(10) [70]

49 591 819(120) 1 050(10) [70]

50 474 464(120) 985(10) [70]

51 373 094(120) 930(10) [70]

52 286 789(120) 850(10) [70]

53 214 639(120) 770(10) [70]

54 155 564(120) 705(10) [70]

55 108 369(120) 625(10) [70]

56 71 824(120) 555(10) [70]

57 44 599(120) 475(10) [70]

58 25 339(120) 400(10) [70]

59 12 639(120) 310(10) [70]

60 5 110.5739(51) 230(10) [30, 31, 70]

61 1 400.3182(50) 173.0(2) [30, 31]

62 136.6447(50) 70.1(2) [30, 31]
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Table 3.5: (1)0+𝑢 wrt. 1𝑆0 + 3𝑃1, values in units of MHz.

(1)0+𝑢 (𝑣) |𝐸𝐽′=1 | 𝐸𝐽′=3 − 𝐸𝐽′=1 Ref.

0 82 462 408(60) - [46, 70]

1 80 056 883(60) - [46, 70]

2 77 669 758(60) - [46, 70]

3 75 301 073(60) - [46, 70]

4 72 950 983(60) - [46, 70]

5 70 619 778(60) - [46, 70]

6 68 307 898(60) - [46, 70]

7 66 016 088(60) - [46, 70]

8 63 745 468(60) - [46, 70]

9 61 497 833.94(12) - [46, 70]

10 59 275 910.26(35) - [46, 70]

11 57 084 156.51(12) - [46, 70]

12 54 929 909.90(11) - [46, 70]

13 52 825 520.41(4) - [46, 70]

14 50 791 292.56(10) - [46, 70]

15 48 855 512.13(18) - [46, 70]

16 47 036 433.95(23) - [46, 70]

17 45 320 332.03(14) - [46, 70]

18 43 686 942.35(9) - [46, 70]

19 42 124 784.98(7) - [46, 70]

20 40 655 281.22(8) - [46, 70]

21 39 174 338(60) - [46, 70]

22 37 763 228(60) - [46, 70]

Continued on next page
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Table 3.5 – continued from previous page

(1)0+𝑢 (𝑣) |𝐸𝐽′=1 | 𝐸𝐽′=3 − 𝐸𝐽′=1 Ref.

23 36 377 628(60) - [46, 70]

24 35 066 118(60) - [46, 70]

25 33 737 818(60) - [46, 70]

26 32 397 458(60) - [46, 70]

27 31 241 318(60) - [46, 70]

28 29 959 413(60) - [46, 70]

29 28 947 228(60) - [46, 70]

30 27 621 073(60) - [46, 70]

31 26 361 623(60) - [46, 70]

32 25 400 438(60) - [46, 70]

33 24 186 203(60) - [46, 70]

34 23 295 548(60) - [46, 70]

35 22 096 778(60) - [46, 70]

36 21 284 598(60) - [46, 70]

37 to -7 - - -

-6 8 429.650(42) 353.55(50) [28, 31]

-5 3 463.280(33) 284.18(50) [28, 31]

-4 1 084.093(33) 183.09(50) [28, 31]

-3 222.161(35) 90.26(50) [28, 31]

-2 23.9684(50) 23.342(13) [30]

-1 0.4653(45) x [31]
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Table 3.6: (1)1𝑢 wrt. 1𝑆0 + 3𝑃1, values in units of MHz.

(1)1𝑢 (𝑣) |𝐸𝐽′=1 | 𝐸𝐽′=2 − 𝐸𝐽′=1 𝐸𝐽′=3 − 𝐸𝐽′=1 𝐸𝐽′=4 − 𝐸𝐽′=1 Ref.

0 - - - - -

1 187 757 863(300) - - - [70]

2 185 281 896(300) - - - [70]

3 182 818 099(300) - - - [70]

4 180 366 282(300) - - - [70]

5 177 926 755(300) - - - [18, 70]

6 175 499 231(300) - - - [70]

7 173 083 903(300) - - - [18, 70]

8 170 681 023(300) - - - [70]

9 168 290 366(1) 2 618(1) 6 362(1) - [70]

10 165 912 119(300) - - - [70]

11 163 546 200(300) - - - [70]

12 - - - - -

13 158 851 898(300) - - - [70]

14 to 22 - - - - -

23 136 143 326(1) - 6 077.28(9) - [18, 32]

24 133 943 814(1) 2 478(1) 6 056.16(9) - [18, 32]

25 131 757 352(100) - - - [18, 32]

26 129 584 290(1) 2 458(1) 6 013.75(6) - [18, 32]

27 to -4 - - - - -

-3 8 200.163(39) 87(1) 539.6(5) 733(1) [28, 31]

-2 2 683.722(32) 115(1) 328.5(5) 530(1) [28, 31]

-1 353.236(35) 66(1) 182(1) 297(1) [23, 28, 31]
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Chapter 4: Ultracold 88Sr2 molecules in the absolute ground state

4.1 An intuitive description of stimulated Raman adiabatic passage (STIRAP)

Stimulated Raman adiabatic passage (STIRAP) is an ingenious and powerful coherent state

transfer technique, finding numerous applications in widely disparate fields [73, 74], including

ultracold molecules, atomtronics, quantum computing, solid-state physics, atmospheric chemistry,

etc. Under favorable experimental conditions, STIRAP transfer efficiencies between the initial and

target quantum states can be nearly 100%. A comprehensive account and theoretical overview

of STIRAP is given in Refs. [75, 76]. STIRAP is superficially similar to adiabatic rapid passage

(ARP); both are laser-based methods for highly efficient quantum state transfer. But while ARP

is conceptually based on Landau-Zener theory (where the frequency of the laser is adiabatically

swept across resonance), STIRAP is more closely related to the phenomenon of dark states.

Rather than belaboring the theoretical formalism for STIRAP, which is readily found in lit-

erature and textbooks, it would be beneficial to gain an intuitive understanding of its salient

features. Consider a three-level system in the Λ-configuration [Fig. 4.1(a)]. Laser fields cou-

ple two metastable ground states (|𝑔1, 𝑔2⟩) to a third excited state (|𝑒⟩), but not to each other.

The fields induce two distinct oscillating dipoles that destructively (constructive) interfere, form-

ing a dark (bright) state that has a suppressed (an enhanced) outgoing radiation rate. For sim-

plicity, suppose the laser polarizations are parallel to the quantization axis (lab frame Ẑ-axis),

so that the angular Rabi frequencies [Eqs. (3.9) and (3.15)] of the pump and anti-Stokes1 are

Ω1 = ⟨𝑒 |𝑑 (1)0 |𝑔1⟩E0,1/ℏ and Ω2 = ⟨𝑒 |𝑑 (1)0 |𝑔2⟩E0,2/ℏ. The dark state may be expressed as the super-

position |𝐷⟩ = Ω2 |𝑔1⟩ − Ω1 |𝑔2⟩, which can be verified in a single algebraic step; i.e., the matrix

1In the context of STIRAP, it is common to refer to the upleg as the “pump” and the downleg as the “(anti-)Stokes”,
if the latter has a (shorter) longer wavelength than the upleg. In the context of two-photon spectroscopy and coherent
population trapping (CPT) clocks, it is also common to see the upleg referred to as the “probe” and the downleg as the
“coupling”. All three sets of terminology are widely used in literature.

91



Ω1 > 0

Ω2 = 0

Ω1 = 0

Ω2 > 0

𝜗

π/2

π/4

0

Time +∞-∞

g1

g2

(b)(a)

Ω1Ω2
g1

g2

e

τtfr

Figure 4.1: Illustration of the principle of coherent population transfer with STIRAP. (a) A three-
level system, in a Λ-configuration coupled by two laser fields, exhibits a single dark state that is the
coherent superposition of the ground states with amplitudes proportional to the Rabi frequencies.
(b) Time evolution of the mixing angle during a STIRAP sequence. The amplitudes of the dark
state track the adiabatic evolution of the Hamiltonian when the Rabi frequencies are varied by
modulating the laser powers of the pump and anti-Stokes, within a transfer time 𝜏tfr that is longer
than the time scale of the ordinarily driven dynamics (∼ 1/Ωrms).

element of the perturbing Hamiltonian2 𝐻′
rwa = 𝑑

(1)
0 E0,1 + 𝑑 (1)0 E0,2 between the dark and excited

state is ⟨𝑒 |𝐻′
rwa |𝐷⟩ = 0, as expected.

Generally speaking, for a multi-level system coupled by multiple electromagnetic fields, the

number of dark states is at least 𝑛𝑔 − 𝑛𝑒, where 𝑛𝑔 (𝑛𝑒) is the number of ground (excited) states

interacting with light [77, 78]. In the current discussion, 𝑛𝑔 = 2 and 𝑛𝑒 = 1, so we have exactly

one dark state. Suppose the molecules are initialized in state |𝑔1⟩, with the downleg maximally

irradiating the molecules and the upleg completely shuttered off. The downleg would not deplete

any population in |𝑔1⟩, so |𝑔1⟩ is the dark state. As a sanity check, substituting Ω2 ≠ 0 and Ω1 = 0

into |𝐷⟩, we indeed obtain (after normalization) |𝐷⟩ = |𝑔1⟩. By symmetry, if the downleg is

completely shuttered off and the upleg maximally irradiates the molecules, then the dark state is

|𝐷⟩ = |𝑔2⟩. Just like the notorious game of Three-card Monte, we perform the sleight of hand by

fully ramping down Ω2 while simultaneously ramping up Ω1, leaving the molecules “in the dark”

(i.e., dark state) as we “shuffle the money card” (i.e., ground molecular population) under the

2In the rotating wave approximation, and ignoring the overall minus sign.

92



hood. In more concrete physical terms, we achieve complete population transfer by adiabatically

evolving the light-molecule Hamiltonian, which in turn coherently transforms (rotates) the dark

state from |𝑔1⟩ to |𝑔2⟩,

|𝐷 (𝑡)⟩ = Ω2(𝑡) |𝑔1⟩ −Ω1(𝑡) |𝑔2⟩ = cos 𝜗(𝑡) |𝑔1⟩ − sin 𝜗(𝑡) |𝑔2⟩ =


|𝑔1⟩, 𝑡 = −∞,

|𝑔2⟩, 𝑡 = +∞,
(4.1)

where the mixing angle is defined as tan 𝜗(𝑡) ≡ Ω1(𝑡)/Ω2(𝑡) and we have ignored normalization

constants. Figure 4.1(b) illustrates this process. As the population is kept in |𝐷⟩ throughout the

entire duration of the sequence, scattering (or depletion) losses due to the interrogating laser beams

are eliminated, which would otherwise diminish the transfer efficiency. This is the key principle

behind STIRAP.

To maintain the adiabaticity condition, a rule-of-thumb is that Ωrms𝜏tfr > 10, where Ωrms ≡√︃
Ω2

1 +Ω2
2 and 𝜏tfr is the STIRAP transfer time [75]. In practice, the availability of laser power

limits the respective Rabi frequencies, setting a minimum duration for 𝜏tfr. The upleg tends to

be the bottleneck for ultracold molecules, requiring large laser intensities due to poorer Frank-

Condon overlap. This has to be weighed against the relative coherence of the laser fields; i.e.,

the relative coherence time should be longer than 𝜏tfr so that the dark state remains robust during

the STIRAP transfer. It can be shown [79, 80] that the idealized one-way STIRAP efficiency

is ∼ exp
(
− 𝜋2Γ

Ω2
rms𝜏tfr

)
. Fortunately, laser sources in the visible and near-IR spectrum have gotten

so reliable and straightforward to phase stabilize (either with a common reference cavity or a

frequency comb) that STIRAP is considered a routine step for many experiments working with

ultracold molecules. The intrinsically higher amplified spontaneous emission (ASE) and phase

noise spectrum in diode laser systems can be detrimental, especially when the ground or excited

manifold of sub-states are densely spaced or unresolved [81–83]. Ways to circumvent or mitigate

these deleterious effects include performing STIRAP at a finite common detuning from the excited

state manifold, and filtering the laser light using modestly high finesse optical cavities [80, 84].
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4.2 Finding a two-photon pathway

To identify a suitable two-photon STIRAP pathway, we must survey the excited state structure

and their transition strengths to the ground states. From the general considerations above, we see

that to achieve high-efficiency transfer within the singlet 𝑋1Σ+
𝑔 ground potential, we should seek

excited states with marginal triplet admixture and favorable Frank-Condon overlap with the initial

and final states, which maximizes the achievable Rabi frequencies. Additionally, while STIRAP is

theoretically agnostic to the excited state natural linewidth (Γ) if the dark state is perfectly created,

it would be an excellent strategy to pick excited states that have reasonable linewidths (i.e., not

∼GHz) to anticipate imperfections in the state coupling that inevitably arise in actual experiments.

4.2.1 Molecular transition strengths (general discussion)

Consider the initial state |𝛼; 𝐽, 𝑀⟩ that absorbs a photon from the field

E =
E0
2

(
𝝐 𝑒−𝑖𝜔𝑡 + 𝝐∗ 𝑒+𝑖𝜔𝑡

)
to make a transition to the energetically excited final state |𝛽; 𝐽′, 𝑀′⟩. Here, 𝛼 and 𝛽 are just generic

state labels. Using the expression 𝐼 = 𝜖0𝑐E2
0/2 for the irradiance [Eq. (2.15)], the angular Rabi

frequency (Ω𝑅) characterizing the strength of coupling between two states due to the applied field

is [Eq. (3.9)]

Ω𝑅 ≡ E0
ℏ
⟨𝛽; 𝐽′, 𝑀′| d · 𝝐 |𝛼; 𝐽, 𝑀⟩. (4.2)

Now suppose that the laser polarization is fully polarized in a particular spherical component 𝑝 to

drive a specific transition from 𝑀 to 𝑀′; i.e., 𝜖𝑝 is zero except for one 𝑝. Then taking the absolute

square, we write

|Ω𝑅 |2 =
E2

0
ℏ2 𝑆 =

2𝐼
ℏ2𝜖0𝑐

𝑆, (4.3)
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where the transition (line) strength 𝑆 is defined as

𝑆 ≡
���⟨𝛽; 𝐽′, 𝑀′|𝑑 (1)

𝑀 ′−𝑀 |𝛼; 𝐽, 𝑀⟩
���2 =

©«
𝐽′ 1 𝐽

−𝑀′ 𝑀′ − 𝑀 𝑀

ª®®¬
2 ���⟨𝛽(𝐽′) | |𝑑 (1) | |𝛼(𝐽)⟩���2 . (4.4)

In the second step we used3 the Wigner-Eckart theorem [Eq. (3.13)]. Colloquially, we call 𝑆

the “DMS”; i.e., dipole matrix-element squared. Following this line of thought, for a molecular

transition from |𝑛, 𝑣; 𝐽, 𝑀,Ω⟩ to |𝑛′, 𝑣′; 𝐽′, 𝑀′,Ω′⟩, where 𝑛 denotes the electronic channel, and 𝑣

the vibrational quantum number, the transition (line) strength is

𝑆 =
��𝐻𝐽𝑀Ω

𝐽′𝑀 ′Ω′
��2 × ���⟨𝑛′, 𝑣′|𝑑 (1)

Ω′−Ω(𝑅) |𝑛, 𝑣⟩
���2 , (4.5)

where 𝑑 (1)
Ω′−Ω(𝑅) is the electronic transition dipole moment in the molecule-fixed frame depen-

dent on the internuclear distance 𝑅, and we used the Born-Oppenheimer approximation to write

|𝑛, 𝑣; 𝐽, 𝑀,Ω⟩ ≈ |𝑛, 𝑣⟩|𝐽, 𝑀,Ω⟩. The spatial wavefunction of the vibronic state |𝑛, 𝑣⟩ implicitly

depends on 𝐽,Ω due to centrifugal distortion. Multichannel wavefunctions can be accounted for

by taking the sum over 𝑛′ before evaluating the absolute square. The rotational factor is defined

as

𝐻𝐽𝑀Ω
𝐽′𝑀 ′Ω′ ≡(−1)𝑀−Ω√︁

(2𝐽 + 1) (2𝐽′ + 1) (4.6)

×
√︁

1 + 𝛿Ω,0 + 𝛿Ω′,0 − 2𝛿Ω,0𝛿Ω′,0

×
©«
𝐽′ 1 𝐽

−𝑀′ 𝑀′ − 𝑀 𝑀

ª®®¬
©«
𝐽′ 1 𝐽

−Ω′ Ω′ −Ω Ω

ª®®¬ ,
where here, 𝛿𝑖, 𝑗 is the Kronecker delta. Equation (4.6) comes from rotating the lab-frame moment

𝑑 into the molecule-frame moment 𝑑, and evaluating the integral of a triple product of Wigner

3Some authors reserve double-barred matrix elements only in the molecule(body)-fixed frame. This thesis follows
this convention very loosely and uses double-barred matrix elements whenever we invoke the Wigner-Eckart theorem.
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D-functions4; see Ref. [21] for the full expression of the integral, and other useful formulas. In

literature, the sum over all sub-levels
∑
𝑀,𝑀 ′ |𝐻𝐽𝑀Ω

𝐽′𝑀 ′Ω′ |2 is called the Hönl-London factor [85]. For

𝐽 = 0 → 𝐽′ = 1, we do not take this sum as we have sufficient control over laser polarization

and frequency to address individual sub-levels. Note that |𝐻000
1𝑀 ′0 |

2 = 1/3 for parallel transitions

(ΔΩ = 0, e.g., 𝑋 → 0+𝑢), and |𝐻000
1𝑀 ′1 |

2 = 2/3 for perpendicular transitions (ΔΩ = 1, e.g., 𝑋 → 1𝑢).

We can further expand the electronic moment in the molecule-fixed frame as a Taylor series

(usually about the equilibrium distance, 𝑅𝑒),

𝑑
(1)
Ω′−Ω(𝑅) ≈ 𝑑

(1)
Ω′−Ω(𝑅𝑒) + (𝑅 − 𝑅𝑒)

d
(
𝑑
(1)
Ω′−Ω

)
d𝑅

�������
𝑅𝑒

+ . . . . (4.7)

Next, applying the Born-Oppenheimer approximation to the vibronic states |𝑛, 𝑣⟩ ≈ |𝑣⟩|𝑛⟩, the

matrix element can be expanded as

⟨𝑛′, 𝑣′|𝑑 (1)
Ω′−Ω(𝑅) |𝑛, 𝑣⟩ ≈ ⟨𝑣′|𝑣⟩ × ⟨𝑛′|𝑑 (1)

Ω′−Ω(𝑅𝑒) |𝑛⟩ (4.8)

+ ⟨𝑛′, 𝑣′|
(𝑅 − 𝑅𝑒)

d
(
𝑑
(1)
Ω′−Ω

)
d𝑅

�������
𝑅𝑒

 |𝑛, 𝑣⟩
+ . . . .

Taking the absolute square, the zeroth-order term is proportional to the Franck-Condon factor,

FCF ≡ |⟨𝑣′|𝑣⟩|2 , (4.9)

and an “electronic factor” |⟨𝑛′|𝑑 (1)
Ω′−Ω(𝑅𝑒) |𝑛⟩|

2. We reiterate that the spatial wavefunctions of |𝑣⟩,

|𝑣′⟩, |𝑛⟩, |𝑛′⟩ all implicitly depend on 𝐽,Ω, 𝐽′,Ω′ through centrifugal distortion. Returning to

Eq. (4.5), we may intuitively understand molecular transition strengths in terms of their various

4Recall from Sec. 2.2 that the Wigner D-functions represent the rotational wavefunctions of a symmetric top.
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degrees of freedom,

𝑆 ∼ |Rotational factor|2 × FCF × Electronic factor. (4.10)

If 𝑆 = 0, the transition is said to be forbidden.

4.2.2 𝑋 to (1)0+𝑢 transition strength measurements

In an earlier work by our theory collaborators [86, 87], deeply bound (1)0+𝑢 states in the vicinity

of the 𝐴1Σ+
𝑢 -𝑐3Π𝑢 avoided crossing were predicted to have favorable properties as intermediate

states for a two-photon transfer between states of the ground potential 𝑋1Σ+
𝑔 . As we shall see,

(1)0+𝑢 transitions strengths with deeply bound ground state molecules can be as large as 10−2(𝑒𝑎0)2,

while simultaneously maintaining reasonable strengths with weakly bound, near-threshold ground

state molecules. Figures 4.2(a,b) plot the transition strengths of the two weakest bound ground

vibrational states to (1)0+𝑢 (𝑣′, 𝐽′ = 1) states in the range 𝑣′ = 9–20. The values are also listed in

Table 4.1. These shallow-to-deep 𝑋 → 0+𝑢 transition strengths are extracted from the one-photon

spectra and excitation rates, as delineated in Sec. 3.3. To determine the irradiance [Eq. (2.15)], we

estimate the focused upleg laser beam waist at the position of the molecules by deflecting the laser

beam just before the vacuum chamber window onto an inexpensive CMOS or CCD camera. In

general, the direct determination of beam waists can be tricky and susceptible to systematic errors,

hence we assign conservative uncertainties.

As can be seen in Fig. 4.2(a), our data suggests that (1)0+𝑢 (11, 1) offers one of the strongest

pump couplings for 𝑋 (62, 0). Moreover, the required laser wavelengths of 793 nm and 732 nm (for

the pump and anti-Stokes, respectively) to address the entire depth of 𝑋1Σ+
𝑔 are within the operating

range of commercially available AR-coated laser diodes, and our frequency comb. While transi-

tions starting from 𝑋 (62, 0) are generally weaker than those from the adjacently bound 𝑋 (61, 0),

this is outweighed by our ability to create the former in larger samples and more efficiently detect

them. Thus, for our proof-of-principle experiment, we choose 𝑋 (62, 0) as our initial state and the
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X(62,0) → (1)0u
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Figure 4.2: Deeply bound (1)0+𝑢 transition strengths from the weakly bound near-threshold states,
(a) 𝑋 (62, 0) (black squares) and (b) 𝑋 (61, 0) (blue triangles). In both plots, yellow diamonds
are computed using the Morse/Long-range model from Ref. [18], and open gray diamonds from
Ref. [16]. The highly oscillatory behavior here is attributed to the alternating admixture of singlet
and triplet components in the (1)0+𝑢 states. The seeming lack of agreement between the experiment
and the theoretical models is likely due to the difficulty in predicting the avoided crossing of 𝐴1Σ+

𝑢

and 𝑐3Π𝑢.
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X(0,0) → (1)0u
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Figure 4.3: Deeply bound (1)0+𝑢 transition strengths from the absolute ground state 𝑋 (0, 0). Yel-
low diamonds are computed using the Morse/Long-range potential from Ref. [18], and open gray
diamonds from Ref. [16].
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Figure 4.4: Deeply bound (1)0+𝑢 natural linewidths. Black squares, measured; yellow diamonds,
computed using the Morse/Long-range potential from Ref. [18].
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singlet-dominant (1)0+𝑢 (11, 1) as the intermediate state for the STIRAP transfer.

Next, we lock the anti-Stokes laser on resonance with the absolute rovibrational ground state

of the 88Sr2 dimer; i.e., 𝑋 (0, 0) → (1)0+𝑢 (11, 1). Keeping the anti-Stokes power low (|Ω2 | ≪ Γ)

and using pulse durations within the relative coherence time, a scan of the pump across the (1)0+𝑢
resonance reveals a narrow EIT peak (see Fig. 3.10(a) and Sec. 3.4.2), heralding the formation of

a dark state necessary for STIRAP transfer. Using Autler-Townes spectroscopy [Figs. 3.10(b–f)],

we measure a transition strength of 8.6(9) × 10−2(𝑒𝑎0)2 for 𝑋 (0, 0) → (1)0+𝑢 (11, 1). As shown

in Fig. 4.3, this is one of the strongest molecular lines in 88Sr2, with a value approaching that of

a typical atomic transition. Intuitively, this behavior is attributed to the large 𝐴1Σ+
𝑢 component of

deeply bound (1)0+𝑢 states, 𝑣′ ≲ 20.

We have similarly measured the transition strengths from weakly bound 𝑋1Σ+
𝑔 states to weakly

bound (1)0+𝑢 states using Autler-Townes spectroscopy [Table 4.2]. While there is a good agreement

for these shallow-to-shallow transition strengths between our measurements and both models by

our theory collaborators (ab initio [16], MLR [18]), notably only the MLR model gives the correct

0+𝑢 or 1𝑢 assignments for the pair of strongly Coriolis-mixed states bound by ≈8.3 GHz. One draw-

back of the MLR model is its omission of the (2)0+𝑢 potential, which the ab initio model takes into

account. As mentioned in Sec. 2.2 and shown in Fig. 2.2(b), (2)0+𝑢 extends below the intercombi-

nation threshold and affects transition strengths from deeply bound ground states to weakly bound

(1)0+𝑢 states. Weakly bound (1)0+𝑢 states generally do not facilitate transfer ground state transfer

except in fortuitous circumstances; e.g., 𝑋 (62, 0) → 𝑋 (4, 0) via (1)0+𝑢 (−5, 1) as in Ref. [18], and

𝑋 (62, 0) → 𝑋 (6, 0) via (1)0+𝑢 (−4, 1) as in Ref. [67]. Experimentally, the procedure for measuring

deep-to-shallow 𝑋 → 0+𝑢 transition strengths is the same (i.e., Autler-Townes spectroscopy), and

the results are given in the lower part of Table 4.2 for the sake of completeness.

