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We present a theoretical framework for ‘collective transition quenching’, a quantum many-body
dissipative phenomenon that occurs in systems with multiple collective decay channels. Despite the
competition, interactions suppress all but the dominant decay transition, leading to a ‘winner takes
all’ dynamic where the system primarily settles into the dominant ground state. We prove that, in
the presence of permutation symmetry, this problem is exactly solvable for any number of competing
channels. Additionally, we develop an approximate model for the dynamics by mapping the evolution
into a continuity equation for a fluid, and show analytically that the dominant transition ratio
converges to unity with increasing system size as a power-law, for any branching ratio. This near-
deterministic preparation of the dominant ground state has broad applicability. As an example
we discuss a protocol for molecular photoassociation where collective dynamics effectively acts as a
catalyst, amplifying the yield in a particular final state. Our results open new avenues for many-body
strategies in the preparation and control of quantum systems.

The suppression of decay pathways into undesired
quantum states is crucial for the control and manipu-
lation of open quantum systems. Simplified theoretical
models often rely on ‘closed’ transitions where the ex-
cited state decays predominantly to a specific ground
state. Yet, in practice, real-world emitters seldom ad-
here to the idealized paradigm of two-level systems. For
instance, highly excited atomic states (such as Rydberg
states) have many lower-energy states accessible by spon-
taneous emission [1]. In photochemistry, decay to a single
ground state is often inefficient due to numerous com-
peting pathways arising from electronic, vibrational, and
rotational degrees of freedom [2, 3]. Solid-state emitters
(such as color centers or dye molecules) also suffer from
parasitic decay from phonon sidebands [4, 5]. Achieving
closed transitions in experiments is challenging, and often
involves isolating two-level systems from more complex
internal structures or employing repumping techniques
to redirect population back into the desired states. How-
ever, these approaches are inherently limited by the nat-
ural, single-particle branching ratios of the transitions.

The natural branching ratios and dynamics of decay
can, in fact, be modified by engineering the quantum
system and its environment. One common approach is
to tailor the dielectric environment by placing emitters
within optical cavities [6], waveguides [7, 8], or other pho-
tonic structures [9, 10] such that the desired decay chan-
nel is Purcell-enhanced. Numerical studies with multi-
level atoms [11–14] and molecules [15] have suggested
collective emission as an alternative to circumvent limita-
tions from single-particle branching ratios. These propos-
als rely on many-body, transient superradiance [16, 17],
a phenomenon characterized by avalanche-like behav-
ior [18–20] where decay into a given ground state en-
hances the probability of subsequent emission into that

same state. This process effectively steers the emitters
towards a specific ground state. A comprehensive ana-
lytical treatment of this physics remains lacking, which
is critical for fully understanding and exploiting its po-
tential.
We term the phenomenon where correlated decay sup-

presses all but the most dominant emission path as col-
lective transition quenching. As shown in Fig. 1(a), we
consider an ensemble of emitters coupled to a reservoir.
The emitters have multiple decay channels, each leading
to different final states. Each decay channel can be collec-
tively enhanced by many-body correlations that emerge
dynamically, leading to competition between them. We
find approximate steady-state solutions for the popu-
lations of the different ground states by modeling the
quantum dynamics through a continuity equation for a
fluid. We prove that, despite the competition, the pop-
ulation density of the dominant ground state exhibits
a power-law convergence to unity for any branching ra-
tio, with the power-law exponent characterized by the
ratio between dominant and subdominant decay rates.
This is supported by a rigorous analysis of the exact
steady-state solution. We apply our framework to the
problem of photochemistry, where sub-optimal branch-
ing ratios limit the effectiveness of molecule creation, di-
rect laser cooling [21], and optical imaging. Specifically,
in molecular photoassociation of strontium dimers, we
demonstrate that collective transition quenching greatly
enhances sample purity.
We consider an (undriven) ensemble of N identical