At bias magnetic fields of < 1 G the Zeeman sub-levels of (1)0+𝑢 (11, 1) are essentially unre-

solved due to the ∼5 MHz excited state linewidth [Fig. 4.4]. The natural linewidths (Γ) of deeply

bound (1)0+𝑢 states are nearly two orders of magnitude larger than those of weakly bound (1)0+𝑢
states, again because of the large 𝐴1Σ+

𝑢 admixture.
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Table 4.1: Transition strengths of deeply bound (1)0+𝑢 (𝐽′ = 1) with weakly and deeply bound
𝑋1Σ+

𝑔 (𝐽 = 0), given in units of (𝑒𝑎0)2. Values under the header “Skomorowski” are calculated
using the unscaled ab initio potential [16], while those under “Majewska” are calculated using the
Morse/Long-range potential [18].

𝑋 (𝑣, 0) (1)0+𝑢 (𝑣′, 1) Skomorowski Majewska Exp. (this work)

62 9 6.6 × 10−6 1.2 × 10−7 1.1(2) × 10−5

62 10 1.6 × 10−5 2.1 × 10−5 8.0(8) × 10−7

62 11 4.7 × 10−6 5.0 × 10−7 1.6(2) × 10−5

62 12 1.8 × 10−5 1.9 × 10−5 2.4(2) × 10−6

62 13 2.7 × 10−6 2.9 × 10−6 3.3(4) × 10−6

62 14 2.0 × 10−5 1.6 × 10−5 3.0(2) × 10−6

62 15 9.6 × 10−7 6.1 × 10−6 2.6(6) × 10−6

62 16 2.1 × 10−5 1.3 × 10−5 1.5(2) × 10−6

62 17 1.0 × 10−7 8.4 × 10−6 1.1(1) × 10−5

62 18 2.1 × 10−5 1.1 × 10−5 1.6(1) × 10−7

62 19 9.2 × 10−9 8.9 × 10−6 6.2(7) × 10−6

62 20 2.0 × 10−8 1.1 × 10−5 2.7(4) × 10−6

61 11 2.2 × 10−5 2.4 × 10−6 7.1(1) × 10−5

61 12 8.2 × 10−5 9.1 × 10−5 1.0(1) × 10−5

61 16 1.0 × 10−4 5.9 × 10−5 6.3(7) × 10−6

61 17 4.7 × 10−7 3.9 × 10−5 5.5(8) × 10−5

61 18 1.0 × 10−4 5.0 × 10−5 8.7(9) × 10−7

61 19 4.3 × 10−8 4.2 × 10−5 3.6(9) × 10−5

0 11 2.5 × 10−1 1.9 × 10−1 8.6(9) × 10−2

Table 4.2: Transition strengths of weakly bound (1)0+𝑢 (𝐽′ = 1) with weakly and deeply bound
𝑋1Σ+

𝑔 (𝐽 = 0), given in units of (𝑒𝑎0)2. Starred 𝑣′ indicates a heavily Coriolis-mixed excited state.
Headers have the same meaning as Table 4.1.

𝑋 (𝑣, 0) (1)0+𝑢 (𝑣′, 1) Skomorowski Majewska Exp. (this work)

62 -4 3.09 × 10−3 2.77 × 10−3 2.57(4) × 10−3

61 -4 8.06 × 10−4 7.36 × 10−4 7.0(2) × 10−4

61 -5 5.86 × 10−3 5.06 × 10−3 4.30(6) × 10−3

60 -6* 7.21 × 10−5 8.89 × 10−3 8.7(4) × 10−3

6 -4 2.22 × 10−5 N/A 9.9(5) × 10−5

4 -5 5.19 × 10−6 N/A 2.6(1) × 10−4
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4.3 Creation of 𝑋 (0, 0) molecules using STIRAP

To realize STIRAP in the laboratory, we need to dynamically change the intensity of the pump

and anti-Stokes over typically ∼10 𝜇s durations. To this end, each STIRAP laser beam is double-

passed through an acousto-optic modulator (AOM). The amplitude of the microwave frequency

driving the AOM is deterministically shaped by a pre-programmed trace (e.g., a positive or negative

slope, a Gaussian bell-shaped curve, etc.) on an arbitrary waveform generator fed into a voltage-

controlled RF attenuator5 with sufficiently fast bandwidth. We use separate waveform generators

to independently control each leg and trigger the start of the shaped pulses. Additionally, the

microwave signals are sent through separate RF switches (before the respective voltage-controlled

attenuators) to completely cut the RF chain and shutter the laser light, depending on the situation.

In the following subsections, we use the 6-state numerical model delineated in Sec. 3.2 to

analyze and make sense of our results. We will use the same notation and symbols for the various

parameters for consistency. For the spectroscopy of (1)0+𝑢 , only the upleg laser is present. The

relevant molecular potentials are shown in Fig. 4.5. For more details on the quantum chemistry of

the dimer, see Sec. 2.2.

4.3.1 STIRAP in free flight

Figure 4.6(a) shows a representative time evolution of the number of 𝑋 (62, 0) molecules dur-

ing a roundtrip STIRAP at a common detuning of Δ = 2𝜋 × 30 MHz, and angular Rabi frequencies

|Ω1 | = 2𝜋 × 2.2 MHz and |Ω2 | = 2𝜋 × 2.6 MHz. Here, the lattice is tuned to a wavelength of

𝜆latt = 914.0(1) nm and polarized horizontally relative to the MOT quantization axis for optimal

in-trap atomic laser cooling on the intercombination line [88]. However, the polarizability differ-

ence of 𝑋 (62, 0) and 𝑋 (0, 0) at this wavelength introduces lattice-induced thermal decoherence.

To overcome this, we perform STIRAP in free flight by shuttering the lattice trap off during the
5A double-balanced mixer, such as the Minicircuits ZAD-1+ or ZFM-2-S+, can function as a makeshift current-

controlled variable attenuator. The microwave frequency is fed into the RF port. The shaped dc voltage from the
arbitrary waveform generator is dropped across a fixed resistor to produce an identically shaped current that is fed into
the IF port. The amplitude of the microwave output at the LO port will be proportional to the current at IF. Care should
be taken not to exceed the specified damage thresholds. The ZAS-3+, marketed as an attenuator, uses this principle.
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STIRAP pulses. Auxiliary measurements of the molecular cloud size indicate that switching off

the trap on timescales of < 200 𝜇𝑠 has no discernable heating effect. Moreover, the first-order

Doppler effect is expected to be manageable at the level of 𝑓clock
√︁

3𝑘𝐵𝑇/𝑀/𝑐 ∼ 3.5(5) kHz at

temperatures of 𝑇 = 8(2) 𝜇K for a Raman transition frequency of 𝑓clock ≈ 31.825 THz; 𝑀 is the

molecular mass.

The one-way transfer efficiency is quantified as 𝜂 =
√︁
(𝑁3 − 𝑁2)/𝑁1, where 𝑁1, 𝑁3 are the

initial and final molecule numbers respectively, and 𝑁2 is the remaining molecule number after the

forward transfer. For our Rabi frequencies, we typically achieve full extinction such that 𝑁2 = 0,

except in a few extreme cases where Δ is very large, resulting in reduced adiabaticity. Assuming

equal forward and reverse transfer efficiencies, we routinely achieve one-way transfer efficiencies

of 𝜂 = 85(3)%.

Due to the unresolved Zeeman structure of (1)0+𝑢 (11, 1), a finite relative angle between the

polarizations of the Raman (pump and anti-Stokes) lasers undermines dark state formation by

coupling the ground states to more than one excited Zeeman sub-level. This leads to increased

near-resonant scattering, which diminishes the overall transfer efficiencies. For this dataset, we

measure a relative polarization angle of 16(2) degrees between the pump and anti-Stokes, caused

by a dichroic mirror combining the lasers with the lattice. We can easily solve this in future work

by placing a high-quality polarizer (e.g., Glan-Thompson or Wollaston prism) after this dichroic

mirror and immediately before the chamber viewport. Nevertheless, for 𝐽 = 0 ↔ 1 transitions, we

can circumvent this by either lifting the degeneracy of Zeeman sub-levels to realize a three-level

Λ-system, or performing STIRAP at Δ larger than Γ, the linewidth of the 𝑋 → 0+𝑢 transition. The

latter’s efficacy is evinced in Fig. 4.6(b). Numerical simulations show good agreement by using the

measured relative polarization angle and expected Γeff . Detuned STIRAP also can mitigate other

technical imperfections, such as laser phase noise.

When choosing an operational common detuning, it is prudent to survey the molecular structure

carefully. For instance, in 88Sr2, the rotational splitting of 𝑋 (62, 2) and 𝑋 (62, 0) is approximately

70 MHz. Therefore, blue detuning is preferred to avoid accidental perturbation of the excited state
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Figure 4.5: Low-lying states of (1)0+𝑢 offer an expedient pathway for adiabatic transfer within the
ground potential 𝑋1Σ+

𝑔 . Ω1 and Ω2 are the angular Rabi frequencies that characterize the degree
of state coupling by the upleg (pump) and downleg (anti-Stokes) lasers, respectively. For visual
clarity, horizontal dotted gray lines representing energy levels are not drawn to scale.
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Figure 4.6: Creation of 88Sr2 dimers in the absolute ground state using STIRAP. (a) Molecules
initially in 𝑋 (62, 0) are transferred to the absolute ground state 𝑋 (0, 0) within 𝜏tfr ≈ 40 𝜇s. To
detect the transferred molecules, we reverse the order of the STIRAP pulses to recover the initial
state. Throughout the roundtrip (200 𝜇s), the optical lattice trap is shuttered off, and the molecules
are in free flight. Solid blue line is the model prediction with no free parameters; i.e., we in-
dependently measured the time evolution of Ω1 and Ω2 (solid red and dashed-dotted green lines
respectively), a relative polarization angle of 16(2) degrees, and use Γeff = 2𝜋 × 3.5(5) kHz. For
this trace, Δ/(2𝜋) = +30 MHz. (b) One-way transfer efficiency versus the common (one-photon)
detuning, Δ. 𝜂 drops near resonance because of scattering; the dark state is made less robust due to
experimental imperfections in controlling laser polarization. (c) STIRAP lineshape; 𝜂 versus the
Raman (two-photon) detuning, 𝛿. In both (b) and (c), the solid blue curve is the model prediction,
and the light-blue shaded area covers the range of simulation results, given the uncertainty of the
measured parameters.
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by the pump laser should it be tuned close to 𝑋 (62, 2) → 0+𝑢 (11, 1). Similarly, technical leakage

light through the acousto-optic modulators used to modulate the laser intensities can diminish

transfer efficiencies should the residual diffraction orders accidentally lie in the vicinity of a 𝑋 →

0+𝑢 resonance. These technical effects are non-negligible as the laser intensities used in STIRAP

are large.

Due to the unequal Rabi frequencies, the detuned-STIRAP lineshape will be asymmetric,

where the sharper edge faces the one-photon resonance location [Fig. 4.6(c)]. The efficiency re-

mains > 50% even as the relative Raman detuning is scanned over > 100 kHz, and can be widened

with greater pump and anti-Stokes laser intensities. Compared to a straightforward Raman 𝜋-pulse

at similar intensities, STIRAP is robust against small perturbations in laser intensity and laser beam

inhomogeneity and is less susceptible to scattering from the intermediate state.

4.3.2 STIRAP in a magic wavelength optical lattice

We now explore performing STIRAP in a deep optical lattice. Unlike in the previous subsec-

tion, here we leave the lattice trap light constantly irradiating throughout the transfer sequence.

The trap depth is kept constant at𝑈0 = 1009(44) 𝐸r. As illustrated by Fig. 4.7(a), our current strat-

egy for engineering magic lattices involves blue-detuning the lattice frequency from a transition

connecting the deeply bound ground state with a narrow and isolated rovibronic state in the (1)1𝑢

potential (see Sec. 5.3 for full details). At the magic wavelength, the polarizabilities of the two

𝐽 = 0 vibrational ground states become matched (𝛼′/𝛼 = 1), resulting in equal trap depths. Doing

so removes lattice-induced thermal decoherence and precludes the excitation of breathing modes

during the state transfer. We observe the enhancement of STIRAP in a magic wavelength lattice

[Fig. 4.7(b)], achieving one-way efficiencies of over 90%. Figure 4.7(c) shows the concomitant

lattice-induced Stark shift of the peak STIRAP efficiency as the polarizability ratio of the ground

states is tuned near the 𝑋 → 1𝑢 transition [Fig. 4.7(d)].

For 𝑋 (0, 0), the optimal magic wavelength [18] with the greatest magic detuning (Δ𝑚 =

4.494(1) GHz) occurs at 1004.7723(1) nm, blue detuned from 𝑋 (0, 0) → (1)1𝑢 (9, 1) with a mea-
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Figure 4.7: STIRAP transfer in a magic-wavelength optical lattice. (a) By tuning the optical lattice
near the (1)1𝑢 (9, 1), we engineer a magic trap for the pair of states 𝑋 (62, 0) and 𝑋 (0, 0), where
their polarizabilities are equal. (b) Enhancement of STIRAP efficiency at the magic wavelength:
measured (black circles) and modeled (solid blue) with the range of simulation results (shaded
light-blue area) for 𝑇 = 8(2) 𝜇K. (c) Corresponding lattice-induced light shift on the peak of the
STIRAP lineshape, relative to its location in a non-magic lattice tuned >1 THz away. Modifying
the ground state polarizabilities shifts the STIRAP lasers out of two-photon resonance. By com-
pensating with either the upleg or downleg laser frequency, the condition 𝛿 ≈ 0 can be met again.
(d) Polarizability ratio of 𝑋 (0, 0) to 𝑋 (62, 0) around the magic wavelength, determined from the
differential lattice light shifts. In both (c) and (d), the red solid line is the fit to the data in the form
𝑎/(𝑥 − 𝑥0) + 𝑏, where 𝑎 and 𝑏 are free parameters, while 𝑥0 is fixed to the independently measured
𝑋 (0, 0) → (1)1𝑢 (9, 1) resonance wavelength.
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sured transition strength of 1.335(35)×10−4 (𝑒𝑎0)2 using an all-frequency method (see Sec. 5.3.2).

In the Lamb-Dicke regime, the first-order Doppler effect is suppressed, so we set Γeff = 0. In gen-

eral, the lattice-induced differential light shift on a transition in a non-magic trap becomes com-

pounded for higher trap motional states. To model the transfer efficiencies, we first simulate the

ideal STIRAP efficiencies, 𝜂(𝛿), for the measured parameters as a function of 𝛿 in the absence of

thermal effects. The function 𝜂(𝛿) peaks at approximately 𝛿 = 0. For an experimentally set (bare)

Raman detuning, 𝛿set, of the pump and anti-Stokes lasers addressing the carrier Raman transition

for a molecule in the motional ground state, the thermal probability that a molecule is found in an

excited motional trap state maps to a probability density for the molecule to experience a Raman

detuning additionally shifted by −𝛿′

𝑝(𝛿) = 𝑝(𝛿set − 𝛿′) =


1
2 (𝐵𝛿

′)2𝑒−𝐵𝛿
′
, 𝐵𝛿′ ≥ 0

0, 𝐵𝛿′ < 0
(4.11)

where 𝐵 ≡ ℎ

𝑘𝐵𝑇

(√
𝛼′/𝛼−1

) is a factor that depends on the temperature and polarizability mismatch;

essentially the “carrier lineshape” discussed in Sec. 2.4.5. The probability density peaks at 𝛿′ =

𝛿′max = 2/𝐵. In the experiment, we manually adjust 𝛿set to maximize the STIRAP efficiency

(resulting in Fig. 4.7(c)). It is reasonable to think that this occurs when 𝛿set ≃ 𝛿′max. The overall

efficiency thus involves an overlap integral between 𝜂 and 𝑝,

⟨𝜂⟩ =
∫ ∞
−∞ 𝑑𝛿 𝜂(𝛿)𝑝(𝛿)∫ ∞

−∞ 𝑑𝛿 𝑝(𝛿)
, (4.12)

and the lattice wavelength dependence enters implicitly through 𝛼′/𝛼. The solid line in Fig. 4.7(b)

shows the simulation result, reproducing the measurement’s salient features fairly well. This ther-

mal model is rather rudimentary, and the astute would notice that the enhancement of the STIRAP

efficiency at the magic wavelength exhibits a much sharper feature in the experiment than the

model suggests. It is possible that we have inadvertently overlooked additional influences. A

Monte-Carlo approach to modeling the same phenomenon would be worthwhile in future work.
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4.4 Ultracold reactive chemistry with molecules of spinless nuclei

With the creation of large numbers of molecules in 𝑋 (0, 0), we are in a good position to study

the basic collisional properties of an ultracold gas of alkaline-earth metal dimers. Homonuclear

dimers in the absolute ground state have an exoergic pathway to form stable trimers (Sr2 + Sr2 →

Sr3 + Sr). We, therefore, expect two-body collisions between two 𝑋 (0, 0) molecules to be inelastic

and exhibit loss.

Understanding the dynamics of colliding molecules at ultracold temperatures is critical for

realizing long-lived bulk samples for various applications in quantum technology (e.g., a molecular

clock), and represents an exciting new frontier in the field of cold controlled chemistry [10, 89,

90]. So far, every experiment has observed two-body losses of ultracold molecules (e.g., bi-alkali

metal molecules, alkaline-earth metal fluorides, etc.), often close to the so-called universal rate.

This occurs even when the molecules are prepared in chemically unreactive (e.g., endothermic)

quantum states.

Universal loss is a term coined by Idziaszek and Julienne in their seminal paper [91]. They

consider the situation when colliding particles are lost with near-unity probability once they come

within a characteristic length scale. For collisions between identical molecules in the same state

(i.e., 𝑋 (0, 0) in our case), the universal inelastic loss rate via the dominant 𝑠-wave channel is

independent of the ensemble temperature (𝑇) and given by

𝑘univ
2 = 2 × 2 × ℎ

𝜇4
× 4𝜋

Γ

(
1
4

)2 × 1
2

[
2𝜇4𝐶

mol
6

ℏ2

]1/4

=
16𝜋2

Γ

(
1
4

)2

[
2ℏ2𝐶mol

6

𝜇3
4

]1/4

, (4.13)

where 𝜇4 = (1/(2𝑚Sr) + 1/(2𝑚Sr))−1 is the reduced mass of two dimers, Γ(𝑥) = (𝑥 − 1)! is the

mathematical gamma function, and 𝐶mol
6 is the isotropic van der Waals coefficient between two

molecules.

To calculate 𝐶mol
6 , our theory collaborators implemented a coupled cluster computation using

the explicitly connected representation of the expectation value and polarization propagator [92,
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Figure 4.8: (a) Collisional losses of 𝑋1Σ+
𝑔 molecules. The number of 𝑋 (0, 0) molecules (black

open circles) decays as they are held in the 1D optical lattice. Fits with the rate equation
d𝑁mol/site/d𝑡 = −𝑘𝛾𝑁𝛾mol/site with 𝛾 = 1 (dashed blue line) and 𝛾 = 2 (solid red line) suggest
that the decay is predominantly two-body. The data levels off at around 𝑁mol/site ≈ 1/2, which we
ascribe to the equal probability for a given site to be initially populated by an even or odd number
of molecules. (b) Molecular temperature versus the power in the forward lattice beam, under the
experimental conditions of the 𝑘2 loss rate measurements described in this chapter. Black stars,
temperature measurement extracted from the thermal broadening of the carrier. Orange circles,
auxiliary temperature measurements from the ratio of the axial sideband areas.

93] and the best approximation XCCSD4 method [94]. The calculations yield 𝐶mol
6 = 15685 a.u.

at the equilibrium distance 𝑅𝑒 = 8.829 𝑎0, which as expected, is approximately four times that

of the corresponding coefficient between two atoms. Using Eq. (4.13), we obtain 𝑘univ
2 = 1.22 ×

10−10 cm3 s−1. Note that to convert 𝐶6 from atomic units (a.u.) to units of cm−1Å
6
, the value of 𝐶6

in a.u. will have to be multiplied by 𝐸h𝑎0/(ℎ𝑐), where 𝐸h = ℏ2/(𝑎0𝑚𝑒) is the Hartree energy.

4.4.1 Collisions of ultracold 88Sr2 molecules in the absolute ground state

We start by preparing a purified sample of 𝑋 (62, 0) molecules by wiping away the 𝐽 = 2

molecules from the initial photoassociated mixture. Then, after a forward STIRAP sequence, we

hold the 𝑋 (0, 0) ground state molecules in a non-magic optical lattice (𝜆latt = 914.0(1) nm) for a

variable amount of time, before reversing the STIRAP sequence to recover and detect 𝑋 (62, 0).
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Figure 4.8(a) shows the decay of the remaining 𝑋 (0, 0) molecule number per lattice site (𝑁mol/site)

over time. We can model the decay with the differential equation6

d𝑛
d𝑡

= −𝑘1𝑛 − 𝑘2𝑛
2, (4.14)

where 𝑛 is the molecular density, which is proportional to 𝑁mol/site. The leading order term propor-

tional to 𝑛 describes the one-body decay, while the term proportional to 𝑛2 describes the two-body

decay. It turns out Eq. (4.14) has an analytical solution of the form

𝑛(𝑡) = 𝑛0 exp(−𝑘1𝑡)
1 + (𝑘2𝑛0/𝑘1) [1 − exp(−𝑘1𝑡)]

. (4.15)

As shown in Fig. 4.8(a), the fitted curves strongly indicate two-body collisions to be the dominant

loss channel. For 𝑘2𝑛 ≫ 𝑘1, we may use lim𝑘1→0
[
(1 − 𝑒−𝑘1𝑡)/𝑘1

]
= 𝑡, which simplifies the

expression to

𝑛(𝑡) = 𝑛0
1 + 𝑘2𝑛0𝑡

. (4.16)

From statistical physics, we know that 𝑛 = 𝑛max exp (−𝑈 (𝑦, 𝑟)/𝑘𝐵𝑇), where 𝑈 (𝑦, 𝑟) is the

optical potential and 𝑛max is the maximum density at the center of each microtrap. Taking the

harmonic approximation [Eq. (2.29)], we write 𝑈 (𝑦, 𝑟) ≈ 1
2𝑀𝜔

2
ax𝑦

2 + 1
2𝑀𝜔

2
rad𝑟

2 −𝑈0. Therefore,

the number of molecules per lattice site is

𝑁mol/site = 𝑛max

∫ +∞

−∞
d𝑥

∫ +∞

−∞
d𝑦

∫ +∞

−∞
d𝑧 exp

[
−𝑀𝜔2

rad(𝑥
2 + 𝑧2)

2𝑘𝐵𝑇

]
exp

[−𝑀𝜔2
ax𝑦

2

2𝑘𝐵𝑇

]
,

= 𝑛max

(
2𝜋𝑘𝐵𝑇
�̃�2𝑀

)3/2
, (4.17)

6In this study, we assume that the temperature of the molecules is unchanged throughout the hold duration. The
temperature of the bulk affects the density; i.e., colder samples are denser. More sophisticated analyses typically also
model the temperature with a linear time dependence. Doing so leads to a coupled system of differential equations,
which has a relatively simple analytical solution [80].
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where �̃� ≡ 2𝜋( 𝑓ax 𝑓
2
rad)

1/3. Similarly, integrating both sides of Eq. (4.14) over volume,

d
d𝑡
𝑁mol/site = −𝑘1𝑁mol/site − 𝑘2

(
�̃�2𝑀

4𝜋𝑘𝐵𝑇

)3/2

𝑁2
mol/site. (4.18)

It is useful to express the rate equation this way because we have direct access to 𝑁mol/site in the

experiment; i.e.,

𝑁mol/site = 𝑁mol/𝑁sites, (4.19)

where 𝑁mol is given by Eq. (2.3) and 𝑁sites is the number of filled sites7.

4.4.2 Two-body loss rate

Since the molecules are tightly trapped in the Lamb-Dicke and resolved sideband regimes,

we can spectroscopically access the axial and radial trap frequencies of 𝑋 (62, 0) by probing the

shallow-to-shallow Raman transition 𝑋 (62, 0) → 𝑋 (61, 0); see Sec. 2.4.4. Importantly, we must

further scale the square of the trap frequencies of 𝑋 (62, 0) by the polarizability ratio of 𝑋 (0, 0) to

𝑋 (62, 0), 𝛼′/𝛼, in order to properly obtain �̃�2 for 𝑋 (0, 0) as it appears in Eq. (4.18).

From measurements of differential light shift [Eq. (2.47)] for the shallow-to-deep Raman transi-

tion 𝑋 (62, 0) → 𝑋 (0, 0), we find 𝛼′/𝛼 = 1.5176(59) at 𝜆latt = 914.0(1) nm. We use the same data

to determine the temperature of the molecular ensemble via carrier thermometry; see Sec. 2.4.5.

Under the experimental conditions during this particular measurement, we compare the temper-

atures extracted using carrier thermometry to the conventional method of taking the ratio of the

integrated area under the sidebands and find good agreement, as shown in Fig. 4.8(b).

The measured two-body loss rate coefficient 𝑘2 for 𝑋 (0, 0) molecules is 0.97(28)×10−10 cm3 s−1.

We additionally observe that 𝑘2 is insensitive to the presence of 𝑋 (62, 2) rotationally excited near-

threshold molecules in the trap. The closeness of our measured 𝑘2 to the universal loss rate (𝑘univ
2 )

7Under normal conditions, the number of filled sites is roughly ∼550, with no discernable change over the range of
lattice laser powers used for the experiments in this thesis. We determine this number by imaging the photofragments
of recovered molecules from the “side” of the lattice. For simplicity, we will assume equal occupancy across sites.
Higher resolution imaging should allow the characterization of density gradients along the lattice axis in future work
if required.
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implies that alkaline-earth metal dimers in the absolute ground state are lost with near unity prob-

ability following a collision at short range.

4.4.3 Our results in the context of others

Despite fervent theoretical and experimental efforts, a complete picture of how the molecules

are lost remains equivocal. For comprehensive and contemporary reviews, see Refs. [90, 95]. The

prevailing sentiment is that the crux of the matter lies in the formation of intermediate four-body

(tetramer) complexes when two diatomic molecules collide [96, 97]. Several mechanisms have

been put forward for how complex formation leads to the observed losses in experiments.

In the “sticky collisions” hypothesis, a subsequent collision of these delicate complexes with

the surrounding dimers produces sufficient kinetic energy to eject all three molecules out of the

trap. Crucially, the sticking time sets a finite window for an ejection collision. In principle, cal-

culations of the sticking time via Rice-Ramsperger-Kassel-Marcus (RRKM) theory should enable

quantitative tests with experiments [98].

A common feature among the experiments is that a near-IR wavelength optical trap levitates

the molecules against gravity. Another hypothesis proposes that the intermediate complexes in-

teract with the trapping laser to undergo photofragmentation or photoexcitation into electronically

excited states [99]. For the typical intensities used for optical trapping, it was estimated that the ab-

sorption of laser light occurs much faster than the rate at which the collision complex decays back

into two ground state dimers, leading to effective two-body loss. This argumentation has been

gaining traction. The interaction of the complex with trap light has been experimentally confirmed

in KRb and RbCs molecules [90, 100, 101]. These recent experiments chopped the trap laser inten-

sity to create durations where the molecules do not experience the trapping light. However, parallel

experiments with similar molecular species [102, 103] did not find evidence of such photoinduced

loss, suggesting that either theoretical calculations have severely underestimated the complex life-

times, or that additional loss mechanisms may be present. One emerging line of thought is that

non-conservation of nuclear spin may considerably increase the density of tetramer states, result-
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ing in significantly longer complex lifetimes [104]. To help elucidate the issue on nuclear spins,

Jachymski et al [104] has proposed experiments with mixtures of alkaline-earth metal molecules

and atoms, making use of the fact that 88Sr2 has no net nuclear spin, while the isotopologue 87Sr2

possesses hyperfine structure (9/2 ⊕ 9/2 = 0, 1, . . . , 9).

Similarly, among the various ultracold molecular gases created so far, the collisional chemistry

of alkaline-earth metal dimers (without nuclear spin) appears the simplest to model. Not only can

the total angular momentum of the molecule be zero, but the electronic ground rovibrational states

are much less sensitive to external electric and magnetic fields than bi-alkali metal molecules,

ensuring angular momentum conservation during a collision (an assumption in the theoretical es-

timate of the sticking times so far). More detailed studies with Sr2 should help verify the central

principles of RRKM theory when applied to ultracold molecular gases.

Whatever the cause, microwave shielding of dipolar molecules has been demonstrated to be a

viable method to circumvent inelastic collisional losses [105, 106]. Conceptually, an off-resonant

external microwave field induces a rotating dipole in the molecule, forming a potential barrier

between two molecules at short range. In a remarkable advancement for the field, engineered

elastic collisional rates through microwave-shielding have led to efficient evaporative cooling of

a molecular gas to quantum degeneracy [106]. For homonuclear Sr2 molecules, however, these

methods are not directly applicable; only even 𝐽 are allowed in 𝑋1Σ+
𝑔 for the bosonic Sr isotope

(see Sec. 2.2), precluding dipole microwave dressing using excited rotational states. Moreover, the

field dressing inherently introduces light shifts that would be an additional source of systematic

error in precision molecular clock applications.
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Chapter 5: Terahertz vibrational molecular clock

5.1 Polarizability and transition strengths

5.1.1 Preliminary comments

Generally speaking, under the application of an electric field, a particle’s charge distribution

may be expanded in terms of its electric multipole moments. If the particle is neutral (i.e., not a

monopole), the leading non-trivial term is the dipole moment, which itself can be expanded [107]

in increasing orders of the electric field E 𝑗 (𝑡) = E0
2

(
𝜖 𝑗 𝑒

−𝑖𝜔𝑡 + 𝜖∗
𝑗
𝑒+𝑖𝜔𝑡

)
,

𝑑𝑖 (𝑡) = 𝑑perm + 𝛼𝑖 𝑗E 𝑗 (𝑡) +
1
2!
𝛽(1),𝑖 𝑗 𝑘E 𝑗 (𝑡)E𝑘 (𝑡) +

1
3!
𝛽(2),𝑖 𝑗 𝑘𝑙E 𝑗 (𝑡)E𝑘 (𝑡)E𝑙 (𝑡) + . . . . (5.1)

As with the previous chapters, 𝜖 𝑗 is the unit vector pointing along the polarization of the electric

field, and E0 is the field amplitude. Here, I adopt the Einstein summation convention, where re-

peated indices are implied to be summed over. While orthogonal, these Cartesian indices do not

necessarily mean X̂, Ŷ, or Ẑ. The first term 𝑑perm is the permanent dipole moment. The remain-

ing terms characterize the induced dipole moment, starting with the lowest-order term containing

the second-rank tensor 𝛼𝑖 𝑗 called the polarizability. The higher order corrections (e.g., 𝛽(1),𝑖 𝑗 𝑘 ,

𝛽(2),𝑖 𝑗 𝑘𝑙 , . . . ) are collectively referred to as hyperpolarizabilities. For a homonuclear dimer in the

electronic ground state, d is an odd function in E, so 𝑑perm = 0 and 𝛽(𝑛),𝑖 𝑗 𝑘 = 0 for odd (𝑛).

From hereon, we will only keep the second hyperpolarizability 𝛽(2),𝑖 𝑗 𝑘𝑙 ≡ 𝛽𝑖 𝑗 𝑘𝑙 and drop its (2)

subscript for brevity.
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The charge redistribution in the particle must be accompanied by a change in its internal energy,

𝑈 (𝑡) = −
∫ E

0

[
𝑑′𝑖

]∗ dE′
𝑖

= −𝛼𝑖 𝑗𝜖∗𝑖 𝜖 𝑗
∫ E

0
E′dE′ − 1

3!
𝛽𝑖 𝑗 𝑘𝑙𝜖

∗
𝑖 𝜖

∗
𝑗 𝜖

∗
𝑘𝜖𝑙

∫ E

0
E′3dE′

= −
E2

0 cos2(𝜔𝑡)
2!

𝛼𝑖 𝑗𝜖
∗
𝑖 𝜖 𝑗 −

E4
0 cos4(𝜔𝑡)

4!
𝛽𝑖 𝑗 𝑘𝑙𝜖

∗
𝑖 𝜖

∗
𝑗 𝜖

∗
𝑘𝜖𝑙 .

In the above expression for the internal energy, it may be more rigorous to add the complex conju-

gate and take the average [108], which we have left out for brevity; i.e.,

𝑈 (𝑡) = −1
2

(∫ [
𝑑′𝑖

]∗ dE′
𝑖 +

∫
𝑑′𝑖 d

[
E′
𝑖

]∗)
.

Note that the numerical prefactors in Eq. (5.1) are chosen so that [109]

𝛼𝑖 𝑗 = − 𝜕2𝑈 (𝑡)
𝜕E𝑖 (𝑡)𝜕E 𝑗 (𝑡)

����
E0=0

, 𝛽𝑖 𝑗 𝑘𝑙 = − 𝜕4𝑈 (𝑡)
𝜕E𝑖 (𝑡)𝜕E 𝑗 (𝑡)𝜕E𝑘 (𝑡)𝜕E𝑙 (𝑡)

����
E0=0

, etc.

As before (see Sec. 2.4.1), we take the time average over 1-cycle to obtain the energy shift [110]

𝑈 = ⟨𝑈 (𝑡)⟩time averaged = −
E2

0
4
𝛼𝑖 𝑗𝜖

∗
𝑖 𝜖 𝑗 −

E4
0

64
𝛽𝑖 𝑗 𝑘𝑙𝜖

∗
𝑖 𝜖

∗
𝑗 𝜖

∗
𝑘𝜖𝑙 , (5.2)

which is a more sophisticated way of writing Eq. (2.4) by including the laser polarization depen-

dence as well as the hyperpolarizability.

So far, we have written 𝛼𝑖 𝑗 , 𝛽𝑖 𝑗 𝑘𝑙 , 𝜖𝑖 as Cartesian tensors. It is also possible to write them

as spherical tensors. As far as a physicist is concerned, we can define a spherical tensor oper-

ator of rank 𝐿 to be the set of objects 𝑄 (𝐿)
𝐾

with 2𝐿 + 1 components ranging between −𝐿 ≤

𝐾 ≤ 𝐿 that transform under rotation in exactly the same way as an angular momentum eigenket

|𝐽 = 𝐿, 𝑀 = 𝐾⟩. Since spherical harmonics are simply angular momentum eigenkets projected

onto the polar and azimuth angles, 𝑌 𝐽
𝑀
(𝜃, 𝜙) ≡ ⟨𝜃, 𝜙|𝐽, 𝑀⟩, one arrives at the useful fact that 𝑄 (𝐿)

𝐾

is proportional to 𝑌 𝐿
𝐾
(𝜃, 𝜙).
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In addition, we know from elementary quantum mechanics that the coupling of two angu-

lar momentum states |𝐽1, 𝑀1⟩ and |𝐽2, 𝑀2⟩ into a resultant third |𝐽3, 𝑀3⟩ involves a summation

weighted by Clebsch-Gordon coefficients (essentially change-of-basis amplitudes),

|𝐽3, 𝑀3⟩ =
∑︁
𝑀1,𝑀2

⟨𝐽1, 𝑀1; 𝐽2, 𝑀2 |𝐽3, 𝑀3⟩ |𝐽1, 𝑀1; 𝐽2, 𝑀2⟩ .

Therefore, by definition, the same expression must also be true for spherical tensor operators1,

𝑄
(𝐿3)
𝐾3

=
∑︁
𝐾1,𝐾2

⟨𝐿1, 𝐾1; 𝐿2, 𝐾2 |𝐿3, 𝐾3⟩𝑄 (𝐿1)
𝐾1

𝑄
(𝐿2)
𝐾2

. (5.3)

Equation (5.3) tells us how to ‘make’ a spherical tensor from the product of another two. One con-

sequence is the general statement that scalar (rank 0) operators can be constructed by contracting

two tensor operators of the same rank; e.g., energy𝑈 is a scalar.

5.1.2 Scalar, vector, and tensor polarizabilities

To see how the polarizability tensor 𝛼𝑖 𝑗 has ‘structure’, let us rewrite Eq. (5.2) in spherical

tensor form (ignoring the hyperpolarizability for now),

𝑈 = −
E2

0
4

2∑︁
𝐿=0

+𝐿∑︁
𝐾=−𝐿

(−1)𝐾𝛼(𝐿)
𝐾
𝜉
(𝐿)
−𝐾 ,

where 𝛼(𝐿)
𝐾

is the 𝐾 component of a rank 𝐿 tensor. The polarization tensor is defined as [108]

𝜉
(𝐿)
𝐾

≡
√

2𝐿 + 1
∑︁
𝜇=0,±1

(−1)𝜇𝜖𝜇𝜖∗𝜇−𝐾
©«

1 𝐿 1

𝜇 −𝐾 𝐾 − 𝜇

ª®®¬, (5.4)

which can be obtained (up to conventional numerical factors) by applying Eq. (5.3) to the case of

a dyadic (𝜖∗
𝑖
𝜖 𝑗 ). Note that (𝜖∗)𝜇 = (−1)𝜇 (𝜖−𝜇)∗. Often the quantum state under consideration has

1Some authors omit the sum over 𝐾2 explicitly since the triangle condition restricts non-vanishing terms to have
certain values of 𝐾2 related to 𝐾1.
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a well-defined angular momentum and parity (e.g., |𝐽, 𝑀⟩). We may invoke the correspondence

principle to write 𝛼(𝐿)
𝐾

as the matrix element ⟨𝐽, 𝑀 |A (𝐿)
𝐾

|𝐽, 𝑀⟩, where A (𝐿)
𝐾

is the polarizability

operator. The Wigner-Eckart theorem tells us that

⟨𝐽, 𝑀 |A (𝐿)
𝐾

|𝐽, 𝑀⟩ ∝
©«
𝐽 𝐿 𝐽

−𝑀 𝐾 𝑀

ª®®¬ ≠ 0,

if and only if 𝐾 = 0, by virtue of the triangle condition. Hence, we may collapse the formula for

the energy shift to contain only three 𝐾 = 0 terms

𝑈 = −
E2

0
4

2∑︁
𝐿=0

(−1)𝐿 ⟨𝐽, 𝑀 |A (𝐿)
0 |𝐽, 𝑀⟩ 𝜉 (𝐿)0 . (5.5)

The so-called scalar, vector, and tensor shifts are related to the 𝐿 = 0, 1, 2 terms, respectively.

We may further factor out the 𝐽 and 𝑀 dependence of the various terms using the Wigner-

Eckart theorem [21]; i.e., the matrix element of a spherical tensor operator is proportional to that

of the angular momentum spherical tensor operator of the same rank and component, 𝐽 (𝐿)
𝐾

. In other

words, ⟨𝐽, 𝑀 |A (𝐿)
𝐾

|𝐽, 𝑀⟩ = 𝑐𝐿 ⟨𝐽, 𝑀 |𝐽 (𝐿)
𝐾

|𝐽, 𝑀⟩, where 𝑐𝐿=0,1,2 are constants of proportionality

and may be positive or negative. It is customary to collect the prefactors and redefine them as the

real numbers 𝛼sc, 𝛼vec, 𝛼tns where the subscripts denote ‘scalar’, ‘vector’, and ‘tensor’ respectively.

A detailed treatment can be found in Ref. [108]. In the perturbative regime where the total

energy shift 𝑈 due to the laser is much smaller than the energy separation of the molecular states

(so that 𝐽 and 𝑀 remain good quantum numbers),

𝑈 = −
E2

0
4

(
𝛼sc − 𝛼vec

𝑀

2𝐽
𝑖(𝝐 ∗

× 𝝐 ) · q̂ + 𝛼tns
3𝑀2 − 𝐽 (𝐽 + 1)
𝐽 (2𝐽 − 1)

3|𝝐 · q̂|2 − 1
2

)
. (5.6)

For the state |𝑖⟩ with zero nuclear spin (𝐼 = 0), the explicit expressions for the scalar, vector, and
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tensor polarizabilities in terms of the reduced matrix elements ⟨ 𝑓 | |𝑑 (1) | |𝑖⟩ are

𝛼sc =
1
ℏ

1
3(2𝐽 + 1)

∑︁
𝑓

|⟨ 𝑓 | |𝑑 (1) | |𝑖⟩|2
2𝜔 𝑓 𝑖

𝜔2
𝑓 𝑖
− 𝜔2

, (5.7)

𝛼vec = −1
ℏ

√︄
6 𝐽

(2𝐽 + 1) (𝐽 + 1)
∑︁
𝑓

(−1)𝐽+𝐽′


1 1 1

𝐽 𝐽′ 𝐽

 |⟨ 𝑓 | |𝑑 (1) | |𝑖⟩|2 2𝜔
𝜔2
𝑓 𝑖
− 𝜔2

, (5.8)

𝛼tns =
1
ℏ

√︄
10 𝐽 (2𝐽 − 1)

3(2𝐽 + 1) (𝐽 + 1) (2𝐽 + 3)
∑︁
𝑓

(−1)𝐽+𝐽′


1 2 1

𝐽 𝐽′ 𝐽

 |⟨ 𝑓 | |𝑑 (1) | |𝑖⟩|2
2𝜔 𝑓 𝑖

𝜔2
𝑓 𝑖
− 𝜔2

, (5.9)

where |𝑖⟩ , | 𝑓 ⟩ are shorthand labels for |𝑛𝑖, 𝑣𝑖; 𝐽𝑖, 𝑀𝑖,Ω𝑖⟩ ,
��𝑛 𝑓 , 𝑣 𝑓 ; 𝐽 𝑓 , 𝑀 𝑓 ,Ω 𝑓

〉
; i.e., the full molec-

ular state. In the formulas above, we relabeled 𝐽𝑖 → 𝐽, 𝑀𝑖 → 𝑀 , 𝐽 𝑓 → 𝐽′ and 𝑀 𝑓 → 𝑀′ for

notation consistency within this subsection. The array with curly brackets is the Wigner 6-j sym-

bol. 𝜔 𝑓 𝑖 is the corresponding transition angular frequency2, and 𝜔 is the angular frequency of the

electromagnetic field. We point out that the angular frequency that appears in the numerator of

Eq. (5.8) differs from Eqs. (5.7) and (5.9); i.e., it is 𝜔 and not 𝜔 𝑓 𝑖. The dc (static) polarizability is

recovered for 𝜔 = 0. While this sum-over-states approach is popular and intuitive, other methods

to numerically calculate molecular polarizability also exist [107, 111]. In particular, often it is

necessary to add a small contribution, 𝛼core, due to the core electrons to the scalar polarizability

[112].

For the work in this thesis it is appropriate to write the polarization vector [Eq. (3.8)] of the

laser propagating along Ŷ as

𝝐 = Ẑ cos 𝜃 + X̂𝑒𝑖𝜙 sin 𝜃,

where 𝜃 is the polarization angle3 with respect to the lab frame quantization axis q̂ = Ẑ (i.e.,

𝝐 · q̂ = cos 𝜃), and 𝜙 is the Bloch sphere azimuth angle that parametrizes the degree of circular

polarization. Our trap laser propagates perpendicular relative to the quantization axis in this work,

2Note that 𝜔 𝑓 𝑖 is positive (negative) if | 𝑓 ⟩ is energetically higher (lower) than |𝑖⟩.
3Here, the laser propagates perpendicular to the quantization axis, allowing us to make an intuitive correspondence

between the geometric polarization angle relative to quantization axis (= 𝜃) and the Bloch sphere polar angle (= 2𝜃).
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so the polarization dependence of the vector light shift does not have a clean expression4 purely in

terms of 𝜙. As Eq. (5.6) involves lab-fixed frame transition matrix elements, it gives the total light

shift due to the polarizability of the particle in the lab-fixed frame5.

The appearance of the Legendre polynomial 𝑃2(cos 𝜃) = (3 cos2 𝜃 − 1)/2 in the tensor light

shift is not surprising given its rank 2 nature. At the “magic angle” 𝜃 = cos−1
(
1/
√

3
)
≈ 54.7◦, the

tensor light shift can be suppressed to zero (see e.g., Ref. [22] for the subradiant (1)1𝑔 states). For

𝐽 = 1/2, the tensor light shift is zero. For 𝐽 = 0, both the vector and tensor light shifts are zero. For

𝑀 = 0, or linearly polarized light, or when the projection of (𝝐 ∗ × 𝝐 ) along the quantization axis

(q̂) is zero, the vector light shift is zero. 𝛼sc is also called the isotropic polarizability, and the trace

of the polarizability gives the rank 0 part, since tr𝛼(𝐿)
0 =

∑
𝑀 ⟨𝐽, 𝑀 |𝛼(𝐿)

0 |𝐽, 𝑀⟩ ∝ 𝛼
(0)
0 as terms

with 𝐿 ≠ 0 vanish by the Wigner-Eckart theorem. This is reflected in the fact that, individually,

the vector and tensor light shifts sum to zero over all possible 𝑀 states,

+𝐽∑︁
𝑀=−𝐽

2∑︁
𝐿=1

(−1)𝐿 ⟨𝐽, 𝑀 |A (𝐿)
0 |𝐽, 𝑀⟩ 𝜉 (𝐿)0

= const. ×
+𝐽∑︁

𝑀=−𝐽
𝑀 + const. ×

+𝐽∑︁
𝑀=−𝐽

[3𝑀2 − 𝐽 (𝐽 + 1)]

= 0.

The first term is evidently zero. For the second term, we used the math result for the square

pyramidal numbers:
∑+𝐽
𝑀=−𝐽 𝑀

2 = 𝐽 (𝐽 + 1) (2𝐽 + 1)/3.

The essence of the above discussion that pertains to this thesis is that we expect the polariz-

abilities of 𝑋1Σ+
𝑔 (𝐽 = 0) clock states to be scalar; i.e., the light shift on these states arising from

a finite polarizability is independent of laser polarization. However, in general, the light shift

4For a laser propagating parallel to the Ẑ quantization axis, the Bloch vector points toward the pole (2𝜃 = 𝜋). Here,
𝜙 loses its meaning and it is more appropriate write 𝝐 = X̂ cos 𝛾+Ŷ 𝑖 sin 𝛾, where 𝛾 is the so-called degree of ellipticity.
The cross product −𝑖(𝝐 ∗ × 𝝐 ) · Ẑ would evaluate to sin(2𝛾).

5For molecules, it is important to distinguish between the lab-fixed frame and the molecule-fixed frame. In
particular, for 1Σ+

𝑔 molecules, the analogous molecular frame ‘scalar’, ‘vector’, and ‘tensor’ polarizabilities are
�̃�sc = 1

3 (�̃�∥ + 2�̃�⊥), �̃�vec = 0, �̃�tns = 2
3 (�̃�∥ − �̃�⊥) respectively. Here, �̃�∥ and �̃�⊥ are the molecular frame polariz-

abilities involving parallel Σ-Σ and perpendicular Σ-Π transitions respectively [107, 113].
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arising from the hyperpolarizability is a function of the laser’s degree of circular polarization,

even for 𝐽 = 0 states [109]. This can be shown from Eq. (5.2), but a simple physical argument

is sufficient to illustrate this. Consider a consecutive two-photon transition (Ξ-configuration) from

𝐽 = 0 to 𝐽′′ = 0 via 𝐽′ = 1. If the laser is linearly polarized, the hyperpolarizability light shift of

the initial 𝐽 = 0 state exhibits a dispersive resonance at the two-photon resonance. However, this

two-photon transition is clearly forbidden if the laser is circularly polarized (the second leg could

not address the final state), and the light shift is unperturbed by the two-photon resonance. Exactly

such a two-photon transition between scalar states is known to contribute to the hyperpolarizability

shifts in the Yb atomic optical lattice clock at its 759 nm magic wavelength [114, 115].

5.1.3 Clock state polarizability formula

The electric dipole (𝐸1) polarizabilities of 𝐽 = 0 clock states in the 𝑋1Σ+
𝑔 potential were

calculated by our theory collaborators [19]. Using Eq. (5.7), the purely scalar polarizability for a

state with vibrational quantum number 𝑣 is

𝛼𝑣 =
1
ℏ

∑︁
𝑓

𝑆 𝑓 𝑖

(
1

𝜔 𝑓 𝑖 − 𝜔
+ 1
𝜔 𝑓 𝑖 + 𝜔

)
. (5.10)

As in Eqs. (4.4) and (4.5), the transition strengths are

𝑆 𝑓 𝑖 ≡
��� 〈𝑛 𝑓 , 𝑣 𝑓 ; 𝐽 𝑓 , 𝑀 𝑓 ,Ω 𝑓

��𝑑 (1)
𝑀 𝑓−𝑀𝑖

��𝑛𝑖, 𝑣𝑖; 𝐽𝑖, 𝑀𝑖,Ω𝑖
〉���2 . (5.11)

Here, 𝐽𝑖 = 0, 𝑀𝑖 = 0,Ω𝑖 = 0, 𝑛𝑖 = 𝑋1Σ+
𝑔 , and 𝐽 𝑓 = 1 such that

𝑆 𝑓 𝑖 =
©«
1 1 0

0 0 0

ª®®¬
2

|⟨ 𝑓 | |𝑑 (1) | |𝑖⟩|2 =
1
3
|⟨ 𝑓 | |𝑑 (1) | |𝑖⟩|2.