emitters with a level structure consisting of a single ex-
cited state |e⟩i and d ground states labelled |gµ⟩i, with
µ ∈ {1, . . . , d} and i ∈ {1, . . . , N}. The emitters are
symmetrically coupled to a Markovian environment, with
separate couplings for each transition |e⟩ → |gµ⟩. Phys-
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FIG. 1. Increased population of the dominant transition (with suppressed fluctuations) due to collective decay in multilevel
systems. (a) N multilevel emitters with d ground states and a single excited state decay collectively to an environment (at rates
Γ1, . . . ,Γd), such as a “bad” cavity, a waveguide in the “mirror configuration” (where the relative distance between the emitters
is a half-integer multiple of the resonance wavelength λ0) or free space (for the latter, a dense ensemble of subwavelength
volume is required to preserve permutational symmetry). (b) Dissipative dynamics can be modeled as a random walk between
permutationally symmetric ground states (d = 2 depicted), labelled by |n1, . . . , nd⟩, where nµ denotes the population of the
ground state |gµ⟩. (c) Marginal probability distribution P (n1) =

∑
n2

P (n1, n2) for the population density of the ground state

|g1⟩, for N = 150 and d = 2 in the steady state, after complete depletion of the fully-inverted initial state. The distributions
for collective decay with r2 = 1 (gray), and collective decay with r2 = 0.5 (blue) are obtained via numerical simulations of
Eq. (2). The binomial distribution is plotted for independent decay with r2 = 0.5 (green).

ically, this can be realized by coupling the emitters to
near-resonant cavity modes (in the “bad cavity” or “weak
coupling” limit), to a single-mode waveguide in the “mir-
ror configuration” (where the emitters are separated by
a half-integer multiple of the wavelength [22, 23]), or via
free-space interactions in a dense ensemble of subwave-
length volume, as depicted in Fig. 1(a). We assume that
photons from different transitions can be resolved either
by polarization or frequency (for the waveguide config-
uration, we assume that the transition frequencies are
approximately equal to fulfil the mirror condition). The
system dynamics is modelled by the master equation

ρ̇ = −i

[
d∑

µ=1

χµÂ
†
µÂµ, ρ

]
+

d∑

µ=1

ΓµD[Âµ]ρ, (1)

where χµ are the coherent interaction rates, Âµ =∑N
i=1(|gµ⟩ ⟨e|)i is the collective lowering operator on the

transition |e⟩ → |gµ⟩, and D[Â]ρ ≡ ÂρÂ† − {Â†Â, ρ}/2.
Collective dissipation occurs with rates Γµ (identical to
the single-emitter ones), and we assume the ordering
Γ1 ≥ Γ2 ≥ . . . ≥ Γd, such that Γ1 is the dominant de-
cay rate. For convenience, we denote the ratio between
dominant and subdominant decay rates as rµ ≡ Γµ/Γ1.

Dynamical evolution can be understood as a ran-
dom walk in the subspace of permutationally symmetric
states, as shown in Fig. 1(b). Since Eq. (1) preserves
permutation symmetry, basis states |n1, . . . , nd⟩ are fully
described by occupation numbers, where nµ is the popu-
lation of |gµ⟩. These are typically entangled, as they con-
sist of a symmetric superposition of excitations over N

particles. The population of the excited state is ne = N−∑
µ nµ, with ne = 0 in the final, steady state. Employing

the ansatz ρ =
∑

{nµ} Pn1,...,nd
|n1, . . . , nd⟩ ⟨n1, . . . , nd|,

Eq. (1) reduces to a rate equation [see Supplementary
Material (SM) [24]]

Ṗn1,...,nd
= −

(
N −

d∑

ν=1

nν

)
d∑

µ=1

Γµ(nµ + 1)Pn1,...,nµ,...,nd

+

(
N −

d∑

ν=1

nν + 1

)
d∑

µ=1

ΓµnµPn1,...,nµ−1,...,nd

(2)

for the probabilities Pn1,...,nd
of occupying the state

|n1, . . . , nd⟩. This ansatz is justified even if there are co-
herences in the initial state (i.e., off-diagonal terms in the
density matrix), since they are decoupled and hence do
not affect population dynamics. While the rate equation
holds for any permutationally symmetric initial state, be-
low we choose the fully inverted state (i.e., |e⟩⊗N

).

Although Eq. (2) can be efficiently simulated, it is non-
trivial to obtain the steady state analytically. Moreover,
the steady state is highly non-unique, since any com-
bination of emitters in any ground state is a possible
steady state. The trivial case of just one collective decay
channel (d = 1) reduces to the problem of Dicke super-
radiance [16, 17]. We instead focus on the problem of
multiple competing transitions.

We quantify collective transition quenching by the
dominant transition ratio (DTR), defined as the mean
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FIG. 2. (a) Velocity vector field of the continuum model for r2 = 0.5 and N = 10. The dashed line represents the flow
trajectory in the single-particle approximation starting from the fully excited state (x1, x2) = (0, 0), where x1(2) denotes
the population of |g1(2)⟩. Darker color indicates lower velocity. The red solid line shows the neutrally stable ground state
attractor. The unphysical region (where the ground state population is larger than N) is shown in gray. (b) Population density
outside the dominant ground state [1 − Dominant transition ratio (DTR)] against number of emitters N , for various decay
ratios r2 = Γ2/Γ1. The points are obtained from numerically solving the rate equation (2), while the dotted lines denote
the approximate formula (9). Solid lines denote the exact asymptotic solution (10). (c) Cumulative distribution (i.e., total
probability of the dominant ground state population being at most n1) Pc(n1) =

∑n1

n′
1=0

P (n′
1). Data obtained from numerical

simulation of the rate equation (2), with r2 = 0.4. Darker colors indicate larger number of emitters, with 61 ≤ N ≤ 104. All
plots are made for d = 2 ground states.

population density of the dominant ground state in the
steady state, i.e.,

DTR =
n1

N
, (3)

where n1 is the mean number of emitters in |g1⟩ as
t → ∞. For independent emitters, the marginal probabil-
ity distribution P (n1) =

∑
n2,...,nd

Pn1,...,nd
for the dom-

inant ground state is a binomial distribution whose aver-
age (normalized by N) is the DTR = (1 +

∑
µ>1 rµ)

−1,
determined solely by the decay ratios and independent
of N [see Fig. 1(c)]. Below, we prove that the DTR
always converges to 1 as N → ∞ for any number of
collective decay channels, assuming Γ1 > Γµ>1. This ef-
fect can be attributed to the superradiant enhancement,
which amplifies the dominant transition relative to all
subdominant transitions. If Γ1 = Γ2 = . . . = Γd, one ob-
tains a uniform distribution for Pn1,...,nd

[13], as shown
in Fig. 1(c).

To gain analytical insights from the rate equation, we
transform it into a continuity equation of a fluid that
flows in Euclidean space. In the limit of largeN , we make
the continuum approximation [25] by setting nµ → xµ,
x⃗ = (x1 . . . xd)

T ∈ Rd
+, and f(n1, . . . , nµ, . . . , nd) −

f(n1, . . . , nµ−1, . . . , nd) → ∂
∂xµ

f(x⃗) for an arbitrary dif-

ferentiable function f . The rate equation is then approx-
imated by the continuity equation

∂

∂t
P (x⃗, t) = −∇ · (v⃗(x⃗)P (x⃗, t)), (4)

which describes a fluid flow in Rd
+, governed by the

position-dependent velocity field v⃗(x⃗) with µ-th compo-

nent

vµ(x⃗) = Γµ

(
N −

d∑

ν=1

xν

)
(xµ + 1). (5)