The sum in Eq. (5.10) is mainly composed of transitions from 𝑛𝑖 = 𝑋1Σ+
𝑔 to singlet ungerade

excited potentials (𝑛 𝑓 ). Bound-to-continuum transitions are calculated by discretizing the contin-
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uum. The 𝑛 𝑓 channels include the 1Σ+
𝑢 potentials correlating to 1𝑆 + 1𝑃 and 1𝑆 + 1𝐷, as well as

the 1Π𝑢 potentials correlating to 1𝑆 + 1𝑃, 1𝑆 + 1𝐷, 3𝑃 + 3𝑃 and 3𝑃 + 3𝐷. The (1)1Σ+
𝑢 potential

is taken from the ab initio calculation in Ref. [16], while the doubly-excited (3)1Π𝑢 and (4)1Π𝑢

potentials were calculated using the multireference configuration interaction method (MRCI) with

the MOLPRO package [116]. The remaining potentials (including 𝑋1Σ+
𝑔 ) are empirical [15, 17].

We omit spin-orbit and non-adiabatic couplings between the potentials. The convergence of our

results is not changed by the inclusion of further high-lying potentials [19].

Laser wavelengths in the range 800–1200 nm can drive transitions from 𝑋1Σ+
𝑔 to the short-

range part of (1)1𝑢. These singlet-triplet transitions are relatively weaker than singlet-singlet ones,

but become important if the laser is tuned near a resonance; e.g., in the case of a magic wavelength

optical trap. To properly account for these situations, we additionally include the Morse/Long-

range potential of (1)1𝑢 from Ref. [18] in the polarizability sum.

Classically, the polarizability is proportional to the particle’s spatial volume (in fact, it has the

same dimensions as volume in c.g.s units). For this reason, the polarizability of a weakly bound

homonuclear diatomic molecule in 𝑋1Σ+
𝑔 will be approximately twice that of a single constituent

1𝑆0 atom; i.e., 𝛼62 ≃ 2 × 𝛼Sr. This allows us to benchmark the absolute accuracy of our polariz-

ability calculations with highly accurate values reported in Sr atomic clock literature. We estimate

that the polarizability of 𝑋 (62, 0) is 2 × 282 a.u. at 813.4 nm and 2 × 256 a.u. at 914.0 nm. These

are in reasonable agreement (∼ 2%) with the values for 𝛼Sr obtained experimentally (288 a.u. at

813.4 nm [117]) and theoretically (286.0(3) at 813.4 nm [118] and 261.2(3) at 914.0 nm [118]).

Additionally, we can benchmark the relative accuracy of our calculations with ac polarizability

ratios 𝛼𝑣/𝛼62 for various 𝑣, over a range of lattice wavelengths (e.g., 𝑣 = 0 in Fig. 5.1). We do this

using a frequency-only method [Eq. (2.47)], finding consistency within < 20%.

As a sanity check, let us make contact with simpler-looking formulas from earlier in this the-

sis. Suppose we have a two-level system coupled by a laser. Since we are dealing with optical

frequencies, 1/(𝜔 𝑓 𝑖 + 𝜔) ≪ 1/(𝜔 𝑓 𝑖 − 𝜔) ≡ −1/Δ𝑙 and Eq. (5.10) reduces to just a single term

𝛼 = −𝑆/(ℏΔ𝑙). Using Eqs. (4.3) and (2.4), the angular frequency shift experienced by the lower
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Figure 5.1: The baseline ac polarizability ratio 𝛼0/𝛼62 at various lattice trap laser wavelengths.
Red circles are experimental measurements. The black dotted line is the theoretical calculation.
𝑋 → (1)1𝑢 resonances are excluded from this plot for clarity of presentation but are included in
the calculation.

state is

𝑈/ℏ ≈ −𝛼E2
0/(4ℏ) =

|Ω𝑅 |2
4Δ𝑙

, (idealized two-level system) (5.12)

which exactly agrees with Eq. (3.46).

5.2 Lattice clock architecture

In one tremendously successful clock architecture, large numbers of neutral quantum absorbers

are tightly confined in an optical lattice (see Fig. 1.1 for a caricature). Such lattice clocks, so far

employing atomic optical transitions, have achieved unparalleled performance in both precision

and accuracy. It is a near certainty that optical atomic lattice clocks will serve as primary frequency

standards in the forthcoming redefinition of the SI second.

Clock accuracy and precision often advance in lockstep, closely intertwined in a virtuous cir-

cle. The foremost advantage of the lattice clock architecture over single- (or multi-) ion clock

platforms is that the number of simultaneously interrogated quantum absorbers can be a few or-

ders of magnitude larger, affording greatly reduced quantum projection noise [Eq. (1.1)]. Indeed,

this was what motivated the development of lattice clocks two decades ago [110].
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Optical trapping, however, is a double-edged sword. Generally, two distinct quantum states ex-

perience unequal light shifts in the presence of an external trapping laser due to their polarizability

mismatch. For a lattice clock, this differential light shift presents at least two major complica-

tions. Firstly, the clock (transition) frequency would be light shifted from its unperturbed value,

inhibiting accurate clock spectroscopy. Secondly, due to the thermal distribution of their speeds,

the molecules sample spatially varying levels of laser intensity at different parts of the trapping

potential, giving rise to the inhomogeneous broadening of the clock line (see Sec. 2.4.5), which

diminishes the achievable precision.

The breakthrough came with the invention of the magic wavelength protocol. As the polar-

izability is predominantly a function of the applied laser frequency [Eq. 5.10], the key insight is

that it is possible to find special crossings in the polarizabilities of the two clock states where the

differential polarizability is essentially eliminated. By doing so, the internal degrees of freedom of

the molecule become decoupled from their translational motion.

5.3 Molecular magic wavelength protocol

5.3.1 Near-resonant magic wavelengths

In general, the polarizabilities of two quantum states cross because the external laser is closer

to the transition resonances of one of the states. This results in the disproportionate modification of

its polarizability compared to that of the other state, thereby bridging the “baseline” polarizability

difference [Eq. (5.14)]. Magic (or state-insensitive) trap design is non-trivial for molecules since

the number of polarizability crossings, and the variety of resonances is much greater than in atoms.

For our prototypical molecular clock, we operate on the pure vibrational transition between the

weakest bound and most tightly bound irrotational states in the 𝑋1Σ+
𝑔 ground potential of 88Sr2;

𝑋 (62, 0) → 𝑋 (0, 0). As a direct transition between 𝐽 = 0 states is strictly forbidden at all orders

of the multipole expansion, we drive the clock transition with a two-photon Raman process. The

vibrational splitting of ∼32 THz constitutes the clock frequency ( 𝑓clock). This choice of clock

states is advantageous because 𝑓clock is the largest possible pure vibrational frequency in the ground
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(a)

(b)

Figure 5.2: Effect of lattice laser frequency on the 𝑋 (62, 0) → 𝑋 (0, 0) Raman clock. (a) Differ-
ential light shift of the clock transition versus lattice power, 𝑃latt, at various lattice wavelengths
(see legend). By off-resonantly addressing 𝑋 (0, 0) → (1)1𝑢 (9, 1), the differential light shift can
be made to be largely insensitive to lattice power. For quick analysis, the line centers are obtained
using Lorentzian fits to the spectroscopic resonances. Linear fits are made to the line centers as a
function of 𝑃latt with no fixed parameters, which accurately quantifies the slopes, 𝐿0. Due to the
asymmetrical carrier lineshape at non-magic wavelengths, fitting Lorentzian lineshapes systemati-
cally biases the vertical intercepts. In this plot, each set of raw line centers and their linear fit (color
coded) are offset vertically so that the lines aesthetically intersect at the origin. (b) Dramatic nar-
rowing of the clock linewidth by many orders of magnitude at the magic wavelength (≈1004.7723
nm), measured at 𝑃latt ≈ 300 mW. Both (a) and (b) are prepared using the same raw dataset.
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Figure 5.3: Polarizability ratio 𝛼0/𝛼62 in the vicinity of (1)1𝑢 (9, 1). The “baseline” polarizability
ratio, 𝛼b.g.

0 /𝛼62, is approximately 1.404(7) between 1004 nm and 1006 nm. The magic detuning
occurs at 4.494(1) GHz from the 𝑋 (0, 0) → (1)1𝑢 (9, 1) resonance. Solid line is the dispersive
fit in the form of 𝑦 = 𝐴/(𝑥 − 𝑥0) + 𝐵. Using Eq. (5.15), dispersive curves like this allow the
𝑋 → 1𝑢 transition strength to be accurately extracted using purely spectroscopic measurements.
Due to good Franck-Condon overlap, 𝑋 (0, 0) → (1)1𝑢 (9, 1) is one of the strongest transitions of
its kind, with 𝑆𝑙𝑖 = 1.335(35) × 10−4 (𝑒𝑎0)2. To obtain the transition strength, we make use of our
polarizability model to estimate 𝛼62 ≈ 484(10) a.u. between 1004 nm and 1006 nm. This figure is
prepared using the same raw dataset as Figs. 5.2(a,b).
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potential, and additionally, it provides direct access to the dissociation energy of the dimer (𝐷0),

which is of prime interest to quantum chemists.

Magic trapping conditions can be engineered for 𝑋1Σ+
𝑔 vibrational clock states by tuning the

frequency of the lattice laser such that it off-resonantly addresses a transition from the more deeply

bound clock state to a 𝐽′ = 1 rovibronic state in (1)1𝑢, as illustrated in Fig. 4.7(a). Figures 5.2(a,b)

show the behavior of the differential light shift and the carrier linewidth as the lattice wavelength

is swept across the 𝑋 → 1𝑢 transition over a relatively broad range.

As discussed in Sec. 2.2, being predominantly of triplet character, (1)1𝑢 states possess rather

narrow natural linewidths; theoretically, Γ1𝑢 ∼ 2𝜋 × 10 kHz. According to our spectroscopy (see

Sec. 3.5, Table 3.6, and Fig. 3.14), deeply bound (1)1𝑢 states are well-isolated at intervals of ∼2

THz. Under these conditions, a single 𝑋 → 1𝑢 resonance addressed by the lattice laser dominates

the sum in Eq. (5.10). Consolidating the remaining contributions into a “background” term 𝛼
b.g.
𝑣 ≡

−∑
𝑓≠𝑙 𝑆 𝑓 𝑖/(ℏΔ 𝑓 ), we thus write

𝛼𝑣 = − 𝑆𝑙𝑖
ℏΔ𝑙

+ 𝛼b.g.
𝑣 , (5.13)

where Δ 𝑓 ≡ −(𝜔 𝑓 𝑖 −𝜔) is the angular frequency detuning of the lattice laser from the various rovi-

bronic resonances, the subscript “𝑙” is a shorthand label for the nearest (1)1𝑢 state off-resonantly

addressed by the lattice, and we have neglected the counter-rotating terms ∝ 1/(𝜔 𝑓 𝑖 +𝜔) since the

lattice laser angular frequency 𝜔 ∼ 2𝜋 × 300 THz; i.e., 1/(𝜔 𝑓 𝑖 + 𝜔) ≈ 0.

For the Raman clock transitions investigated in this thesis, the polarizability of the deeply

bound state 𝛼𝑣 is strongly perturbed when the lattice is swept across an 𝑋 → 1𝑢 resonance, while

that of the weakly bound state 𝛼62 remains relatively unperturbed. By definition, the differential

polarizability, 𝛼𝑣 −𝛼62, is nulled at the magic detuning Δ𝑚. Therefore, we find that the “baseline”

polarizability difference is

𝛼
b.g.
𝑣 − 𝛼62 =

1
ℏ

𝑆𝑙𝑖

Δ𝑚
. (5.14)
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Substituting this into Eq. (5.13), and computing the polarizability ratio 𝛼𝑣/𝛼62, we obtain

𝛼𝑣

𝛼62
= 1 + 1

𝛼62

𝑆𝑙𝑖

ℏ

(
1
Δ𝑚

− 1
Δ𝑙

)
, (5.15)

Figure 5.3 plots 𝛼𝑣=0/𝛼62 as a function of Δ𝑙/(2𝜋), showing the characteristic 1/Δ𝑙 dispersive

polarizability resonance feature. At the magic detuning (Δ𝑚 = 2𝜋 × 4.494(1) GHz for this pair of

clock states and the chosen (1)1𝑢 rovibronic resonance), the polarizabilities of the clock states are

matched and 𝛼𝑣/𝛼62 = 1. The polarizability ratios are determined using Eq. (2.47) with the various

𝐿0 obtained from the slope of the linear fits in Fig. 5.2(a).

Taking the situation when |Δ𝑙 | ≫ |Δ𝑚 | in Eq. (5.15) such that −𝑆𝑙𝑖/(ℏΔ𝑙) ≪ 𝛼
b.g.
𝑣 , we obtain

the “baseline” polarizability ratio
𝛼

b.g.
𝑣

𝛼62
≃ 1 + 1

𝛼62

𝑆𝑙𝑖

ℏΔ𝑚
, (5.16)

and equating this with Eq. (2.47) under the same conditions

𝛼
b.g.
𝑣

𝛼62
= 1 − 4𝐸r

ℎ

𝐿
b.g.
0

𝑓 2
ax/𝑃latt

, (5.17)

we find a useful formula for the transition strength,

𝑆𝑙𝑖 ≃ 𝛼62

(
𝛼

b.g.
𝑣

𝛼62
− 1

)
ℏΔ𝑚 = 𝛼62

(
−4𝐸r𝐿

b.g.
0

𝑓 2
ax/𝑃latt

) (
Δ𝑚

2𝜋

)
. (5.18)

Here, 𝐿b.g.
0 is the “baseline” slope of the differential light shift (operationally, the lattice frequency

is tuned to be somewhere in the middle of two adjacent 𝑋 → 1𝑢 resonances), and 𝑓ax is the

axial trapping frequency of 𝛼62 obtained from Raman sideband spectroscopy (see Sec. 2.4.4).

This formula implies that for a given baseline polarizability mismatch between the clock states,

the required magic detuning Δ𝑚 monotonically increases with the 𝑋 → 1𝑢 transition strength.

Importantly, the sensitivity of the clock transition to lattice frequency jitter is proportional to the

slope of the lattice-induced light shift at the magic detuning, −|Ω𝑅 |2/(4Δ2
𝑚) [Eq. (5.12)], and thus
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would monotonically decrease for larger transition strengths. In other words, near-resonant-type

magic wavelengths based on stronger 𝑋 → 1𝑢 transitions place less stringent constraints on the

required frequency stability of the lattice laser, and on the bandwidth of the spectral filter that

suppresses amplified spontaneous emission (ASE) noise around the carrier. As we will see in the

following subsection, 𝑋 (0, 0) → (1)1𝑢 (9, 1) is one of the strongest 𝑋 → 1𝑢 transitions below the

(1)0+𝑢 potential depth in 88Sr2, making it ideally suited for engineering a near-resonant magic trap.

Finally, the close relationship between Eqs. (5.18), (5.2), (4.3) and (2.33) is concisely encap-

sulated by

|Ω𝑅 |2 ≃
(
𝛼

b.g.
𝑣

𝛼62
− 1

)
𝜔2

ax
𝐸r/ℏ

Δ𝑚, (5.19)

which offers a convenient formula for converting between important magic trap-dependent, exper-

imentally measured angular frequencies.

5.3.2 𝑋 to (1)1𝑢 transition strength measurements

The previous subsection offers a great segue into a discussion of 𝑋 → 1𝑢 transition strengths.

Recall that the polarizability of a dimer in the least bound state 𝑋 (62, 0) will be approximately

twice that of an atom in 1𝑆0. Substituting 𝛼62 ≃ 2 × 𝛼Sr into Eq. (5.18), we get

𝑆𝑙𝑖 ≃ 2𝛼Sr ×
2ℎ2

𝑀𝜆2
latt

(
−𝐿b.g.

0

𝑓 2
ax/𝑃latt

) (
Δ𝑚

2𝜋

)
, (5.20)

where we remind the reader that 𝑀 is the mass of the dimer, and 𝜆latt is the lattice wavelength

at which 𝐿b.g.
0 and 𝑓 2

ax/𝑃latt are measured6. The quantities appearing in Eq. (5.20) can either be

measured very accurately (e.g., frequency measurements), or have existing values available from

reliable literature (e.g., the polarizability of the Sr atom at various wavelengths, essentially enabling

the calibration of the lattice intensity experienced by the molecules).

The transition strengths of various deeply bound X(𝑣, 0) → (1)1𝑢 (𝑣′, 1) resonances obtained

this way are listed in Table 5.1 and plotted in Figs. 5.4(a,b). For 𝑣 = 4, 6 → 𝑣′ = 23–26 in the 907–

6Ideally, this should also be within ±1–2 nm of the 𝑋 → 1𝑢 transition wavelength, but care should be taken to
avoid getting too close to a resonance or else Eq. (5.15) would not be valid.
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Table 5.1: Transition strengths of deeply bound (1)1𝑢 (𝐽′ = 1) with deeply bound 𝑋1Σ+
𝑔 (𝐽 = 0),

given in units of (𝑒𝑎0)2. Values under the header “Skomorowski” are calculated using the unscaled
ab initio potential [16], while those under “Majewska” are calculated using the Morse/Long-range
potential [18]. The experiment values are determined using an accurate frequency-only spectro-
scopic method (see main text). For convenience, the resonant 𝑋 → 1𝑢 wavelengths are shown,
rounded to 3 decimal places (see Table 3.6 for more precise values of (1)1𝑢 binding energies).
We also list the requisite magic detunings for engineering a near-resonant-type magic trap via the
respective 𝑋 → 1𝑢 transitions for various Raman clock pairs in 𝑋1Σ+

𝑔 . The initial clock state is
𝑋 (62, 0) in all but one entry (starred, 𝑣 = 6, 𝑣′ = 25 where it is 𝑋 (61, 0)).

𝑋 (𝑣, 0) (1)1𝑢 (𝑣′, 1) 𝜆res.
latt (nm) 1

2𝜋Δ𝑚 (GHz) Skomorowski Majewska Exp. (this work)

8 13 1002.682 0.51(5) 4.8 × 10−5 3.3 × 10−6 1.7(3) × 10−5

6 5 1063.185 1.74(1) 1.0 × 10−4 2.1 × 10−5 3.0(3) × 10−5

6 6 1054.110 0.5(1) 7.8 × 10−6 7.8 × 10−6 8(2) × 10−6

6 7 1045.233 0.14(1) 2.9 × 10−5 3.7 × 10−7 2.3(4) × 10−6

6 23 925.973 1.380(2) 1.0 × 10−6 2.1 × 10−5 4.3(2) × 10−5

6 24 919.725 1.316(1) 2.8 × 10−5 2.2 × 10−5 4.1(2) × 10−5

6∗ 25∗ 913.597 0.67(2) 6.5 × 10−5 1.3 × 10−5 2.1(1) × 10−5

6 26 907.587 0.195(2) 7.5 × 10−5 3.4 × 10−6 6.1(3) × 10−6

4 11 1004.291 1.58(5) 2.9 × 10−5 1.7 × 10−5 4.6(6) × 10−5

4 25 907.636 2.30(4) 5.2 × 10−5 3.9 × 10−5 6.7(3) × 10−5

0 8 1012.903 4.22(5) 7.4 × 10−5 5.7 × 10−5 1.2(2) × 10−4

0 9 1004.787 4.494(1) 1.2 × 10−4 6.2 × 10−5 1.34(4) × 10−4

0 10 996.842 4.25(5) 1.6 × 10−4 6.1 × 10−5 1.3(2) × 10−4

Table 5.2: Transition strengths of weakly bound (1)1𝑢 (𝐽′ = 1) with weakly bound 𝑋1Σ+
𝑔 (𝐽 = 0),

given in units of (𝑒𝑎0)2. Starred 𝑣′ indicates a heavily Coriolis-mixed excited state. Headers have
the same meaning as Table 5.1.

𝑋 (𝑣, 0) (1)1𝑢 (𝑣′, 1) Skomorowski Majewska Exp. (this work)

62 -1 5.44 × 10−3 4.56 × 10−3 5.53(8) × 10−3

62 -2 3.6 × 10−4 3.3 × 10−4 4.0(1) × 10−4

61 -1 1.71 × 10−3 1.68 × 10−3 1.74(3) × 10−3

61 -2 6.95 × 10−3 5.82 × 10−3 8.0(1) × 10−3

60 -3* 1.32 × 10−2 2.46 × 10−3 2.10(5) × 10−3
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925 nm wavelength range, we use 𝛼Sr = 261.2 a.u. at 914 nm from Ref. [118]. For the remaining

𝑋 → 1𝑢 transitions, we employ the molecular polarizability calculation delineated in Sec. 5.1.3 to

estimate 𝛼62 at the various lattice wavelengths. Note that to convert polarizability in atomic units

(a.u.) to MKS (SI) units, multiply the polarizability value in a.u. by 4𝜋𝜖0𝑎
3
0.

Transition strengths offer complementary insights into the chemical bonding of a molecule. As

an illustrative example, we observe that the measured 𝑋 (6, 0) → (1)1𝑢 (𝑣′, 1) transition strengths

exhibit decreasing trends in the two ranges explored by our experiment (𝑣′ = 5–7 and 23–26);

see Fig. 5.4(b). Calculations using the ab initio (1)1𝑢 potential [16], on the other hand, predict

incompatible trends.

As alluded to in Sec. 3.5, it turns out that the ab initio (1)1𝑢 potential underestimated the depth

of the potential by ≈300 cm−1, merely 5% of the total depth [Fig. 3.16]. To arrive at this con-

clusion, our theory collaborators had the insight to model the short-range part of (1)1𝑢 with the

simple Morse potential. The transition strengths with 𝑋 (6, 0) are calculated using the ab initio

electronic transition dipole moment. The Morse (1)1𝑢 molecular wavefunctions are obtained nu-

merically by solving the nuclear Schrödinger equation on an adaptive grid [119]. Similarly, the

molecular wavefunction of 𝑋 (6, 0) is numerically calculated using the empirical ground potential

from Ref. [15]. The physical origin for the observed trends in transition strength is the follow-

ing. Since the classical turning points of the deeply bound 𝑋 states are much further apart than

those of (1)1𝑢, the Frank-Condon factors (see Sec. 4.2.1) largely depend on the spatial variation

of the ground state nuclear wavefunction. For 𝑋 (6, 0), the vibrational wavefunction resembles a

Hermite-Gaussian polynomial with 6 nodes (c.f., quantum harmonic oscillator). Consequently, the

transition strengths exhibit a characteristic zig-zag pattern when plotted against 𝑣′.

For completeness, we list the transition strengths for weakly bound (1)1𝑢 states with weakly

bound 𝑋1Σ+
𝑔 states in Table 5.2. These are measured using Autler-Townes spectroscopy, as de-

scribed in Sec. 3.4.2. Additionally, Fig. 5.5 shows a heatmap of all 𝑋 (𝑣, 𝐽 = 0) → (1)1𝑢 (𝑣′, 𝐽′ = 1)

transition strengths calculated using the Morse/Long-range model (see Sec. 3.5.4).
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Figure 5.4: Visualization of data from Table. 5.1. (a) Magic detunings for various Raman transition
pairs (see legend). Clock state-insensitive trapping conditions are created by tuning the lattice to
off-resonantly address (1)1𝑢 (𝑣′, 1) from the deeply bound 𝑋 (𝑣, 0) state. The magic wavelength
at ≈ 1004.7723 nm, used for the vibrational clock transition 𝑋 (62, 0) → 𝑋 (0, 0) in this thesis, is
4.494(1) GHz blue detuned from 𝑋 (0, 0) → (1)1𝑢 (9, 1). It is the largest magic detuning of its
kind hitherto observed in our experiment. (b) 𝑋 (6, 0) → (1)1𝑢 (𝑣′, 1) transition strengths versus
𝑣′. Green squares, measured; yellow diamonds, predicted using the Morse/Long-range potential
[18]; gray open diamond, predicted using the ab initio potential [16]. Only the Morse/Long-
range potential reproduces the observed relative trends in the transition strengths. As the ab initio
(1)1𝑢 model underestimates the potential depth, its 𝑣′AI labels are such that 𝑣′AI = 0 corresponds
to 𝑣′ = 4. Both theory calculations use the ab initio internuclear distance-dependent electronic
transition moment; it is conceivable that scaling the electronic transition moment might bring the
Morse/Long-range values to be in even closer agreement with the experiment.
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Figure 5.5: Theoretical values of 𝑋 (𝑣, 0) → (1)1𝑢 (𝑣′, 1) transition strengths computed using the
Morse/Long-range potential from Ref. [18]. The scale on the colorbar is log10 [𝑆/(𝑒𝑎0)2].