The flow comes to a stop as
∑

ν xν → N , which phys-
ically corresponds to the system approaching its steady
state, where no excited state population remains. The
velocity field is illustrated for d = 2 in Fig. 2(a). The
fully excited initial state corresponds to the origin of Rd

+.
Due to the non-uniqueness of the steady state, it is not
sufficient to simply solve for ∂tP = 0.
Solving Eq. (4) analytically for arbitrary times is a

formidable task. Instead, we employ a single-particle
approximation where the fluid is idealized as a point
particle initialized at the origin, with velocity dynam-
ics dx⃗/dt = v⃗(x⃗). This reduces the partial differential
equation in Eq. (4) to a coupled system of d ordinary
differential equations. Dividing the components of v⃗(x⃗),
we readily find

dxµ

dxν
=

Γµ

Γν

xµ + 1

xν + 1
(6)

for any pair of µ, ν ∈ {1, . . . , d}. Integrating the above
expression yields

(xµ + 1)Γν = (xν + 1)Γµ . (7)

The d − 1 independent equations of the form (7) define
the particle trajectory in Rd

+ starting from the origin.
Generalizing Eq. (7) to other permutationally symmetric
initial states is straightforward (see SM [24]).
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The steady state solution has a geometrical interpre-
tation as the intersection between the particle trajectory
and the hyperplane

∑d
µ=1 xµ = N . To find an asymp-

totic solution, we assume that xµ ≫ 1. The trajectory is

then described by a simpler set of equations xΓν
µ = x

Γµ
ν .

The constraint
∑d

µ=1 xµ = N can then be rewritten as
∑d

µ=1 x
Γµ/Γd

d = N . For simplicity, we consider the non-
degenerate case where all Γµ are distinct (see SM [24]
for the degenerate case). Using the method of dominant
balance [26] we obtain xd ≈ Nrd , valid in the regime
1 ≪ Nrd ≪ N . In the regime 1 ≪ Nrµ ≪ N ∀ µ > 1,
an iterative method yields the self-consistent solution

x1 ≈ N −
d∑

µ=2

Nrµ , xµ = Nrµ , µ > 1. (8)

The dominant transition ratio thus reads

DTR ≈ x1

N
≈ 1−

d∑

µ=2

1

N1−rµ
, (9)

which converges to unity as N → ∞, with the slowest
convergence characterized by the power law ∼ Nr2−1.
Equation (9) provides our first theoretical prediction for
collective transition quenching. Comparing with numer-
ical simulations of the rate equation (2) for d = 2 in
Fig. 2(b), the approximate formula (9) agrees qualita-
tively, with higher accuracy attained for smaller r2.

Remarkably, we can solve for the DTR exactly in the
asymptotic N → ∞ limit. In the SM [24], we prove that
the dynamics governed by the rate equation (2) is inte-
grable, and derive the complete set of N +1 independent
conserved quantities. We thus overcome the problem of
non-unique steady states. However, because of the com-
plexity of the exact solution, we only use it to compute
the DTR, which reads

DTR =
n1

N
= 1−

d∑

µ=2

Γ̃(1− rµ)

N1−rµ
, (10)

where Γ̃(·) is the gamma function. The exact solution
yields the same scaling as the approximate formula (9),
and agrees excellently with numerical simulations, as
shown in Fig. 2(b). This agreement explains why the ap-
proximation of Eq. (9) becomes more accurate for smaller
rµ, since Γ̃(1−rµ) = 1+O(rµ). The error in the prefactor
of Eq. (9) likely arises from the single-particle approxi-
mation.

Our formalism can also be easily extended to include
non-collective decay channels, modeled as a leakage at a
rate Γleak [24]. Going back to the fluid model, this adds

an extra component v0 = Γleak

(
N −∑d

µ=1 xµ − x0

)
to

the velocity field and modifies
∑d

ν=1 xν → ∑d
ν=0 xν in

Eq. (5). A similar analysis for large N yields x0 ≈

(Γleak/Γ1) lnN , in the same regime as the validity of
Eq. (9). This justifies the omission of non-collective decay
in our model, since x0 ≪ xµ ∼ Nrµ , and the approximate
DTR reads

DTR ≈ 1−
d∑

µ=2

1

N1−rµ
− Γleak

Γ1

lnN

N
. (11)

In the non-competing scenario with only one collective
decay channel (d = 1), the DTR always converges to
unity as ∼ lnN/N (even if |e⟩ → |g1⟩ is not the most
dominant transition). This recovers the well-established
result of Dicke superradiance in the presence of local de-
cay [15, 27].
The avalanche-like behavior of the dominant transition

not only impacts the population of the dominant ground
state, but also lowers the fluctuations of the probabil-
ity distribution dramatically. For d = 2, we numeri-
cally observe (for small r2) that the relative fluctuation
δn1/n1 in the dominant ground state population van-
ishes as N → ∞ faster than ∼ N−1/2 (expected from
independent decay). This causes the steady state distri-
bution to become sharply peaked at density n1/N = 1,
as indicated by the cumulative probability distribution
in Fig. 2(c) and in the SM [24]. By the Bhatia-Davis
inequality [28], the relative fluctuation can be bounded
as δn1/n1 ≤

√
(1−DTR)/DTR which vanishes like

∼ N (r2−1)/2. While this bound is not tight, it justifies
the single-particle approximation made in our theoretical
analysis.
Finally, the convergence time T to the steady state

can be estimated within the fluid model under the single-
particle approximation. By noting that dt = dx1/v1, we
find (see SM [24])

T =
1

Γ1

ˆ

C

dx1

(N − x1 −
∑

µ>1 xµ)(x1 + 1)
≈ 2− r2

Γ1

lnN

N
,

(12)
where C is the trajectory defined by Eq. (7). The presence
of competing collective decay channels affects the well-
known superradiant timescale of Γ1T ∼ lnN/N [17] only
by a constant factor.
As a possible application of collective transition

quenching, we analyze the creation of ultracold diatomic
molecules via photoassociation. In one-color photoasso-
ciation, laser-cooled atoms form weakly bound molecules
that spontaneously decay into various more tightly-
bound states [29]. The vibrational and rotational branch-
ing ratios are dictated by Franck-Condon factors and
angular-momentum Hönl-London factors, respectively.
Specifically, we examine ultracold strontium dimers that
lack Feshbach resonances and must be produced opti-
cally [30, 31]. Strontium dimers have narrow optical tran-
sitions and a structureless ground state, making them
well-suited for metrology [32–35]. We consider photoas-
sociation via the state (1)1u(ν

′ = −1, J ′ = 1) [33],
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FIG. 3. Targeted photoassociation of a molecular dimer.
Weakly bound molecules are created by optical excitation
and spontaneously decay to various rovibrational ground-
electronic states. The dominant transition ratio (DTR)
is plotted against the initial number of weakly bound Sr2
molecules in the (1)1u(ν′ = −1, J ′ = 1) state. Decay is
considered to four states, (ν = −1, J = 0, 2) and (ν =
−2, J = 0, 2) with branching ratios 0.54, 0.27, 0.13, and 0.06,
respectively. Points show the numerical solution from the
Monte-Carlo simulation of the rate equation (2) for the non-
competing scenario where only the dominant transition is col-
lectively enhanced (□) and the competing scenario with all
four collective channels (◦). The dashed line denotes the an-
alytical prediction (11) for the non-competing scenario with
Γleak/Γ1 = 0.852. The solid line denotes the prediction (10)
for the competing scenario. Predictions are valid for N ≫ 1.

where ν′ and J ′ are the excited state vibrational and
rotational quantum numbers, respectively, and negative
vibrational numbers count down from the dissociation
threshold. This state has a dominant decay path to the
ν = −1, J = 0 ground state, with an overall branching
ratio of ∼ 54% (molecular parameters are detailed in the
SM [24]). Our protocol uses a short, strong pulse to cre-
ate N weakly bound molecules from a dense sample of
ultracold atoms. Alternatively, effective decay directly
from unbound atoms into ground-state molecules can be
engineered via a continuous off-resonant drive [36].