5.3.3 Clock state lifetimes

As a consequence of the Kramers–Kronig relations, a dispersive (1/Δ𝑙) frequency shift is nec-

essarily accompanied by dissipating light scattering (or absorption). In our case, the absorption of

lattice photons by the deeply bound clock state quenches its lifetime. According to Eq. (3.25), in

the limit where the lattice laser detuning is much larger than the excited state linewidth (Δ𝑙 ≫ Γ1𝑢)

and the intrinsic laser linewidth, the one-photon lattice scattering rate at the magic wavelength is

𝑅1𝛾 ≃ Γ1𝑢
|Ω𝑅 |2

4Δ2
𝑚

, (5.21)

which decreases quickly as 1/Δ2
𝑚 with greater magic detunings. Theoretically, if one-photon scat-

tering is the sole7 loss mechanism, then we should expect 𝑋 (0, 0) lifetimes that are slightly over 1

s at typical magic lattice trap depths.

7Note that there will always be two-body collisions that limit the lifetimes when more than 1 molecule is present at
a lattice site. For a peak molecular density of 1011 cm−3 per lattice site and 𝑘2 ∼ 10−10 cm3s−1, the molecular signal
would quickly decrease within ∼ 100 ms. See Sec. 4.4.
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(a)

(b)

X(62,0)→X(0,0);
magic via (1)1u(9,1)

X(62,0)→X(4,0);
magic via (1)1u(25,1)

Figure 5.6: (a) Lattice-induced scattering of 𝑋 (0, 0) at the 1004.7723 nm magic wavelength for
the vibrational Raman clock transition 𝑋 (62, 0) → 𝑋 (0, 0). Black circles; experimental data, con-
solidated over different methods of lattice frequency stabilization; e.g., phase-locked to frequency
comb, piezo-locked to wavemeter, free-running. The scattering rates are computed as the inverse
of the 𝑋 (0, 0) state 1/𝑒 lifetimes (exponential loss, see Fig. 3.9 as an example). Here, a Ti:sapphire
laser was used as the lattice laser source, with no additional optical filtering. The horizontal axis
is the 𝑋 (0, 0) → (1)1𝑢 (9, 1) angular Rabi frequency, |Ω𝑅 |2, calibrated from the dispersive light
shift curves. Keeping the forward lattice beam power (𝑃latt) constant, this lattice-induced light shift
in angular frequency units is |Ω𝑅 |2/(4Δ𝑙); signs defined for the case where upleg is scanned [18,
67]. Δ𝑙 is the angular frequency detuning of the lattice laser relative to the 𝑋 → 1𝑢 resonance.
By fitting the dispersive feature to the form 𝑦 = 𝐴/(𝑥 − 𝑥0) + 𝐵 with at least 8 points (4 on each
side of the 𝑋 → 1𝑢 resonance), we can extract the value of |Ω𝑅 |2 = 4𝐴 at the corresponding 𝑃latt.
Repeating this for at least 3 different 𝑃latt yields a calibration curve for |Ω𝑅 |2 versus 𝑃latt. Red
solid curve, parabolic fit with fixed intercept at origin; blue dashed line, linear fit with fixed inter-
cept at origin; orange dotted line, linear fit with no fixed parameters; green shaded area, theoretical
one-photon scattering rate Γ1𝑢 |Ω𝑅 |2/(4Δ2

𝑚) for Γ1𝑢 ≤ 2𝜋 × 10 kHz and Δ𝑚 = 2𝜋 × 4.4937 GHz.
The polynomial fits to the black data points are not weighted by the 1𝜎 error bars, as they may
be underestimated. (b) Parabola fit coefficients for 𝑋 (62, 0) → 𝑋 (0, 0) (magic via (1)1𝑢 (9, 1))
corresponding to the red curve in (a), and an analogous measurement with 𝑋 (62, 0) → 𝑋 (4, 0)
(magic via (1)1𝑢 (25, 1)) in Ref. [18]. Values for the former are quoted in the main text. See also
Table 5.1. Green diamonds in the top plot are the theoretical one-photon coefficients, Γ1𝑢/(4Δ2

𝑚).
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It remains an outstanding conundrum that, empirically, the rate at which deeply bound molecules

are lost in a near-resonant magic wavelength scales quadratically with lattice intensity (∝ |Ω𝑅 |4),

rather than linearly (∝ |Ω𝑅 |2). The evidence for this effect on 𝑋 (0, 0) is shown in Fig. 5.6(a), where

Ω𝑅 is the angular Rabi frequency of the 𝑋 (0, 0) → (1)1𝑢 (9, 1) transition off-resonantly addressed

by the lattice. The etiology of the lattice-induced one-body losses is likely multifactorial.

One mechanism under investigation is that molecules in the deeply bound clock state are lost

due to two-photon scattering (or photodissociation). Since deeply bound (1)1𝑢 states are of triplet

character, it is plausible that a second lattice photon mediates triplet-triplet transitions, resulting

in two-photon dissociation. Molecular symmetry additionally constrains the contributing poten-

tials to be gerade (𝑋0+𝑔 → (1)1𝑢 → 𝑔). Starting from 𝑋 (0, 0), two lattice photons would add

2 × 1/(1004.7723 nm) wavenumbers and land 18843.43 cm−1 above the 1𝑆0 + 1𝑆0 threshold. For

quick reference, the excitation wavenumbers of ground state atomic strontium are 14317.52 cm−1

(3𝑃0), 14504.35 cm−1 (3𝑃1), 14898.56 cm−1 (3𝑃2), 18159.06 cm−1 (3𝐷1), 18218.79 cm−1 (3𝐷2),

18319.27 cm−1 (3𝐷3), 20149.70 cm−1 (1𝐷2), and 21698.48 cm−1 (1𝑃1); values rounded from

Ref. [12]. For the theoretical aspects and quantum chemistry calculations pertaining to this inves-

tigation, the reader is referred to Ref. [19]. Here, we approach the problem guided by our experi-

mental measurements. We have not seen evidence of two-photon bound-to-bound transitions, and

the losses are singly-peaked around the 𝑋 → 1𝑢 resonance [Fig. 5.7(a)]. The hypothetical second

leg, therefore, would connect a bound-to-continuum transition from (1)1𝑢. Using Fermi’s Golden

rule, the rate of two-photon excitation is

𝑅2𝛾 =
𝜋ℏ

2
|Ω2𝛾 |2, (5.22)

where Ω2𝛾 is the effective two-photon angular Rabi frequency involving the off-resonantly ad-

dressed 𝑋 → 1𝑢 transition as the first leg, and a hypothetical transition from the (1)1𝑢 state as

the second leg (with angular Rabi frequency Ωhyp, which itself is proportional to Ω𝑅 because the

same lattice laser excites both legs). Note that, here, |Ω2𝛾 |2 has dimensions of [Rate2]/[Energy],
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or 1/(J s2) in MKS (SI) units. From Eq. (3.36),

Ω2𝛾 =
Ω𝑅 Ωhyp

2Δ𝑚
. (5.23)

Therefore, the lattice-induced two-photon excitation rate is

𝑅2𝛾 =
𝜋ℏ

8
|Ω𝑅 |2 |Ωhyp |2

Δ2
𝑚

∝ |Ω𝑅 |4

Δ2
𝑚

𝑆(1u → hyp)
𝑆(X → 1u)

, (5.24)

where 𝑆(1u → hyp) is the transition strength of the hypothetical second leg, and 𝑆(X → 1u) is the

𝑋 → 1𝑢 transition strength (equivalent to 𝑆𝑙𝑖 in the preceding subsections).

Figure 5.6(b) shows the linear and quadratic fit coefficients extracted by fitting the lattice-

induced loss rate of the deeply bound states with a parabola (solid red curve in Fig. 5.6(a)). We

compare these with an analogous measurement8 involving the 𝑋 (62, 0) → 𝑋 (4, 0) Raman transi-

tion, which has a magic wavelength at 907.6293 nm [18]. Heuristically, the baseline polarizability

ratios 𝛼b.g.
0 /𝛼62 and 𝛼b.g.

4 /𝛼62 should be approximately equal since both deeply bound states lie

near the bottom of the ground potential9, and the lattice wavelengths are not drastically dissimilar

(≈1005 nm versus ≈907 nm). Hence, the near-resonant light shift, |Ω𝑅 |2/(4Δ𝑚), needed to bridge

the baseline differential light shift is approximately equal for both cases.

The one-photon scattering rate [Eq. (5.21)] scales as ∼ |Ω𝑅 |2/Δ2
𝑚. Since Γ𝑋→1𝑢 are similar, we

expect that one-photon scattering will be commensurately smaller for larger magic detunings. The

magic detunings under consideration differ by roughly a factor of 2 [Table 5.1]. Indeed, the linear

loss coefficient for 𝑋 (0, 0) (made magic with 𝑋 (62, 0) via (1)1𝑢 (9, 1)) is twice as small as that for

8For 𝑋 (62, 0) → 𝑋 (4, 0) in Ref. [18], and 𝑋 (62, 0) → 𝑋 (6, 0) in Refs. [32, 67], the lattice light was derived from
a tapered amplifier system. These previous studies utilize an off-the-shelf transmission grating to spatially separate
ASE noise from the carrier over a long distance before the lattice light was coupled into a single-mode fiber to the
experiment. Omission of this transmission grating severely quenches the deeply bound state lifetimes, even as far as
∼ 100 GHz detunings from the 𝑋 → 1𝑢 resonances [32]. This grating setup, however, has little to no effect on the
ASE within ≲ 10 GHz. For data concerning the losses of the deeply bound state versus lattice intensity, only for
𝑋 (62, 0) → 𝑋 (4, 0) was the lattice additionally filtered through an optical cavity (to suppress near-carrier ASE), and
were the lattice intensities calibrated in terms of |Ω𝑅 |2. Hence, we omit the results from Ref. [67] in Fig. 5.6(b).

9Recall the famous result from elementary quantum mechanics that the polarizabilities of the vibrational states of
a harmonic oscillator are independent of the vibrational quantum number.
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𝑋 (4, 0) (made magic with 𝑋 (62, 0) via (1)1𝑢 (25, 1)). By comparison with Eq. (5.21), we extract

Γlin.
1𝑢 = 2𝜋 × 69(16) kHz, in tension with the theoretical expectation of ∼ 2𝜋 × 10 kHz.

We note that 𝑋 → 1𝑢 linewidths measured via direct one-photon spectroscopy [32] are also on

the order of ∼ 2𝜋 × 100 kHz, but those experiments suffer from poor signal-to-noise as the sam-

ple of 𝑋 (6, 0) molecules were created using inefficient non-coherent transfer processes. It would

be instructive in future work to revisit such direct spectroscopy using the large molecular sam-

ples of deeply bound states (and hence larger signal-to-noise) afforded by the STIRAP technique

demonstrated in Chapter 4. Attention should be paid to possible broadening effects (e.g., thermal

broadening due to non-magic lattice for 𝑋 → 1𝑢, magnetic fields, etc.).

The two-photon scattering rate to an excited, high-lying state [Eq. (5.24)] scales as ∼ |Ω𝑅 |4/Δ2
𝑚.

Therefore, any distinction (or lack thereof) in the two-photon scattering behavior would depend on

how the ratios 𝑆(1u→hyp)
𝑆(X→1u) differ. Experimentally, we find that 𝑋 (0, 0) (made magic with 𝑋 (62, 0)

via (1)1𝑢 (9, 1)) has a quadratic coefficient that is approximately 3× smaller than 𝑋 (4, 0) (made

magic with 𝑋 (62, 0) via (1)1𝑢 (25, 1)). Two-photon transitions are affected by the ellipticity of

the lattice laser polarization (particularly if the states form a Ξ-system), possibly offering indirect

verification of their role in the deeply bound state losses.

For a bound-to-continuum transition, we might imagine that 𝑆(1u → hyp) is fairly insensitive

to the lattice wavelength. In this case, we should observe significantly faster scattering at near-

resonant magic wavelengths engineered with smaller 𝑆X→1u . Confusingly, anecdotal evidence [32,

67] do not suggest a discernable dependence of the magic trap lifetimes of 𝑋 (6, 0) on 𝑆X→1u in the

907–925 nm and 1045–1064 nm range, despite having varied 𝑆X→1u by over an order of magnitude

[Fig. 5.4(b)]. However, for these older experiments with 𝑋 (6, 0), the lattice intensities were not

calibrated to |Ω𝑅 |2, and the lattice light derives from a tapered amplifier system and the external

optical filtering elements had to be laboriously realigned, posing the risk of uncontrolled ASE

noise when the lattice wavelengths were changed. Moreover, the stated lattice wavelengths would

result in two-photon transitions from 𝑋 (6, 0) that closely address the 1𝑆0 + 1𝐷2 threshold where

the assumption regarding the insensitivity of 𝑆(1u → hyp) to lattice wavelength may not be valid.

136



We next explore the frequency-dependence of the lattice-induced losses of 𝑋 (0, 0) around the

𝑋 (0, 0) → (1)1𝑢 (9, 1) at a constant lattice intensity (|Ω𝑅 |2 ≈ 1.8 × 1017 s−2, calibrated using

dispersive clock light shift curves). Here, it is more appropriate to model one-photon scattering

with the saturated excitation rate [8]

𝑅sat =
Γ1𝑢
4

|Ω𝑅 |2

|Ω𝑅 |2/2 + Δ2
𝑙
+ Γ2

1𝑢/4
. (5.25)

We plot Eq. (5.25) versus Δ𝑙 for two cases. In the first case, we use the value of Γlin.
1𝑢 estimated

from the linear coefficient of the parabolic fit above, shown as the dashed pink curve in Fig. 5.7(a).

In the second case, we use Γ1𝑢 ≲ 2𝜋 × 10 kHz expected from theoretical calculations, depicted by

the green shaded area in Fig. 5.7(a). Neither of these curves comes close to the order of magnitude

of our observed loss rates, once again ruling out one-photon scattering as the sole mechanism.

Without strong physical motivation, we fit Eq. (5.25) plus a constant background term to the loss

rates (solid red curve in Fig. 5.7(a)), extracting Γ1𝑢 = 2𝜋 × 120(10) kHz.

The measurements in Fig. 5.7(a) exhibit asymmetric features that warrant discussion. The

losses are consistently higher on the blue side of the 𝑋 → 1𝑢 resonance, around Δ𝑙 ≈ 2𝜋×1–2 GHz.

This could possibly be an artifact of our measurement scheme. To obtain the loss rates, we perform

STIRAP (see Chapter 4) to produce a sample of 𝑋 (0, 0) molecules before finally reversing the

STIRAP process to recover 𝑋 (62, 0) that we can detect. By varying the duration between the

forward and reverse STIRAP pulses [Fig. 5.7(c)], we hold the 𝑋 (0, 0) in the lattice for a variable

time, 𝑡. We monitor the exponential decay of the molecule number after a roundtrip STIRAP

versus 𝑡, and estimate the lattice-induced loss rates as the inverse of the 1/𝑒 time constant. It turns

out that the tune-out detuning (Δto) for 𝑋 (0, 0) occurs at approximately 2𝜋 × 1.29(1) GHz. At

the tune-out wavelength, 𝛼0 = 0, and 𝑋 (0, 0) molecules do not experience any optical dipole force

from the trap. In fact, it can be shown using Eqs. (5.13) and (5.15) that

𝛼
b.g.
𝑣

𝛼62
=

1
1 − Δto/Δ𝑚

. (5.26)
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Figure 5.7: (a) Frequency dependence of the lattice-induced losses; |Ω𝑅 |2 ≈ 1.8 × 1017 s−2. Black
points, the inverse of the 1/𝑒 exponential decay time constants. Connecting lines are guides to the
eye. Inset shows a zoomed view spanning 1 GHz around the 𝑋 (0, 0) → (1)1𝑢 (9, 1) resonance. See
the main text for a discussion of the asymmetrical features and the plotted peak functions. Vertical
colored lines mark physically significant detunings: Magenta, the tune-out detuning where 𝛼0 = 0;
cyan, 𝑋 → 1𝑢 (𝐽′ = 2); gold, the magic detuning where 𝛼0 = 𝛼62. (b) Rotational splittings of
(1)1𝑢 (9, 𝐽′); see also Table 3.6. (c,d) Experimental timing sequences for the measurements in (a).

138



Therefore, for 0 ≤ Δ𝑙 < Δto, 𝑋 (0, 0) molecules are repelled out of the trap, which would arti-

ficially exaggerate the losses. Due to practical limitations, the roundtrip STIRAP transfer times

are at least 100–200 𝜇s. To investigate the exceedingly fast loss rates within a very narrow band

(∼ 1 GHz) of the 𝑋 → 1𝑢 transition, we adopt a different timing strategy shown in Fig. 5.7(d).

Here, we fix the roundtrip STIRAP duration, perform STIRAP in free flight, and vary the time

the 𝑋 (0, 0) molecules are exposed to lattice light during the roundtrip. Fast pulsing of the lattice

light is accomplished using an acousto-optic modulator10. As shown by the inset to Fig. 5.7(a), the

losses appear to have the opposite behavior, where blue detunings result in smaller loss rates. One

hypothesis is that although blue detunings repel the molecules away from high-intensity regions

of the pulsed lattice beam, this only occurs for a very short duration in free flight, and most of

the molecules are recaptured by the lattice. Hence, we would detect a larger number of remaining

𝑋 (0, 0) molecules because the average intensity experienced by the molecules over the same time

is smaller.

The magic wavelengths are rather close to the positions of 𝑋 (𝑣, 𝐽 = 0) → 1𝑢 (𝑣′, 𝐽′ = 2) tran-

sitions [Fig. 5.7(b)]. Exotic mechanisms might open up this loss channel; e.g., electric quadrupole

transitions due to the tight focusing of the lattice laser beam, or lattice-induced admixture of 𝐽′ = 1

and 𝐽′ = 2 states of (1)1𝑢 (previously observed under strong applied magnetic fields [23]). For the

latter, we may expect, to leading order, that the degree of 𝐽′ = 1, 2 state admixture is proportional

to the lattice intensity. In either case, the overall scattering rate due to 𝑋 (𝐽 = 0) → 1𝑢 (𝐽′ = 2)

would scale quadratically with lattice intensity. The lack of a sharp resonance in Fig. 5.7(a) at the

expected location for a 𝑋 → 1𝑢 (𝐽′ = 2) transition might rule out this possibility.

Known technical effects that cause trap loss include parametric heating [120]. We defini-

tively rule out parametric heating due to intensity fluctuations since the weakly bound clock state

𝑋 (62, 0) does not suffer from lattice intensity-dependent one-body losses [Fig. 3.9]. For the deeply

bound states (e.g., 𝑋 (0, 0), 𝑋 (4, 0), etc.), there is a realistic chance that Fourier components at

10Care should be taken to eliminate (if not minimize) leakage light from other diffraction orders. In practice, due
to internal crystal reflections, etc., some leakage inevitably gets sent to the experiment. As the lattice intensity is very
high, spurious spectroscopic features can appear relative to the main carrier resonance.

139



Figure 5.8: Theoretically calculated BBR-limited lifetimes of 𝑋1Σ+
𝑔 (𝑣, 𝐽 = 0). At a surrounding

temperature of 300 K, the lifetimes are largely quenched by electric quadruple (𝐸2) transitions to
𝐽 = 2 states mediated by BBR photons. Reproduced from Refs. [19, 67].

twice the axial or radial trap frequencies (e.g., occurring intrinsically in the laser spectrum, or

introduced by the phase-locked loop, etc.) in the lattice laser frequency become translated by

the 𝑋 → 1𝑢 resonance into a polarizability modulation (and hence also trap depth modulation),

thereby inducing parametric losses. Quantification of the frequency or phase noise around the laser

carrier line in future work (e.g., with a self-heterodyne technique) and knowledge of the 𝑋 → 1𝑢

transition strength (which determines the sensitivity of the magic trap depth to frequency jitter)

should provide a rough estimate of the extent to which frequency-noise-written parametric heating

might account for the observed clock state lifetimes.

To conclude our discussion of clock state lifetimes, we show the limit that blackbody radiation

(BBR) poses to the lifetimes under a room-temperature setting in Fig. 5.8. Our theory collaborators

made these calculations, and the reader is directed to Ref. [19] for a rigorous account. The calcu-

lations favorably suggest lifetimes upward of 105 years. Indeed, infrared inactivity is one of the

advantages homonuclear molecules offer for precision measurement applications. While current
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technical limitations (such as lattice scattering or two-body losses) render these tremendously long

BBR lifetimes inconsequential, one may envision a future where molecular quantum science pro-

gresses to a stage that would allow harnessing the rich rovibrational structure of molecular states

for metrology and quantum information applications.

5.4 Vibrational molecular clock

5.4.1 Clock scheme and fiber noise cancellation

The two clock lasers are detuned from the intermediate excited state (1)0+𝑢 (11, 1). This path-

way through a deeply bound (1)0+𝑢 state offers favorable Rabi frequencies, and we have seen how it

facilitated stimulated Raman adiabatic passage (STIRAP) transfer between 𝑋 (62, 0) to 𝑋 (0, 0) de-

scribed in Chapter 4. By contrast, weakly bound (1)0+𝑢 states near the intercombination line (which

we utilized in Ref. [67]) are expected to have negligibly small transition strengths to 𝑋 (0, 0) due

to poor Franck-Condon overlap [18, 86]. The relevant potentials are shown in Fig. 5.9(a).

The clock measurements take place in a retroreflected 1D optical lattice at ≈1004.7723 nm,

oriented horizontally with respect to gravity due to geometric limitations in this study. The lattice

overlaps with the atom cloud throughout the atomic cooling sequence (∼ 500 ms), and atoms with

kinetic energies lower than the trap depth are loaded into the lattice. The surrounding magnetic

field is lowered to <0.6 G to prepare for molecule production and spectroscopy.

Trapped samples of ultracold molecules are created by photoassociating laser cooled strontium

atoms at 2 𝜇K to (1)1𝑢 (−1, 1). This efficiently produces 𝑋 (62, 0) ground state molecules thanks

to the large transition strength [18]. To purify the rotational population of the molecular gas, we

photodissociate the 𝑋 (62, 2) molecules 30 MHz above the 1𝑆0+3𝑃1 threshold, imparting more than

sufficient kinetic energy to guarantee these photofragments leave the trap. We do this concurrently

with PA (pulse durations of ∼2 ms). Here, the binding energy of (1)1𝑢 (1,−1) with respect to

1𝑆0 + 3𝑃1 and that of 𝑋 (62, 2) with respect to 1𝑆0 + 1𝑆0 fortuitously add to be ≈420 MHz, which is

the frequency shift introduced by double-passing the first-order diffraction of an AOM with center

frequency of 210 MHz, which we often have in surplus in the lab. Therefore, rather than utilizing
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Figure 5.9: Vibrational molecular lattice clock. (a) Raman lasers (upleg, red arrow; downleg, or-
ange arrow) detuned from an intermediate state in (1)0+𝑢 probe the two-photon vibrational clock
transition between (𝑣 = 62, 𝐽 = 0) and (𝑣 = 0, 𝐽 = 0) in the 𝑋1Σ+

𝑔 ground potential. The opti-
cal lattice (brown arrow) off-resonantly addresses an isolated rovibronic state in (1)1𝑢 to induce
magic trapping conditions. (b) Experimental setup. The upleg master laser is stabilized to a refer-
ence cavity using the Pound-Drever-Hall (PDH) technique, and its phase coherence is transferred
to the downleg laser via a frequency comb. The molecules are held in the 1D optical lattice.
Co-propagating clock lasers are delivered to the molecules via an optical fiber with active fiber
noise cancellation (FNC). The spectroscopic signal derives from absorption imaging of 𝑋 (62, 0)
photofragments at a slight grazing angle relative to the lattice. A rubidium microwave standard
acts as a flywheel oscillator, linking the molecular clock to GPS time for the absolute frequency
measurement. (c) Two-photon Rabi oscillations between the clock states driven at the operational
probe intensities (filled circles, experimental data averaged over 8 consecutive runs, error bars rep-
resent 1𝜎 uncertainties; solid red line, analytical fit to an exponentially decaying sinusoid). We
observe lines as narrow as 11(1) Hz (inset, green squares). For clock operation, we perform Rabi
spectroscopy with a 30 ms 𝜋-pulse duration (indicated by the black arrow), resolving 30(2) Hz
linewidths consistent with the expected Fourier limit (inset, black open circles). Each point in the
inset is a single shot of the experiment, and solid lines are Lorentzian fits.
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a separate phase-locked laser to wipe away 𝐽 = 2 molecules, we simply add a frequency sideband

to the PA laser with an AOM. We lock the PA laser so that the unperturbed frequency ({0, 0}

order) addresses the PA transition 1𝑆0 + 1𝑆0 → (1)1𝑢 (−1, 1), and the {+1, +1} order (retroreflected

by a D-shaped mirror) addresses 𝑋 (62, 2) → 1𝑆0 + 3𝑃1. Both orders pass through the same

quarter waveplate for retroreflection, are recombined at a polarizing beamsplitter placed before

this AOM. These PA and 𝐽 = 2 wipe beams are then combined with the 𝑋 (62, 0) state detection

(i.e. photodissociation) beam. Finally, all three ∼689 nm laser beams are injected into a single

polarization-maintaining fiber and sent to the experiment table. The remaining atoms after PA are

wiped out of the trap with resonant 461 nm laser light. As the state-selective photofragmentation

of 𝑋 (62, 0) and subsequent absorption imaging of the slow-moving atoms destroys the prepared

molecular sample, the entire sequence has to be iterated to scan the clock transition11.

Raman clock spectroscopy is deeply in the Lamb-Dicke regime for co-propagating probes

along the axial direction of the optical lattice (Lamb-Dicke parameter 𝜂ax ≲ 0.02, see also Sec. 2.4.4).

As discussed in Sec. 3.1.2, the upleg master clock laser at 378 THz (793 nm) is stabilized to a high

finesse ultra-low expansion reference cavity. The phase coherence of the upleg is transferred to

the teeth of an erbium-fiber-laser-based optical frequency comb by actuating on its repetition fre-

quency [Fig. 5.9(b)]. The downleg clock laser at 410 THz (731 nm) is phase locked to the comb,

thereby inheriting the phase stability of the upleg. The carrier-envelope offset frequency of the

comb is stabilized to a rubidium standard that also serves as the laboratory timebase. More details

on the high finesse cavity, frequency comb, and rubidium timebase can be found in Chapter 3.

Since the Raman transition samples the correlated frequency difference of the clock lasers,

frequency drift and spectral broadening due to the instability and linewidth, respectively, of the

upleg master laser are greatly suppressed. As mentioned in Chapter 3, observations of the counted

comb repetition rate against the rubidium timebase actively steered by a GPS disciplined oscillator

for several months prior to the clock campaign reveal a cavity drift rate of 30 mHz/s, which we

compensate using a linearly-ramped AOM in the optical path of the master laser to the cavity. The

11The stability of the clock is therefore susceptible to degradation via the Dick effect.
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frequency synthesizer that performs this linear feedforward compensation updates every second.

The residual linear drift of the master laser due to imperfect feedforward is approximately 3 mHz/s

during the campaign, consistent with the observed drift of the molecular clock line centers over the

same period, after accounting for the comb teeth difference [3 mHz/s× (1−𝑁↑/𝑁↓) ≈ 0.2 mHz/s].

The upleg is passed through an acousto-optic modulator (AOM1 in Fig. 5.9(b)), and the first

order diffraction ({+1}) is used to iteratively step the difference frequency of the clock lasers across

𝑓clock. AOM1 controls the interrogation duration by pulsing the upleg, and we leave the downleg

constantly irradiating (but blocked with a mechanical shutter during the state preparation process).

The clock lasers are injected into the same polarization-maintaining single-mode fiber (en-

closed in a 1" thick flexible rubber foam pipe along its entire length for passive insulation from

the environment) and delivered to the adjacent optical table where the experiments take place. To

minimize the number of optical elements and unstabilized path lengths, the clock lasers interro-

gate the molecules from the opposite direction as the PA and photodissociation (∼689 nm) lasers.

Since the clock laser wavelengths are sufficiently different that the laser beams may sample non-

identical paths in a given refractive medium, active fiber noise cancellation (FNC) [121, 122]

on each clock leg is implemented using independent phase actuators (acousto-optic modulators

AOM2 and AOM3 in Fig. 5.9(b)). An exploded view of the FNC scheme for one of the clock

lasers is shown in Fig. 5.10; the scheme is duplicated for the other clock laser. If laser power is

critical for future applications, the 50:50 non-polarizing beam splitter (BS) may be substituted with

a polarizing beam splitter and a Faraday rotator [49]. The voltage-controlled crystal oscillators12

(VCXO) provide the RF frequencies for AOM2 and AOM3. The optical phase reference surface

at the experiment table is a single partially reflecting mirror, while the surfaces on the laser table

are mounted on a common rigid pedestal post with the clock lasers approaching the surfaces in the

same direction. The total uncompensated path in air is approximately 50 cm.

An achromatic waveplate maximizes the power through a Glan-Thompson prism (which serves

to clean up the polarizations of the clock laser beams) placed after the phase reference surface. Im-

12Crystek 744-CRBSVS-02-80.000-ND
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Figure 5.10: Fiber noise cancellation (FNC) with an optoelectronic phase-locked loop. A laser
beam is initially split by a 50:50 non-polarizing beam splitter (BS), and one arm is retroreflected
by a phase reference surface on the experiment table toward a low-noise photodiode. The other
arm is diffracted by an acousto-optic modulator (AOMx) driven by a voltage-controlled crystal
oscillator (VCXO), which has exceptional phase purity. The laser is shifted by angular frequency
𝜔Ax so that the phase of the laser field evolves with an additional phase 𝜔Ax𝑡 over time 𝑡. Then,
the diffracted order is injected into an optical fiber to the experiment table. Passage through the
fiber writes phase noise 𝜙noise. To detect this, the laser is retroreflected back through the fiber by
a phase reference surface at the experiment table and double-passed through AOMx. Heterodyne
beat detection at the low-noise photodiode thus obtains the phase noise 2𝜙noise centered at angular
frequency 2𝜔Ax. This beat note is mixed down to dc with a stable RF reference from a direct
digital synthesizer, and the intermediate frequency (IF) output of the mixer is proportional to the
phase error 𝜙noise. A servo controller shapes this error signal and actuates on the VCXO to write
an additional phase −𝜙𝑛𝑜𝑖𝑠𝑒 via AOMx to preemptively cancel the fiber phase noise. The entire
detection process occurs at the speed of light, which is faster than the rate at which 𝜙noise changes
due to perturbations in a typical lab environment. Ultimately, the optical phases at the two reference
surfaces are made equal by the phase-locked loop; i.e., laser light after the reference surface at the
experiment table is fiber noise canceled. Without FNC, linewidth broadening due to fiber phase
noise is typically ≲ 100 Hz on an optical laser field.
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mediately after the prism, the clock laser beams are separated by a high-quality (long-pass) dichroic

beam splitter, and a small portion of their light is picked off. To avoid contamination from the other

leg due to leakage from the dichroic, the picked off beams are further reflected off dichroics (in-

stead of regular mirrors) before being measured on separate photodiodes13. Independent intensity

stabilization of each clock leg is done by actuating on the RF powers to AOM2 and AOM3. The

integrator on the servo for the upleg power is disabled (with a TTL signal from the experiment

control sequence) during the short duration for state preparation (i.e., PA, 𝐽 = 2 and atom wipe),

when its light is pulsed off by AOM1. This keeps the servo output within range (i.e., not railed)

so that the power is able to quickly return to the setpoint when the light is pulsed on again for

clock interrogation. The separated clock laser beams can be individually attenuated by separate

neutral density filters mounted on motorized holders. This is preferred to changing the setpoint of

the intensity servos as the latter would affect the robustness of the FNC if insufficient clock laser

light were coupled to the experiment table. Finally, the clock laser beams are recombined on a

high-quality dichroic, and further combined with the lattice on another dichroic14. The clock laser

beams are coaligned to the forward pass lattice beam over several meters across the room, and are

visually verified to overlap at the focus of the latter on an inexpensive CMOS or CCD camera. The

polarizations of the probes are identical, linear, and parallel to the small applied magnetic field,

but perpendicular relative to that of the lattice in this work. As a reminder, for a Raman transition

involving 𝐽 = 0 ↔ 𝐽′ = 1, the two-photon Rabi frequency is maximized when the upleg and

downleg have identical polarizations, and vanishes if orthogonal [Sec. 3.4].

Figure 5.9(c) shows two-photon Rabi oscillations driven by the clock lasers at the operational

Rabi frequencies (see also Sec. 3.4 and Fig. 3.9). We may lower the clock laser beam powers

further and use pulse durations of ∼100 ms, producing clock lines with full width at half-maximum

(FWHM) as narrow as 11(1) Hz corresponding to a 𝑄-factor of 2.9 × 1012 (solid green squares in

the inset to Fig. 5.9(c)). As mentioned in Sec. 5.3.3, in the absence of other fields, the BBR

13The alternative is to put a narrow bandpass filter before each photodiode. However, we found that this introduces
a stubborn etalon-like effect that causes the measured laser power to vary with slight changes in the laser alignment to
the photodiode, even when the surface of the filter is angled with respect to the photodiode sensor.

14805 nm short-pass.
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limited lifetimes of the clock states exceed 105 years in a room temperature environment [19, 67],

suggesting no fundamental limit for the 𝑄-factor. Nevertheless, the main technical challenges in

the current iteration of the molecular clock are two-body molecular losses close to the universal

rate (see Sec. 4.4) and lattice light-induced one-body losses for 𝑋 (0, 0) that scale quadratically with

the trap depth (see Sec. 5.3.3). At the operational density and lattice trap depth in this work, these

losses quench the spectroscopic signal fast enough that the molecular densities vary significantly

over pulse durations of ≳60 ms. Therefore, as a compromise, we evaluate clock systematics by

performing Rabi spectroscopy with a 30 ms 𝜋-pulse, scanning Fourier-limited peaks of 30(2) Hz

(black open circles in the inset to Fig. 5.9(c)). A typical spectrum consists of 15 experimental

iterations (taking a total duration of ∼20 s), from which we determine the line center by fitting a

Lorentzian function in post process.

5.4.2 Basic concepts from statistics, and the frequency measurement chain

Often, we have to extrapolate the measured clock line centers to determine the unperturbed

clock frequency. This involves curve fitting — the mathematics of which is well established and

exhaustive accounts can be found in Refs. [123–126]. Below, we provide a brief overview to

establish the notation and language. Suppose we have 𝑛 number of observations of the dependent

variable y = {𝑦1, 𝑦2, . . . , 𝑦𝑛} with estimated error bars 𝝈 = {𝜎1, 𝜎2, . . . }, measured at the values

of the independent variable x = {𝑥1, 𝑥2, . . . , 𝑥𝑛}. While there is minimal risk of confusion given

that the context is clear, we explicitly point out that the symbols “𝑦” and “𝑥” in this subsection

(and the following ones) do not represent the spatial coordinate axes labels. For example, y could

be the clock shift Δ 𝑓clock or the fitted values of 𝑓A1 that correspond to the clock line centers, and

x could be an experimental parameter such as trap depth or the iteration number of a consecutive

series of measurements. We model the behavior of the dependent variable versus the independent

variable with the function 𝑓model(x,𝚯), which has 𝑝 number of fit parameters 𝚯 = {Θ1, . . . ,Θ𝑝}.

Taking 1/𝜎2
𝑖

as the weights for fitting, the least-squares algorithm finds the set of fit parameters,
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𝚯0, that minimizes the chi-square

𝜒2 ≡
𝑛∑︁
𝑖=1

(
𝑦𝑖 − 𝑓model(𝑥𝑖,𝚯)

𝜎𝑖

)2
. (5.27)

To estimate the errors for the fit parameters, it is customary to compute the 𝑛 × 𝑝 matrix A where

𝐴𝑖 𝑗 ≡
1
𝜎𝑖

𝜕 𝑓model(𝑥𝑖,𝚯)
𝜕Θ 𝑗

����
𝚯0

. (5.28)

The standard error of the fit parameter Θ𝑖 is then

𝜎Θ𝑖
≈

√︃[
(A⊺ A)−1

]
𝑖𝑖
, (5.29)

where A⊺ is the transpose of matrix A, and ()−1 indicates a matrix inversion. The reduced chi-

square is the chi-square divided by the number of degrees of freedom in the fit,

𝜒2
red =

𝜒2

𝑛 − 𝑝 . (5.30)

Occasionally, the data error bars 𝜎𝑖 may be underestimated, and the dataset is overscattered (i.e.,

𝜒2
red > 1). In such situations, it is considered more appropriate to scale up the standard error by√︃
𝜒2

red, and quote the revised (or scale corrected) standard error

�̃�Θ𝑖
= 𝜎Θ𝑖

×
√︃
𝜒2

red. (5.31)

Note that C ≡ (A⊺ A)−1𝜒2
red is called the covariance matrix. Its inverse, H = C−1, is also known

as the Hessian. In many curve-fitting software packages, the revised standard errors are quoted

by default, and they are calculated as the square root of the diagonal elements of C after multiple

numerical iterations to minimize 𝜒2; i.e., �̃�Θ𝑖
≃
√
𝐶𝑖𝑖.

As an illustrative example, let us consider the weighted average. Here, the fit function consists

of just a single parameter; i.e, 𝑝 = 1, and 𝑓model(x,𝚯) = Θ. We minimize 𝜒2 by setting 𝜕𝜒2/𝜕Θ =
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0 and find Θ0 = (∑𝑖 𝑦𝑖/𝜎2
𝑖
)/(∑𝑖 1/𝜎2

𝑖
), which is the formula for the weighted average. It is

similarly straightforward to show that (A⊺ A)−1 = 1/
(∑

𝑖 1/𝜎2
𝑖

)
. Therefore, the revised standard

error of the weighted mean is �̃�Θ =

√︃
1/

(∑
𝑖 1/𝜎2

𝑖

)
×

√︃
𝜒2

red, if 𝜒2
red > 1.

The frequency chain [Fig. 5.9(b)] implies that the upleg laser frequency at the molecules is

𝑓 mol
↑ = 𝑁↑ 𝑓RR + 2 𝑓CEO + 𝑓b↑ + 𝑓A1 + 𝑓A2, (5.32)

where 2 𝑓CEO is the frequency of the zeroth comb tooth after sum frequency generation (i.e., 𝑓CEO

is the carrier-envelope offset of the fundamental output of the comb at 1560 nm, see Sec. 3.1.2), 𝑓b↑

is the beat frequency between the laser at the comb and the 𝑁↑-th comb tooth that we phase lock

to. 𝑓A1 and 𝑓A2 are the frequency shifts introduced by AOM1 and AOM2 respectively. Similarly,

the downleg laser frequency at the molecules is

𝑓 mol
↓ = 𝑁↓ 𝑓RR + 2 𝑓CEO + 𝑓b↓ + 𝑓A3. (5.33)

To suppress relative phase fluctuations due to the comb carrier-envelope offset, the beats of the

clock lasers with the comb are chosen to have the same sign. In addition, these beat frequencies

are chosen to be identical ( 𝑓b↑ = 𝑓b↓ = 20 MHz), phase locked to RF references having a fixed

phase relation15. The FNC setups are also intentionally identical for both legs; i.e., the FNC beat

notes are phase locked to the same RF reference derived from a single output of a DDS, and AOM2

and AOM3 diffract the same order ({+1}) so that 𝑓A2 = 𝑓A3 = 80 MHz.

The “raw” or perturbed clock frequency not corrected for systematics is

𝑓 raw
clock = 𝑓 mol

↓ − 𝑓 mol
↑ = (𝑁↓ − 𝑁↑) 𝑓RR − 𝑓A1,x, (5.34)

where we add a subscript to explicitly state that 𝑓A1,x is the AOM1 frequency corresponding to the

line center of the fitted clock spectrum taken under the experimental parameters x. This is to be

15This is guaranteed by having all synthesizers referenced to a single lab timebase.
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contrasted with the unperturbed clock frequency, where we extrapolate to the idealized situation

when all external experimental parameter values are zero (x = 0),

𝑓clock = 𝑓 mol
↓ − 𝑓 mol

↑ + 𝑓corr. = (𝑁↓ − 𝑁↑) 𝑓RR − 𝑓A1,xopt + 𝑓corr.. (5.35)

Here, 𝑓corr. is the total frequency correction due to systematic shifts [Table 5.3] for the operational

experimental parameter values, xopt. That is,

𝑓corr. ≡ 𝑓A1,xopt − 𝑓A1,0. (5.36)

Finally, the “clock shift” is defined to be the frequency shift of the perturbed clock frequency

relative to the unperturbed clock frequency,

Δ 𝑓clock ≡ 𝑓 raw
clock − 𝑓clock = 𝑓A1,0 − 𝑓A1,x. (5.37)

As 𝑓RR is tunable over a wide range, it can be judiciously chosen such that 𝑓A1 is close to

the specified center frequency of AOM1 (80 MHz) to achieve good diffraction efficiency16. The

molecular clock resonances occur at 𝑓A1 ≈ 82.6 MHz if we choose 𝑓RR ≈ 250035478.54 Hz,

𝑁↑ = 1510825, 𝑁↓ = 1638108. The clock lasers are 10 × FSR ≈ 14.973 GHz blue detuned from

the transition between the (1)0+𝑢 (11, 1) intermediate state and their respective ground states, where

FSR is the free spectral range of reference cavity (see Sec. 3.1.1).

5.5 Systematic evaluation, and general methodology

Table 5.3 details the uncertainty budget of the molecular clock under the operational conditions

of this work. Summing the uncertainties of all contributors in quadrature, we report a total sys-

tematic uncertainty of 4.6× 10−14. We leverage the short-term frequency stability of our reference

16Note that because the FNC beats occur at 2 × 𝑓A2,A3, as a precaution, 𝑓A1 should also be made sufficiently
different from 𝑓A2 to avoid the situation where leakage higher diffraction orders from AOM1 and subsequent multi-path
reflections interfere with the FNC setup for the upleg. Here, we fortuitously avoided this by a ≈2.6 MHz difference.
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Table 5.3: Systematic uncertainty budget for the strontium molecular clock under operating condi-
tions. Listed are the frequency corrections, 𝑓corr., and their uncertainties. The signs of the correc-
tions are defined such that these values add to the perturbed clock frequency to give the unperturbed
clock frequency, 𝑓clock. All values are expressed in fractional units (×10−14).

Systematic Correction Uncertainty
Lattice Stark (𝐸1, 𝑀1, 𝐸2) 100.1 3.4
Lattice Stark (hyperpolarizability) -50.8 1.9
Probe Stark (total) 31.5 2.2
BBR -2.2 0.4
Density -0.6 0.3
Quadratic Zeeman 0 0.05
dc Stark 0 < 0.1
Doppler and phase chirps 0 < 1
Lattice tunneling 0 < 0.1
Line pulling 0 < 0.1
Scan-and-fit 0 < 0.6
Total 77.9 4.6

cavity to average down the uncertainty of a given systematic17. We probe the clock transition in

an interleaved fashion; i.e., we alternate an experimental parameter between two values and record

𝑓A1 for the corresponding pair of line centers. This is repeated to gather statistics.

Note that for the density shift measurements, the molecule numbers were changed cycle-to-

cycle (i.e., interlaced). For the probe and lattice light shift measurements, the laser intensities were

changed scan-to-scan, due to the speed at which the motorized neutral density filters could reliably

switch positions.

To subdue the effect of residual cavity drift not canceled by the feedforward acousto-optic

modulator, we employ three-point string analysis [127]. Let y = {𝑦1, 𝑦2, . . . , 𝑦𝑛} denote the series

of AOM1 frequencies, 𝑓A1, corresponding to the clock line centers when a single experimental

parameter is repeatedly varied between a reference value (𝑥ref) and a different predetermined value

(𝑥 = 𝑥ref + Δ𝑥). Here, 𝑛 is an even number because we always record pairs of line centers in a

17The interleaved shift measurements are performed quickly (∼20 s for a single scan of the clock spectrum), during
which 𝑓RR does not change by a meaningful amount. Contamination by such drifts is also suppressed by point-string
analysis. Nevertheless, we have quantified potential systematic errors due to the reference cavity under the designation
“Scan-and-fit”.
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series of interleaved measurements. Ideally, Δ𝑥 should be large enough to induce a measurable

frequency shift. We calculate the frequency shift between consecutive points as

Δ𝑦1 =
𝑦1 + 𝑦3

2
− 𝑦2,

Δ𝑦2 = 𝑦3 −
𝑦2 + 𝑦4

2
,

Δ𝑦3 =
𝑦3 + 𝑦5

2
− 𝑦4,

...

Δ𝑦𝑛−2 = 𝑦𝑛−1 −
𝑦𝑛−2 + 𝑦𝑛

2
.

Essentially, we assume that the cavity drift is linear in the duration between points 𝑦𝑖 and 𝑦𝑖+2.

If the cycle times are equal18, then (𝑦𝑖 + 𝑦𝑖+2)/2 estimates the line center as if it were measured

at the same time as 𝑦𝑖+1. A visual representation is shown in Fig. 5.11. Thus, the cavity drift

should be greatly nulled using the differences Δ𝑦𝑖. The “frequency shift”, Δ 𝑓A1 = 𝑓A1,𝑥 − 𝑓A1,𝑥ref , is

calculated as the weighted average of these differences. A drawback of point string analysis is that

we have artificially correlated neighboring elements and doubled the number of frequency shifts

extracted from the dataset — the statistically independent, non-overlapping, set of frequency shifts

{𝑦1 − 𝑦2, 𝑦3 − 𝑦4, . . . } only has 𝑛/2 elements. Hence, we further multiply the revised standard

error of the weighted mean obtained using point string analysis, �̃�ΔfA1 , by a numerical factor of

approximately
√

2 to extrapolate back to the expected level of statistics had we used independent,

non-overlapping, successive pairs of interleaved measurements to extract the frequency shifts.

After collecting Δ 𝑓A1 and their uncertainties for various Δ𝑥, we perform weighted fitting of a

model function 𝑓 ref
model(𝑥 − 𝑥ref). We quote and utilize the revised standard errors (i.e., scaled up

by
√︃
𝜒2

red) of the fitted parameters of all weighted polynomial fits. Logically, the frequency shift is

identically zero if the parameter is unchanged (Δ𝑥 = 0). We demonstrate the extent to which this

18For the density shift evaluations, the cycle times (Δ𝑡1 = Δ𝑡3 > Δ𝑡2, . . . ) can be rather dissimilar due to
sample preparation. We have experimented with assigning “weights” to the measurement points; i.e., Δ𝑦1 =

(Δ𝑡1𝑦1 + Δ𝑡2𝑦3)/(Δ𝑡1 + Δ𝑡2) − 𝑦2,Δ𝑦2 = 𝑦3 − (Δ𝑡2𝑦2 + Δ𝑡1𝑦4)/(Δ𝑡1 + Δ𝑡2), . . . . However, we find that the calcu-
lated clock shifts are not significantly different from those using simple three-point strings (Δ𝑡1 = Δ𝑡2, . . . ).
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Figure 5.11: Pedagogical illustration of three-point strings used to average the corresponding fre-
quency shift when an experimental parameter is repeatedly changed between 𝑥ref and 𝑥, color-
coded blue and red respectively. This approach suppresses contamination of the computed fre-
quency differences by slow ambient drifts, such as (but not limited to) reference cavity drift.
The line centers 𝑦𝑖 (solid red and blue circles, labeled by green letters) are obtained from fit-
ting Lorentzians over the scanned molecular resonances. We estimate the instantaneous drift using
adjacent points taken under the same experimental parameters (𝑦𝑖 and 𝑦𝑖+2), and use it to predict
the expected line center (dotted red and blue circles) as if it were measured at the same time as
𝑦𝑖+1. The frequency shift is computed as the weighted average of these simulated simultaneous
differences (represented by the vertical purple lines). Lastly, we scale up the revised standard er-
ror of the mean by a factor ∼

√
2 because the number of three-point string differences (𝑛 − 2) is

approximately 2× larger than the number of statistically independent differences (𝑛/2).

is valid by repeatedly scanning the molecular line while keeping the experimental parameters and

conditions constant to the best of our ability. We observe that the Allan deviation [Fig. 5.12] of the

frequency differences extracted using three-point string analysis averages to ≈ 1 × 10−14, with a

weighted mean consistent with zero. Therefore, the model has a constraint that 𝑓 ref
model(0) = 0. The

extrapolated frequency correction for the clock at the operational parameter value is

𝑓corr. = 𝑓 ref
model(𝑥opt − 𝑥ref) − 𝑓 ref

model(−𝑥ref). (5.38)

Equation (5.38) follows from a straightforward exercise in coordinate transformation [Fig. 5.13].