The avalanche-like behavior dramatically enhances the
fraction of molecules in the dominant ground state, as
shown in Fig. 3. If only one transition is collective, the
dominant transition ratio rapidly approaches unity, as
shown in Ref. [15]. This can be realized by engineer-
ing the dielectric environment to be frequency-selective
(either via a cavity [37] or a photonic crystal [38]). We
note that collective transition quenching occurs in the
weak coupling limit of cavity QED, distinguishing it
from the so-called “polaritonic chemistry” in strong cou-
pling [39, 40]. Figure 3 demonstrates that a nearly-
pure sample of molecules is created even under maxi-
mal competition, where all decay channels are collec-

tive. Collective enhancement of all transitions can oc-
cur in broadband cavities (or for molecules with hyper-
fine structure, which yields smaller frequency differences
between levels) or in single-mode fibers [41] within the
“mirror configuration” [23]. This effect can also oc-
cur in free space with dense, subwavelength molecular
clouds. However, in this scenario, collisions can lead
to significant losses. For polar molecules, collisions can
be prevented via electric field [42] or microwave shield-
ing [43–46]. Alternatively, they can be suppressed by
trapping molecules in optical tweezers to form ordered
arrays [47, 48]. As these systems are extended, their
dynamics are not constrained to the permutationally
symmetric subspace. Nevertheless, we expect collective
transition quenching to occur for molecules placed close
to waveguides (at arbitrary distances) or arranged in
ordered two- and three-dimensional arrays of subwave-
length lattice constant [49, 50], albeit with reduced scal-
ing.

In summary, collective decay holds promise for a wide
range of quantum systems, from closing open transitions
in atoms [12, 14] and preventing parasitic decay in solid-
state emitters [5, 51, 52] to directing emission into dielec-
tric nanostructures instead of unwanted modes [20, 53].
While we have primarily focused on an initially inverted
ensemble, our treatment captures collective transition
quenching from a large range of multiply excited states.
Future research directions include studying the poten-
tial for many-body-enhanced metrology [54], due to the
sensitivity of the ground state populations to the decay
ratios. Other interesting avenues include the observation
of symmetry breaking, which can occur if multiple domi-
nant transitions have identical decay rates, akin to mirror
symmetry breaking predicted in waveguide QED [20].
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I. COLLECTIVE JUMP OPERATORS

Here, we provide a simple derivation for the collective jump operators Âµ corresponding to the transition |e⟩ → |gµ⟩.
In the permutation-symmetric subspace, we label the basis states as |n1, n2, . . . , nd⟩, where nµ denotes the number of
emitters in the ground state |gµ⟩. In terms of the product basis kets,

|n1, n2, . . . , nd⟩ =
(

N
n1 n2 . . . nd ne

)−1/2

|g1 . . . g1︸ ︷︷ ︸

n1

. . . gd . . . gd︸ ︷︷ ︸
nd

e . . . e︸ ︷︷ ︸
ne

⟩+ permutations


 , (1)

where ne = N −∑d
µ=1 nµ and

(
N

n1...ne

)
is the multinomial coefficient. The action of the collective jump operators on

|n1, n2, . . . , nd⟩ reads,

Âµ |n1, n2, . . . , nµ, . . . nd⟩ =
(

N
n1 n2 . . . nd ne

)−1/2

Âµ


|g1 . . . g1︸ ︷︷ ︸

n1

. . . gd . . . gd︸ ︷︷ ︸
nd

e . . . e︸ ︷︷ ︸
ne

⟩+ permutations




∝ |n1, n2, . . . , nµ + 1, . . . nd⟩ .