For simplicity of discussion, suppose that the model perfectly fits the frequency shifts (i.e., 𝜒2 = 0)

so that we may use equal signs for the following few equations. We start with

𝑓 ref
model(𝑥 − 𝑥ref) = 𝑓A1,𝑥 − 𝑓A1,𝑥ref .
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Figure 5.12: Overlapping Allan deviation of three-point string frequency differences for the situa-
tion when the experimental parameters are left unchanged. The Allan deviation averages down as
∼ 10−13/

√
𝑛, where 𝑛 is the number of observed line centers. Put another way, in order to resolve a

frequency shift at the 10−14 level, we will have to average ∼ 102 clock lines. The situation should
improve with longer lifetimes and coherence times (to resolve smaller linewidths), and better ref-
erence cavity stability.

x

∆x

∆fclock

−∆fA1

xrefxopt

−fmodel(x)

Figure 5.13: Graphical relationship between the clock shift (Δ 𝑓clock), the AOM1 frequency shift
(Δ 𝑓A1), and the functional model for frequency extrapolation ( 𝑓model), plotted versus the value of
a given experimental parameter (𝑥). See main text for details.
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Setting 𝑥 = 0, we get

𝑓 ref
model(−𝑥ref) = 𝑓A1,0 − 𝑓A1,𝑥ref ,

which incidentally is the frequency correction for the clock at the reference parameter 𝑥ref . We

seek the relationship between 𝑓 ref
model(𝑥 − 𝑥ref) and the model function centered at 𝑥 = 0,

𝑓model(𝑥) = 𝑓A1,𝑥 − 𝑓A1,0,

= −Δ 𝑓clock,

where the second line is true by definition [Eq. (5.37)]. In other words,

𝑓 ref
model(𝑥 − 𝑥ref) = 𝑓model(𝑥) − 𝑓model(𝑥ref). (5.39)

Next, we eliminate 𝑓A1,𝑥ref from our expressions,

𝑓model(𝑥) =
[
𝑓 ref
model(𝑥 − 𝑥ref) + 𝑓A1,𝑥ref

]
−

[
𝑓 ref
model(−𝑥ref) + 𝑓A1,𝑥ref

]
,

= 𝑓 ref
model(𝑥 − 𝑥ref) − 𝑓 ref

model(−𝑥ref). (5.40)

As a sanity check, we see that indeed 𝑓model(0) = 0; i.e., the total clock shift of the unperturbed

clock is zero. To arrive at Eq. (5.38), we recall from Eq. (5.36) that the frequency correction for

the clock at the operational parameter value is19

𝑓corr. = 𝑓model(𝑥opt).
19Note that the relative signs will be different if the downleg is scanned instead of the upleg.
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5.6 Sources of systematic error

5.6.1 Lattice light shift

As discussed in Sec. 5.3, magic trapping conditions can be engineered for this pair of vibra-

tional clock states by off-resonantly addressing 𝑋 (0, 0) → (1)1𝑢 (9, 1) with the lattice (Δ𝑚 =

4.494(1) GHz). Importantly, the neighboring (1)1𝑢 (𝑣′, 1) rovibronic resonances are spaced at in-

tervals of ∼2 THz, and may cause deleterious shifts due to lattice light impurity (e.g., amplified

spontaneous emission (ASE) [128]). To mitigate this, the lattice light derives from a Ti:sapphire

laser. The lattice light that is delivered to the molecules is phase-stabilized to the optical frequency

comb20 by actuating on a voltage-controlled oscillator (VCO) that drives an external AOM to cor-

rect for fast phase excursions. In general, acousto-optic modulators have a limited bandwidth; i.e.,

the diffraction efficiency falls quickly outside a finite range of RF frequencies. To avoid (or at

least slow down) such a scenario, the servo output monitor of the main servo controller (that tunes

the VCO) is sent to a second servo controller as an error signal input. The output of this second

controller actuates on the “fast” resonantor piezo21 of the Ti:sapphire laser, and the setpoint is

tuned to keep the output frequency of the VCO close to the specified center frequency of the AOM

(where the diffraction is optimal). The bandwidth of this second controller is set to be small to

avoid cross-talk with the main controller. While this external AOM-based phase locking setup is

sufficient for the work in this thesis, precious laser power is wasted in the zeroth AOM order, and

the lock is rather delicate. Future work requiring long-term operation of the molecular clock may

benefit from injection locking a Ti:sapphire laser with a diode laser robustly phase-locked to the

comb.

To further suppress ASE impurity at the magic detuning, the light is filtered through a linear

cavity (finesse of 50, and free spectral range of 2.9 GHz) before delivery to the experiment by a

20This also permits the lattice frequency, 𝑓latt = 𝑐/𝜆latt, to be determined with kHz-level accuracy. Note that the
M-NIR port of the frequency comb was used for lattice frequency stabilization, whose zeroth comb tooth is at 𝑓CEO;
see Sec. 3.1.2.

21We find that the “slow” piezo has an overly sensitive transfer function; i.e., small voltage noise thwarts proper
engagement of the phase lock.
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single-mode polarization maintaining fiber. During a normal clock run under operational condi-

tions, a directionally stable, weak reflection from the vacuum window is used for lattice intensity

stabilization. The linear lattice polarization defines the quantization axis for the magnetically in-

sensitive 𝑋1Σ+
𝑔 states [23].

We investigate the effect of lattice light over a range of 𝑓latt. At each 𝑓latt we make interleaved

measurements of the clock shifts, alternating the trap depth𝑈0 between a reference depth and four

other depths spanning from 300 𝐸r to 1100 𝐸r. This is accomplished by the use of a motorized

neutral density filter placed before the lattice is injected into its optical fiber22. The trap depths

are determined from the axial trapping frequencies [Eq. 2.32]. The axial ( 𝑓ax) and radial ( 𝑓rad) trap

frequencies for the molecules are measured with resolved-sideband spectroscopy at the operational

magic lattice wavelength [Figs. 2.7(a,b)]. The 1/𝑒2 beam waist (𝑤0) of the lattice at its focus is

related to the trap frequencies; i.e., 𝑓 2
ax/ 𝑓 2

rad = 𝑤2
0 (2𝜋/𝜆latt)2/2. In this work, 𝑤0 = 36(1) 𝜇m.

As shown in Fig. 5.14(a), our measurements reveal non-linear light shifts as a consequence of

molecular hyperpolarizability. Small corrections (< 0.3× 10−14 × 𝑓clock) were made to account for

density shifts23. The quadratic lattice scattering rates discussed in Sec. 5.3.3 may share the same

origin as these non-linear shifts.

In order to characterize the lattice light shifts, we adopt the thermal model described in Ref. [129]

and write the clock shifts as

Δ 𝑓clock = −𝛼∗𝑈0 − 𝛽∗𝑈2
0 , (5.41)

where 𝛼∗ and 𝛽∗ are empirically obtained from parabolic fits to the measured differential shifts24.

These parameters are effective values dependent on the trapping conditions: 𝛼∗ is related to the

differential electric-dipole (𝐸1), magnetic-dipole (𝑀1) and electric-quadrupole (𝐸2) polarizabil-

ities, while 𝛽∗ is related to the differential hyperpolarizability. Further justification of Eq. (5.41)

22The passive stability of lattice light is at the 1% level. To ease experimental complexity, the lattice intensities were
not actively stabilized for the lattice shift measurements.

23Accounting for the density shift changes the fitted 𝛽∗ value by approximately 0.1 × 10−5 Hz/𝐸2
r . To be conserva-

tive, we add this in quadrature with the uncertainty of 𝛽∗ from the fitting.
24The parabola fits are constrained such that 𝑓 ref

model (0) = 0, which we have verified to be true in the present experi-
mental setup at the level of < 10−14; see Fig. 5.12.
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Figure 5.14: Clock shifts due to the lattice light. (a) Non-linear shifts of the molecular clock
frequency versus trap depth. For a given lattice frequency (color coded), we make interleaved
measurements of clock shifts (open circles) with respect to a reference trap depth (∼ 500 𝐸r), and
fit the data to parabolas (solid lines) with a global quadratic parameter, −𝛽∗. (b) Linear light shift
coefficient, 𝛼∗, versus lattice frequency (color code matches (a)), and the linear fit (black solid
line). 𝛼∗ is predominantly due to the 𝐸1 differential polarizability and is nulled at 𝑓zero. By tuning
𝛼∗, we can find conditions where the sensitivity of Δ 𝑓clock to fluctuations in 𝑈0 is minimal at our
operational trap depth of 487(4) 𝐸r (dark green points). Error bars represent 1𝜎 uncertainties.
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Figure 5.15: Measurement of the molecular temperature as a function of trap depth (black stars)
using Raman carrier thermometry. Error bars denote 1𝜎 uncertainties. A linear fit (solid red line)
with the intercept fixed at the origin describes the data well (𝜒2

red = 0.92).

can be found in Refs. [129, 130] and the appendices therein. Crucially, the polynomial form of

Eq. (5.41) hinges on a linear scaling of the sample temperature with 𝑈0, which we verify to hold

true for our molecules using Raman carrier thermometry [Fig. 5.15]. Given our trap frequencies,

sample temperatures, and the linear scaling of sample temperature with trap depth, the polynomial

fit is a reasonable approximation, and the 𝑀1-𝐸2 shifts (that microscopically scale as
√
𝑈0 [117])

are included in the 𝛼∗ effective parameter. In future work, calculating the differential 𝑀1 and 𝐸2

polarizabilities would help quantify the error associated with the thermal model.

The fits give 𝛽∗ = −6.81(22) × 10−5 Hz/𝐸2
r as a global parameter. Additionally, the results

for 𝛼∗ versus 𝑓latt are shown in Fig. 5.14(b), and a linear fit yields a sensitivity slope 𝜕𝛼∗/𝜕 𝑓latt =

−0.0796(16) Hz/(MHz 𝐸r) as well as an 𝑥-intercept 𝑓zero = 298 368 568.844(21) MHz. Operating

the molecular clock at a trap depth of𝑈opt = 487(4) 𝐸r and 𝑓latt − 𝑓zero = −0.821(21) MHz, we de-

termine the correction terms to be 𝛼∗𝑈opt = 31.8(1.1) Hz and 𝛽∗𝑈2
opt = −16.2(6) Hz, summing to a

fractional correction of 49.3(3.8) × 10−14. Under these conditions, Δ 𝑓clock is first-order insensitive

to changes in𝑈0 (dark green points in Fig. 5.14).

To test if higher-order polynomial terms are statistically significant, we fit the lattice light shifts

to a cubic polynomial, with the quadratic and cubic coefficients as global fit parameters. The data
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suggests a cubic coefficient of −1.2(9) ×10−8 Hz/𝐸3
r . While the addition of a cubic term shifts the

value of 𝑓zero, the estimated frequency correction, in this case, remains consistent with the applied

correction within their uncertainties. As such, we limit our fitting to a quadratic polynomial for the

present evaluation at the 10−14 level.

5.6.2 Probe light shift

Probe light shifts pose an inherent challenge for two-photon spectroscopy. This is even more

so for scalar clock states (𝐽 = 0) that preclude the use of laser polarization-based cancellation

schemes [64]. Here, the clock shifts scale linearly as the probe intensities are low, and are related

to the differential polarizability at the respective probe wavelength (𝜆𝑝),

Δ 𝑓clock =
𝐼𝑝

2ℎ𝜖0𝑐

[
𝛼0(𝜆𝑝) − 𝛼62(𝜆𝑝)

]
, (5.42)

where 𝛼𝑣 is the 𝐸1 polarizability for the vibrational state 𝑣, 𝐼𝑝 is the probe laser intensity, and here

𝑝 ∈ {↑, ↓} specifies the laser: upleg (↑) or downleg (↓). Figure 5.16 shows that linear extrapolation

of probe shifts suffices for a molecular clock at the few 10−14 level.

While tailored pulse sequences to alleviate probe light shifts have been proposed [131–134], for

this evaluation we opted for a more straightforward strategy. We can minimize the total probe light

shift by using so-called balanced intensity ratios satisfying the condition 𝐼↑
[
𝛼0(𝜆↑) − 𝛼62(𝜆↑)

]
=

−𝐼↓
[
𝛼0(𝜆↓) − 𝛼62(𝜆↓)

]
. At the same time, a large Raman detuning — relative to the intermediate

(1)0+𝑢 (11, 1) excited state — is preferred so that off-resonant scattering from the probes have a

negligible effect on the accessible coherence times. Figure 5.16 demonstrates that such conditions

exist in our clock for blue detunings where the baseline polarizability differences at the probe

wavelengths have opposite signs, in agreement with our polarizability model (see Sec. 5.1.3). We

operate at a Raman detuning of +14.973 GHz, which is over 3 orders of magnitude greater than

the 5 MHz natural linewidth of the intermediate state [Fig. 4.4].

We evaluate Δ 𝑓clock for each leg separately. Using a motorized neutral density filter, we switch
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Figure 5.16: Clock shifts at the operational Raman detuning as a function of (a) the upleg laser
intensity, and (b) the downleg laser intensity. The horizontal axes are normalized by the respective
operational intensities, 𝐼↑,0 and 𝐼↓,0. Solid lines are linear fits to the data. Residuals are plotted in
units of Hz. Error bars represent 1𝜎 uncertainties.

between two intensity values for one leg while keeping that of the other leg constant at its opera-

tional value [Fig. 5.17]. The 𝜋-pulse durations are adjusted accordingly. Typical settings for the

interleaved measurements are (𝑃↑,0, 9𝑃↑,0), and (𝑃↓,0, 3.5𝑃↓,0) where 𝑃𝑝,0 = 𝐼𝑝,0(𝜋𝑤2
𝑝/2) are the

operational powers measured with a calibrated power meter immediately before the vacuum win-

dow. These shifts are scaled by the measurement lever arms to obtain the clock corrections at the

operational settings: −(Δ 𝑓clock/Δ𝑃𝑝) ×𝑃𝑝,0. We find the corrections to be −277.5(1.4) ×10−14 for

the upleg, and 309.0(1.7) ×10−14 for the downleg. The uncertainties in probe intensities have been

propagated into those of the quoted frequency corrections. Drifts in Δ𝑃𝑝 are at the sub-percent

(∼ 0.5%) level over the ∼2000 s duration for each probe light shift evaluation, and the weighted

averages typically have 𝜒2
red ∼ 1.

We observe the beam profiles of the clock lasers on a camera and estimate the 1/𝑒2 beam

waists of the upleg and downleg at the molecules to be 89(5) 𝜇m and 114(20) 𝜇m, respectively.

The uncertainties are large due to the technical difficulty in determining beam waists accurately.

However, accurate knowledge of the beam waists 𝑤𝑝 is not necessary as they are robust during an

evaluation, and are common factors that drop out in calculations. Long-term intensity drifts (e.g.,
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Figure 5.17: (a) A representative time series of measured line centers during a systematic evalu-
ation. An interleaved measurement alternates between two controlled values of an experimental
parameter (here, it is the upleg power, 𝑃↑). (b) The frequency shifts (purple diamonds) are calcu-
lated using three-point string analysis. We take the weighted mean of these differential shifts, and

scale up the revised standard error (i.e., the standard error inflated by
√︃
𝜒2

red) by a statistical factor

of approximately
√

2.
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due to instabilities in beam pointing instability or time-varying servo bumps) may be monitored

and countered by benchmarking the probe intensities using the molecules (e.g., through an Autler-

Townes splitting, an on-resonance scattering rate, or the two-photon Rabi oscillation frequency),

which we leave to future work.

5.6.3 Blackbody radiation shift

Homonuclear dimers are infrared inactive, conferring natural immunity to blackbody radiation

(BBR). According to formulas derived in Ref. [135], the level shift due to BBR (in atomic units)

is approximately

ΔBBR,au
𝑣 ≈ − 2

15
(𝛼fs𝜋)3(𝑇eff,au)4 𝛼au

𝑣 (0) (1 + 𝜂dyn,𝑣). (5.43)

Here, the superscript “au” implies the value of a quantity in atomic units. 𝛼fs is the fine-structure

constant, and 𝜂dyn,𝑣 is the so-called dynamic term

𝜂dyn,𝑣 =
(80/63)𝜋2

𝛼au
𝑣 (0) (𝑇eff,au)2 ×

∑︁
𝑓

|⟨ 𝑓 | |𝑑au | |𝑖⟩|2
(𝜔au

𝑓 𝑖
)3

[
1 + 21𝜋2(𝑇eff,au)2

5(𝜔au
𝑓 𝑖
)2 + 336𝜋4(𝑇eff,au)4

11(𝜔au
𝑓 𝑖
)4

]
. (5.44)

In Eqs. (5.43) and (5.44), the numerical values of the electron mass, elementary charge, and re-

duced Planck constant are set to unity. State notation is consistent with Eq. (5.10). The clock shift

is

Δ 𝑓clock = ΔBBR
62 − ΔBBR

0 . (5.45)

Following Ref. [136], the effective temperature (𝑇eff) that enters into the BBR shift calculation

is such that

(𝑇eff)4 =
∑︁
𝑖

Ωeff
angle,𝑖

4𝜋
𝑇4
𝑖 , (5.46)

where 𝑇𝑖 is the temperature of the 𝑖-th surface. Short of finite-element modeling, we may make a

basic estimate for the effective solid angle (Ωeff
angle,𝑖) subtended by the 𝑖-th surface surrounding the
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Figure 5.18: (a) Calculated blackbody radiation shift of states 𝑋1Σ+
𝑔 (𝑣, 𝐽 = 0) at an effective

environment temperature 𝑇eff = 303 K. For the clock states in this work, the BBR results in an
observed clock frequency shifted by Δ 𝑓clock ≈ 0.7 Hz in a room temperature environment. (b) The
dynamic term 𝜂dyn,v at 𝑇eff , included in ΔBBR

𝑣 , contributes less than 0.5% to the shifts.

164



molecular sample as
Ωeff

angle,𝑖

4𝜋
=

Ωangle,𝑖𝜂𝑖∑
𝑖 Ωangle,𝑖𝜂𝑖

, (5.47)

where 𝜂𝑖 is the surface emissivity and Ωangle,𝑖 is the geometric solid angle. The total effective solid

angle is normalized such that
∑
𝑖 Ω

eff
angle,𝑖 = 4𝜋. We use values for the emissivity of various materials

from available literature [137–141]. These are 0.91 for glass (fused silica), 0.54 for sapphire, and

0.08 for stainless steel.

The sapphire window facing the Zeeman slower is held within a nipple heated to 430(10) K,

and subtends a geometric solid angle of 0.04 sr. Among the fused silica window viewports with

direct line-of-sight to the molecules, there are 8 with a diameter of 33.78 mm, 4 with a diameter

of 69.85 mm, and 6 with a diameter of 114.3 mm. The diameter of the spherical vacuum chamber

is approximately 240(10) mm, and the surface area consisting of stainless steel is approximated as

the spherical surface area subtracted by the total area encompassed by the viewports.

At the present level of precision, it is enough to estimate the temperature environment of the

stainless steel vacuum chamber using four negative temperature coefficient (NTC) thermistors af-

fixed to its exterior. The largest (smallest) sensor reading is 𝑇c,max (𝑇c,min). We model the tem-

perature gradient as a rectangular distribution [142] and estimate the temperature of the vacuum

chamber to be (𝑇c,max + 𝑇c,min)/2 = 302 K, with an uncertainty of (𝑇c,max − 𝑇c,min)/
√

12 = 1 K.

Conservatively, the fused silica windows are within ±2 K of the temperature of the stainless steel

chamber. The line of sight from the molecules to the hot oven is blocked using an in-vacuum

mechanical shutter during clock spectroscopy.

We estimate an effective blackbody temperature 𝑇eff = 303(5) K, which implies a frequency

correction (−Δ 𝑓clock) of −0.70(14) Hz. The uncertainty is dominated by ab intio calculations of

the dc polarizabilities of the clock states. Since comparison with experimentally measured ac

polarizability ratios show agreement at the level of 10–20% [Fig. 5.1], we assign a conservative

fractional uncertainty of 20% for the BBR shift. Equation (5.43) approximates the BBR shift in

terms of the dc polarizability and a power series in 𝑘𝐵𝑇eff/(ℏ𝜔 𝑓 𝑖). The approximation is valid for

our case since 𝜔 𝑓 𝑖/(2𝜋𝑐) > 8000 cm−1, corresponding to characteristic temperatures of >11500 K
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much greater than 𝑇eff .

The level shift of 𝑋1Σ+
𝑔 (𝑣, 𝐽 = 0) due to BBR as a function of the vibrational quantum number

𝑣 is shown in Fig. 5.18(a), whose trend reflects that of the predicted dc polarizabilities of the

states. The non-monotonic behavior is due to contributions from the (4)1Π𝑢 potential [19]. If this

prediction is correct, it poses the attractive possibility of constructing a clock (e.g., operating on

𝑣 = 0 → 𝑣 = 26) with an exceptionally small BBR clock shift. The dynamic term contributes

< 0.5% to the total BBR shift [Fig. 5.18(b)].

5.6.4 Density shift

Due to their bosonic character, our 88Sr2 molecules are unprotected against 𝑠-wave colli-

sions. The one-dimensional lattice forms a series of microtraps, each with a trap volume 𝑉 =[
2𝜋𝑘𝐵𝑇/(�̃�2𝑀)

]3/2; see Sec. 4.4.1. We investigate density-dependent shifts arising from dimer-

dimer collisions by modulating the average number of molecules per lattice site (𝑁mol/site) at the

beginning of the clock pulse. This is achieved by inserting a wait time immediately after photoas-

sociation (PA) so that two-body collisions naturally reduce the molecule number. Fluctuations in

𝑁mol/site are typically < 20%, and we assume equal occupancy across filled sites. Since both 𝑇 and

�̃�2 scale similarly with 𝑈0, and the lattice intensity is stabilized, 𝑁mol/site is a robust observable

proportional to the molecular density.

Assuming linear density shifts, we scale our differential measurements to find Δ 𝑓clock at the

normal operating value of 𝑁mol/site = 1. Figure 5.19(a) summarizes the measurements performed

at various number differences (Δ𝑁mol/site) suggesting a correction of −0.20(10) Hz, or −0.63(31)×

10−14 in fractional units, due to collisional shifts. Control measurements using spectra taken under

common experimental settings do not show evidence of spurious offsets in our data [Fig. 5.19(b)].

It is instructive to compare the size of our density shift with similarly performing atomic clocks.

The shift coefficient has a magnitude of 2.9(1.5) × 10−25 cm3 after normalizing by the transition

frequency. This is rather similar to the analogous optical atomic clock with bosonic 88Sr (∼ 2 ×

10−25 cm3 [143]), while being orders of magnitude smaller than in Cs (∼ 1×10−21 cm3 [144, 145])
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Figure 5.19: Density shift evaluation. (a) Clock shifts due to molecular collisions extrapolated
to operating conditions (1 molecule per lattice site, averaged over filled sites), plotted versus the
change in molecule number per site used for the interleaved measurement. A single constant suf-
fices to fit the data (0.20(10) Hz, 𝜒2

red = 1.7). (b) In the same dataset, the shift between successive
resonances taken under identical experimental settings serves as a control experiment to check for
technical offsets. As expected, this averages to zero (0.03(20) Hz, 𝜒2

red = 2.0). All statistical errors

are scaled up by
√︃
𝜒2

red. Error bars represent 1𝜎 uncertainties. Both insets show the histogram of
normalized residuals, and the solid red lines are Gaussian fits.
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or Rb microwave clocks (∼ 5 × 10−23 cm3 [146]).

Density effects in our clock may be suppressed due to the reactive chemistry of our molecules;

trimer formation releases sufficient energy to eject the products out of the trap that the spectroscopy

does not probe colliding molecules. Future work may circumvent collisional shifts altogether by

preparing samples with single molecule occupancy in a three-dimensional lattice or an optical

tweezer array.

5.6.5 Other clock systematics

Effects of magnetic field.—The use of singlet and irrotational 𝑋1Σ+
𝑔 (𝐽 = 0) clock states confer a

high degree of insensitivity to external magnetic fields. This is an advantage of the molecular clock

over the analogous optical atomic clock. Hyperfine sublevels are absent in our dimer assembled

from 88Sr, which has a total nuclear spin of zero. While the excited molecular states of 88Sr2

near the intercombination line have been thoroughly studied and modeled in previous work [23,

66], an equivalent quantum chemistry calculation of higher-order Zeeman shifts of 𝑋1Σ+
𝑔 (𝐽 = 0)

ground states is beyond the scope of the present evaluation. Even without detailed theoretical

modeling, we may experimentally investigate the extent to which our measurements are affected

by magnetic field effects, including hypothetical Zeeman shifts of the clock states. We vary the

applied magnetic field during clock interrogation with a lever arm of 3.2 G. The magnitude of the

magnetic field was calibrated via spectroscopy of the atomic 1𝑆0 → 3𝑃1 intercombination line,

whose Zeeman coefficient is well-known [31]. The larger applied magnetic field slightly changes

the photoassociation efficiency, which we partially compensate for by simultaneously varying the

initial molecule number. Interleaved measurements obtain a differential shift of 0.05(41) Hz. For

hypothetical shifts that scale quadratically with magnetic field strength, the measurement suggests

that these contribute < 5 × 10−16 to the systematic uncertainty.

Magnetic fields can indirectly perturb the scanned clock lines through the excited states, such

as the Raman intermediate (1)0+𝑢 (𝐽′ = 1) state, and the (1)1𝑢 (𝐽′ = 1) state off resonantly addressed

by the magic lattice. For instance, a finite magnetic field induces a quadratic Zeeman shift on the
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(1)0+𝑢 (𝑣′ = 11, 𝐽′ = 1, 𝑀𝐽′ = 0) sublevel addressed by the polarizations of the clock lasers [23,

66]. Changes in the strength of the magnetic field, in turn, affect the common Raman detuning

and the total probe light shift. Our present magnetic field stabilization is rudimentary. For the

sake of argument, suppose that the bias magnetic field varied hourly by 0.1 G (a very comfortable

upper bound), linear extrapolation from the above null measurement suggests that this affects the

stability of the probe light shifts at < 4 × 10−16.

dc Stark shift.—The spherically shaped stainless-steel vacuum chamber is electrically grounded,

functioning as a Faraday cage. The molecules are held at a distance of approximately 𝑅chamb =

120 mm from each of the fused silica viewports. We have operated the vacuum system for over

a decade. Thus, we expect any stray charges on the viewports to have migrated and decayed to a

negligible amount. Even if a hypothetical, improbably large voltage difference of 𝑉viewport = 20 V

were present between two opposite-facing viewports (giving rise to a dc electric field Edc =

𝑉viewport/(2𝑅chamb)), using the dc polarizability difference Δ𝛼dc ≈ 78.8 a.u. computed with our

model, the dc Stark shift25

Δ 𝑓clock =
1
2
Δ𝛼dcE2

dc/ℎ, (5.48)

multiplied by the number of such viewport pairs would amount to < 30 mHz, or < 10−15 in frac-

tional units.

Doppler shifts and phase chirps.—First-order Doppler shifts result from the relative motion

of the lattice anti-nodes and the phases of the probe lasers. For example, this may be due to

the mechanical motion of the lattice retroreflector, or phase chirps arising from the pulsing of

an acousto-optic modulator (AOM) that diffracts a probe beam. Our upleg clock laser is pulsed

by AOM1 before delivery to the molecules. A common solution in lattice clocks is to perform

fiber noise cancellation of the probe(s) using the lattice retroreflector either as the phase reference

surface or as a rigid support for a separate surface [147], which we will implement in future work.

If uncompensated, AOM phase chirps can result in shifts as large as ∼100 mHz. We do not study

25Note that the expression for the dc Stark shift differs from that of the ac Stark shift (see e.g., Eq. (5.2)) by a factor
of 2 because the dc shift is not time averaged.
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phase chirps in this work. Consequently, we quote a conservative upper bound of 10−14 for shifts

originating from this effect. The second-order Doppler shift is < 10−19 for the typical thermal

speed of our molecule.

Lattice tunneling.—For the operational molecular trapping frequencies and temperature, we

estimate that over 99% of molecules occupy motional quantum numbers 𝑛 < 8, with 41% in the

ground motional band (𝑛 = 0). A 1D lattice band structure calculation (see Sec. 2.4.3) at the

operational trap depth of𝑈opt = 487 𝐸r indicates that the bandwidth of 𝑛 = 7 is 2 × 10−5 𝐸r, which

translates to 0.02 Hz for our molecular mass (𝑀) and lattice wavelength (𝜆latt). We verified that our

calculation quantitatively reproduces the results of identical band structure calculations in available

lattice clock literature [148, 149]. We thus quote an upper bound on Doppler-like shifts due to the

delocalization of the molecular wavefunction to be < 1 × 10−15.

This is a conservative estimate as, realistically, our horizontal lattice likely has a small but

finite tilt along the direction of gravity, which should slightly suppress tunneling effects. Future

upgrades to fully orient the axial direction of the lattice along gravity will further lift the Wannier

state degeneracy.

Line pulling.—Under operational conditions, the radial trapping frequency is 311(2) Hz, which

is 10× larger than the FWHM of the clock resonances. The clock and the lattice laser beams are

coaligned over several meters, and the radial sidebands are not visible during normal clock opera-

tion. We model the radial sidebands as two Lorentzian peaks centered at their expected detuning

from the carrier, with amplitudes equal to the size of the typical shot-to-shot signal variation. To

put an upper bound on the line pulling effect, we compare the difference in the carrier line cen-

ter returned by fitting a typical clock spectrum with the sum of three Lorentzians (i.e., two radial

sidebands and one carrier), versus the case using just a single Lorentzian (as in Fig. 5.9(c)). We

estimate the line pulling error to be < 1 × 10−15.

Scan-and-fit error.—To estimate the effect of short-term cavity flicker noise on our peak fitting,

we fit a linear function to a typical time series of molecular clock lines totaling ∼ 3000 s (the

typical duration for a single evaluation of a given systematic under interleaved clock operation).
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The magnitude of the linear coefficient is < 10 mHz/s. For the present experiment, it takes ∼20 s

to scan out all 15 points that make up the clock spectrum. Therefore, we estimate an upper bound

for the scan-and-fit errors to be < 6 × 10−15.

As mentioned, the months-long average linear drift of the molecular clock line due to imperfect

feedforward compensation is approximately 0.2 mHz/s. The feedforward parameters were set be-

forehand and unchanged during the campaign. This long-term drift would contribute a systematic

offset of magnitude 1 × 10−16, which is negligible for the current evaluation.

5.7 Absolute frequency evaluation

We reference all RF frequency counters and direct digital frequency synthesizers (DDS) in

the experiment to a free-running rubidium microwave standard (our local timebase), as illustrated

in Fig. 5.9(b). Calibration of this rubidium clock is accomplished by comparing its 1 pulse-per-

second (PPS) output with that of a dual-band global navigation satellite system (GNSS) receiver26

on a time interval counter27 (TIC).

The microprocessor within the GNSS receiver has a given clock speed (rate), thus a compu-

tational, communication, and functional dead time equal to the inverse of the clock rate. This

presents an issue if the receiver has to output a pulse during this window of time. Typically,

to overcome this, GNSS receivers report quantization errors that accompany the 1 PPS output

pulses. This is the timing error of the physical output pulse compared to the ideal pulse that is syn-

chronized to GPS time. The quantization errors vary from pulse-to-pulse and are approximately

26The dual band antenna (Tallysman 3972XF) that receives the broadcasted GNSS messages from the satellites
is lightning protected and mounted on the roof of Pupin Hall with a clear view of the sky. The signals are passed
through an in-line amplifier and transmitted 6 or 7 floors down over ∼ 200 ft of compatible coaxial cable from the
roof to the lab, where the GNSS receiver (ZED-F9T) is housed. A GNSS receiver solves the navigation equations to
obtain the geographical position of the antenna and the timing difference between the receiver’s clock and the GNSS
constellation’s time scale (here chosen to be GPS). To operate the receiver in “Timing” mode, a survey of the antenna’s
position is made over 24 hours using the accompanied manufacturer software, after which the spatial coordinates are
automatically saved. The survey suggests that the antenna is 87.2 m above Earth’s geoid (essentially mean sea level).
If the position of the antenna is changed, this calibration survey will have to be repeated. Note that the receiver is
agnostic of the distance (and indeed the height difference) between it and the antenna. Nevertheless, international
timescales are engineered to closely approximate the proper time kept by a stationary clock on the geoid, so we only
need to account for gravitational time dilation due to the height of the molecular clock apparatus relative to the geoid.

27Pendulum CNT-91
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Figure 5.20: Example post-processed time interval counter (TIC) log, taken on GPS week 2215, for
the molecular clock run between MJD 59753.5–59754.5. The TIC measurements are started by the
rising edge of the 1 PPS from the rubidium clock and stopped by the rising edge of the 1 PPS from
the GNSS receiver. The quantization errors reported by the GNSS receiver are simultaneously
logged and corrected point-by-point in post-process, resulting in the blue points. The red solid
line is a linear fit to the segment that coincides with the molecular clock up time. A positive
(negative) slope implies that the rubidium clock runs faster (slower) than GPS; i.e., “10 MHz”
frequency according to the local timebase is actually slightly larger (smaller) if it were measured
against the international system of units. Therefore, all frequencies referenced to the rubidium
timebase would have been erroneously measured to be smaller (larger), and a positive (negative)
correction is necessary. Triggering on the rising edge of the GNSS receiver (configured to have
rising pulse polarity) is preferred because its pulse width is large (∼ 100 ms), and consequently, its
falling edge may be less stable. Note that the ZED-F9T receiver reports quantization errors for the
succeeding pulses. In addition, there are inherent latencies (≲ 100 ms) in the GNSS receiver timing
computations, as well as the communication between the receiver and the logging computer. Thus,
to avoid misidentifying the reported quantization error with the corresponding TIC measurement
(which the logging computer queries upon receipt of a valid report from the GNSS receiver), we
make the time intervals on the TIC short (∼ 100 𝜇s) prior to logging by adjusting the placement of
the rubidium clock pulses.
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within ±5 ns for our receiver. Each TIC measurement is corrected for its quantization error in post-

process, which dramatically improves the time deviation of the measurements and the accuracy of

the extracted fractional frequency offset of the rubidium timebase.

The rubidium clock serves as a flywheel oscillator to access Global Positioning System (GPS)

time. In turn, GPS time is closely steered (≲ 1 𝜇s) toward UTC(USNO), one of two local real-

izations of Coordinated Universal Time (UTC) in the United States; the other being UTC(NIST).

The timing differences between local realizations of UTC and International Atomic Time (TAI),

and the calculated difference between TAI and the SI unit of the second are published in an inter-

national monthly bulletin (or report card) called the “Circular T”. By definition, the scale intervals

of UTC and TAI are equivalent.

The full frequency chain can be algebraically written as

𝑓clock
𝑓SI

=
𝑓clock
𝑓Rb

× 𝑓Rb
𝑓GPS

× 𝑓GPS
𝑓UTC(USNO)

×
𝑓UTC(USNO)

𝑓TAI
× 𝑓TAI

𝑓SI
, (5.49)

where 𝑓SI ≡ 1 Hz is the SI unit of frequency such that 𝑓clock/ 𝑓SI is the numerical value of the

absolute frequency of the molecular clock. 𝑓clock/ 𝑓Rb is the molecular clock frequency relative to

the rubidium clock that serves as our lab timebase (calculated via Eq. (5.35) using the molecular

clock line centers, the counted repetition rate of the frequency comb, and the molecular clock

systematic corrections). 𝑓Rb/ 𝑓GPS is the frequency of the rubidium clock relative to GPS time.

GPS time is closely steered toward UTC(USNO), and 𝑓GPS/ 𝑓UTC(USNO) is the frequency of GPS

time relative to UTC(USNO). Finally, 𝑓UTC(USNO)/ 𝑓TAI is the frequency of UTC(USNO) relative

to TAI, and 𝑓TAI/ 𝑓SI is the frequency of TAI relative to the SI second.

The molecular clock is operated intermittently due to its complexity and the practical chal-

lenges of our present experimental apparatus. As such, the clock was not continuously phase-
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linked with the SI second. To address this, we expand Eq. (5.49) as

𝑓clock
𝑓SI

=
𝑓clock
𝑓Rb(T1)

× 𝑓Rb(T1)
𝑓GPS(T1)

× 𝑓GPS(T1)
𝑓GPS(T2)

× 𝑓GPS(T2)
𝑓UTC(USNO) (T2)

×
𝑓UTC(USNO) (T2)

𝑓TAI(T2)
× 𝑓TAI(T2)

𝑓SI
. (5.50)

Here, T1 is the typical up time of the molecular clock corresponding to one measurement trial

[Fig. 5.22], T2 = 1 month corresponds to the time period for the publication of the Circular T [150],

and the bracketed time explicitly states the duration over which the given frequency is averaged.

We have assumed that the SI second and molecular clock frequency are unchanging in time.

Over the length of the campaign, the scale intervals of GPS time, UTC(USNO), and Inter-

national Atomic Time (TAI) differed by ≲ 10−15, and the daily fractional changes in the fre-

quency of GPS time relative to TAI are ≲ 10−14 [151]. Therefore, for the present study, except

for 𝑓Rb(T1)/ 𝑓GPS(T1) and 𝑓clock/ 𝑓Rb(T1), all other ratios contribute a negligible uncertainty and

may be assumed to be unity. This includes the extrapolation ratio, 𝑓GPS(T1)/ 𝑓GPS(T2), which is

the frequency of GPS time during the molecular clock up times versus the frequency of GPS time

broadcasted by the constellation over a month.

Each TIC measurement is started by the rising edge of the 1 PPS from the rubidium clock and

stopped by the rising edge of the 1 PPS from the GNSS receiver. Thus, the instantaneous fractional

frequency offset of the rubidium clock relative to the frequency of GPS time, 𝑟 = [ 𝑓Rb/ 𝑓GPS] − 1,

is quantified by the instantaneous slope of the logged TIC measurements as a function of elapsed

time. This measurement is susceptible to noise in the satellite link, as well as the instabilities

of GPS time and the rubidium clock. Comparisons with an identical, independent free-running

rubidium clock indicate that the rubidium clock reaches an instability flicker floor of approximately

3 × 10−13 ≡ 𝜎Rb after ∼ 5 × 103 s of averaging time (comparable to typical durations of T1), but

worsens to ∼ 10−12 for time periods over 24 hours. This poses a conundrum, because at least

24 hours of continuous averaging is typically required to achieve an inaccuracy and instability of

< 10−13 using one-way GPS time transfer [152], but the rubidium clock is not a good flywheel on
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these time scales.

Rubidium microwave standards are more susceptible to unpredictable environmental perturba-

tions than, for instance, hydrogen masers [1], making it challenging to construct a reliable noise

model. Therefore, for every trial, we operationally extract 𝑟 = [ 𝑓Rb(T1)/ 𝑓GPS(T1)] − 1 through

linear fitting of the TIC measurements as a function of elapsed time, restricting the fits to the du-

rations coinciding with the up time segments of the molecular clock. This process is illustrated in

Fig. 5.20.

We judged a detailed characterization of the satellite link to be beyond the scope of the present

work. Geometric multipath effects and the diurnal variation in the ionosphere may introduce a

systematic offset (≈ 2 × 10−13 ≡ 𝜎GPS,sys), since a majority of the molecular clock up times were

in the afternoon.

We estimate the fractional uncertainty of the extracted values of 𝑟 to be
√︃
𝜎2

Rb + 𝜎
2
GPS,tot, where

𝜎2
GPS,tot = 𝜎

2
GPS,stat + 𝜎

2
GPS,sys and 𝜎GPS,stat ≈ 10−13 ×

√︁
86400/T1 [𝑠]. The uncertainty from linear

fitting is an order of magnitude smaller. Occasionally, we manually realigned the rubidium clock

frequency relative to GPS if it exceeded a fractional offset of 1×10−11. This is not done during the

molecular clock up times, nor within 24 hours of those segments to let the rubidium clock settle.

For every trial, we add a unique frequency correction 𝑟 × [ 𝑓GPS(T1)/ 𝑓GPS(T2)] × [ 𝑓clock/ 𝑓Rb(T1)]

to 𝑓clock/ 𝑓Rb(T1), obtaining the absolute frequency of the molecular clock.

Figure 5.21 shows the results of the measurement campaign, consisting of 10 trials performed

on separate days. For clarity, we reiterate that all known systematic corrections have been applied,

including the frequency corrections due to the daily systematic offset of the rubidium clock. Each

absolute clock frequency measurement trial utilizes clock lines taken under operational conditions

[Fig. 5.22]. For experimental ease, the clock lasers and frequency comb are not actively steered

toward the molecular resonance in real time. Instead, we repeatedly scan the clock transition to

obtain a time series of the line centers while counting the frequency comb’s repetition rate, 𝑓RR,

against the rubidium timebase on a zero dead time frequency counter (see Sec. 3.1.2). Figure 3.6(b)

suggests that the combined drift of the reference cavity and the rubidium timebase is ∼ 10−13
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(a) (b)

(c)

Figure 5.21: (a) Absolute frequency of the clock transition measured over 10 trials (filled black
circles) with all known frequency offsets corrected, including that of the local rubidium timebase
(see main text for details). Blue error bars are 1𝜎 statistical uncertainties, dominated by the deter-
mination of the comb repetition rate rather than the stability of the scanned molecular clock lines.
Red error bars are 1𝜎 systematic uncertainties due to the molecular clock only (see Table 5.3).
Black error bars are 1𝜎 total uncertainties, where the uncertainties of the local timebase calibra-
tions are added in quadrature with the statistical and molecular clock systematic uncertainties. The
black horizontal line shows the weighted average (𝜒2

red = 0.5), and the shaded gray area shows the
associated ±1𝜎 standard error of the mean. (b) Histogram of all clock frequency measurements
in the 10 trials, relative to the weighted average of 𝑓clock. The solid red line is a Gaussian fit to
the histogram, which serves as a guide to the eye. (c) Overlapping Allan deviation of all clock
frequency measurements (randomized). See Fig. 5.22 for the expanded dataset.
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Figure 5.22: Expanded dataset for the absolute clock frequency measurement campaign. For ex-
perimental ease, the clock lasers and frequency comb are not actively steered toward the molecular
resonance in real time. Instead, each measurement (filled gray circle) is calculated from a sin-
gle scan of the molecular clock transition under operational conditions, and the repetition rate
of the frequency comb is counted with a zero dead time frequency counter (1 s gate time). The
shot-to-shot noise in the counted repetition rates is lowered by taking their average over a short
window of time centered on the timestamp of the corresponding molecular clock measurement
in post-process. Since the averaging windows are conservatively chosen to be short (5 min), the
statistical error on each point is typically ∼ 40 Hz. The data is plotted against the time of measure-
ment (Modified Julian Date, MJD). The frequency values have been corrected for all systematic
errors in Table 5.3, the gravitational redshift, and the rubidium timebase error. Error bars are not
shown for visual clarity. Trial numbers on the top right corner of each plot correspond to those in
Fig. 5.21(a). The histogram and Allan deviation of all measurements is shown in Figs. 5.21(b,c).
The axes labels are displayed in the plot for Trial 1 (top left), and are the same for the remaining
plots.
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for averaging times < 103 s. This means that we can meaningfully average, in post-process, the

measurements of 𝑓RR over a window of time ≲ 103 s to achieve better statistics beyond a single

counter measurement. To preclude the residual cavity drift from biasing the averaged repetition

rates, we quite conservatively use a 5-minute window; i.e., we average 5×60+1 = 301 consecutive

counter measurements of 𝑓RR for each point in Fig. 5.22. The window is centered on the timestamp

closest to the scan over the corresponding molecular clock line. The molecular clock systematics

are controlled at the level quoted in Table 5.3. The probe light shifts were evaluated every trial to

account for potential daily variations in probe laser beam pointing. We determine the elevation of

our apparatus to be 𝐻 = 51(5) m above mean sea level. Clocks deeper in a gravitational potential

run slower [153–156]; i.e., Δ 𝑓clock/ 𝑓clock = 𝑔𝐻/𝑐2, where 𝑔 is the local gravitational acceleration.

Thus, the redshift correction to 𝑓clock is −0.18(2) Hz.

A weighted average over the 10 trials yields the absolute frequency of the 88Sr2 vibrational

clock to be

𝑓clock = 31 825 183 207 592.8(5.1) Hz, (5.51)

where the quoted uncertainty is the revised standard error of the mean. In future work, we expect

to reduce the uncertainty of our local timebase calibration to the same level as the molecular clock

systematics (or better) by upgrading to a standard with intrinsically lower instability (e.g., cesium

beam standard, or hydrogen maser) and utilizing two-way time transfer schemes (e.g., GPS carrier

phase) with a national timing institute.

To our knowledge, 𝑓clock represents one of the most accurately measured pure molecular vibra-

tional frequencies to date. The fractional uncertainty (1.6×10−13) is on par with that of the uniden-

tified rovibrational interval in OsO4 near the R(10) (0001)–(1000) emission line of the 12C16O2

laser. This absorption line in OsO4 is a secondary representation of the SI second [157], and was

compared directly against a primary cesium standard by stabilizing a CO2 laser to the specific

saturated absorption feature of OsO4 in a high-finesse cavity [158, 159].

Accurate terahertz (THz) frequency metrology is vital for many applications, yet few frequency

standards currently exist in the THz band [157, 160]. Our prototype clock is the first THz frequency

178



standard based on ultracold molecules and can generate stable radiation at 9.4 𝜇m via photomix-

ing [161, 162]. Alternatively, transitions in heteronuclear isotopologues (e.g., 86Sr88Sr, 84Sr88Sr,
86Sr84Sr) could be driven directly with quantum cascade lasers [163, 164].

5.8 The dissociation energy of 88Sr2

𝑓clock is the unperturbed vibrational splitting of 𝑋 (62, 0) and 𝑋 (0, 0). Therefore, the sum of

𝑓clock with the binding energy of the least bound state 𝑋 (62, 0), |𝐸𝑋0+𝑔
𝑣=62,𝐽=0 |, yields the dissociation

energy (𝐷0 ≡ |𝐸𝑋0+𝑔
𝑣=0,𝐽=0 |) of our molecule with respect to the 1𝑆0 + 1𝑆0 threshold,

𝐷0 = 𝑓clock + |𝐸𝑋0+𝑔
𝑣=62,𝐽=0 |. (5.52)

While the analogous least bound vibrational states of 84Sr2 and 86Sr2 are known with sub-kHz

uncertainties [165, 166], the current best measurement for 88Sr2 is at the kHz-level [31]. Never-

theless, taking the binding energy of 𝑋 (62, 0) to be 136.6447(50) MHz from Ref. [31], which was

determined using two-photon dissociation, we find

𝐷0(88Sr2) = 31 825 319 852(5) kHz = 1 061.578 402 09(17) cm−1 × 𝑐. (5.53)

This is an improvement by 5 orders of magnitude over the previously reported value for Sr2 in

available literature [15], and sets a new accuracy record for the determination of a molecular dis-

sociation energy (1.6 × 10−10 fractional uncertainty). To list a few competitive results, dissocia-

tion energies have been reported with fractional uncertainties of 4.4 × 10−10 for 87Rb133Cs [167],

6.9× 10−10 for ortho-H2 [168], 8.6× 10−10 for para-H2 [169], and 7.1× 10−10 for ortho-D2 [170].
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Outlook

Exerting precise quantum control over the rovibronic states of molecules was considered a

grand challenge nearly two decades ago. Nevertheless, quantum science reached a level of maturity

in the intervening years that has enabled our experiments with diatomic strontium, among others.

The work in this thesis arose from the amalgamation of various disciplines, namely ultracold

gases, quantum chemistry, laser physics, atomic clock-making, and frequency metrology. Just as

we anticipate and recognize individual musical notes that flow harmoniously from an arpeggiated

chord, we can triangulate seemingly disparate ideas and sense their connections as part of a broader

picture, even when the future is yet to come.

Molecular spectroscopy is increasingly appreciated as a fertile ground in the search for new

physics. Besides contributing to the global network of clocks and opening opportunities for bridg-

ing the THz metrology gap, molecular clocks are also poised to broaden the scope of fundamental

measurements. These include tests of molecular quantum electrodynamics, fifth forces at nanome-

ter scales, the time variation of the fundamental constants, and various models of ultralight dark

matter.

Both accuracy and precision are essential metrics for a metrological platform, and they often

advance in lockstep. Going beyond the work in this thesis, realizing a vibrational lattice clock with

systematic uncertainty and instability at (or below) the 10−15 level will require several technical

advancements that overcome the limitations in our present apparatus. If history is any guide, these

advances may extend the capabilities of quantum computing and quantum simulation experiments

that share the challenge of engineering rovibronic molecular states with long quantum coherence

times that are robust against external environmental influences.

It is still very early days for the vibrational molecular clock. It took over a decade and the efforts

of multiple laboratories worldwide for atomic lattice clocks to advance to their record performance

(currently with systematic uncertainties at the low 10−18, and instabilities at the 10−21 level). From

this perspective, molecular clocks are on an upward trajectory.
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