(2)

The proportionality constant can be worked out via a simple counting argument. Firstly, Âµ acting on a product
basis ket in Eq. (1) produces a superposition of ne product basis kets. We can thus write

Âµ |n1, n2, . . . , nµ, . . . nd⟩ =
(

N
n1 n2 . . . nd ne

)−1/2 [
sum of

(
N

n1 n2 . . . nd ne

)
ne product basis kets

]
. (3)
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2

However, this is overcounting since there are only N !/(n1! . . . (nµ + 1)! . . . nd!(ne − 1)!) unique product basis kets.
Since the state is permutationally-symmetric, each unique product basis ket is repeated the same number of times in
the sum. Hence,

Âµ |n1, n2, . . . , nµ, . . . nd⟩ =
(

N
n1 n2 . . . nd ne

)−1/2

×

(
N

n1 n2 . . . nd ne

)
ne

(
N

n1 n2 . . . (nµ + 1) . . . nd(ne − 1)

)

×


|g1 . . . g1︸ ︷︷ ︸

n1

. . . gµ . . . gµ︸ ︷︷ ︸
nµ+1

gd . . . gd︸ ︷︷ ︸
nd

e . . . e︸ ︷︷ ︸
ne−1

⟩+ permutations


 .

(4)

Since

|n1, n2, . . . , nµ + 1, . . . nd⟩ =
(

N
n1 n2 . . . (nµ + 1) . . . nd(ne − 1)

)−1/2


|g1 . . . g1︸ ︷︷ ︸

n1

. . . gµ . . . gµ︸ ︷︷ ︸
nµ+1

gd . . . gd︸ ︷︷ ︸
nd

e . . . e︸ ︷︷ ︸
ne−1

⟩+ permutations


 ,

(5)
we have

Âµ |n1, n2, . . . , nµ, . . . nd⟩ =
(

N
n1 n2 . . . nd ne

)−1/2

×

(
N

n1 n2 . . . nd ne

)
ne

(
N

n1 n2 . . . (nµ + 1) . . . nd (ne − 1)

)

×
(

N
n1 n2 . . . (nµ + 1) . . . nd (ne − 1)

)1/2

|n1, n2, . . . , nµ + 1, . . . nd⟩ ,

(6)

which can be simplfied as

Âµ |n1, n2, . . . , nµ, . . . nd⟩ =

√√√√
(
N −

d∑

ν=1

nν

)
(nµ + 1) |n1, n2, . . . , nµ + 1, . . . nd⟩ . (7)

Correspondingly,

Â†
µ |n1, n2, . . . , nµ, . . . nd⟩ =

√√√√
(
N −

d∑

ν=1

nν + 1

)
nµ |n1, n2, . . . , nµ − 1, . . . nd⟩ . (8)

II. DERIVATION OF THE RATE EQUATION

From the master equation

ρ̇ = −i

[
d∑

µ=1

χµÂ
†
µÂµ, ρ

]
+

d∑

µ=1

ΓµD[Âµ]ρ, (9)

we derive the corresponding rate equation for the populations Pn1,...,nd
. Let us expand the density matrix in the

permutation symmetric subspace as

ρ =
d∑

µ=1

N∑

nµ,n′
µ=0

ρ
n′
1,...,n

′
d

n1,...,nd |n1, . . . , nd⟩ ⟨n′
1, . . . , n

′
d| , (10)

with the basis states defined in Eq. (1). The diagonal terms correspond to the populations

Pn1,...,nd
≡ ρn1,...,nd

n1,...,nd
(11)
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of occupying the state |n1, . . . , nd⟩, while the off-diagonal terms are the coherences. Using the collective operators in
Eqs. (7) and (8), the master equation can be written as

∂tρ
n′
1,...,n

′
d

n1,...,nd = −i
d∑

µ=1

χµρ
n′
1,...,n

′
d

n1,...,nd

[
⟨n1, . . . , nd|Â†

µÂµ|n1, . . . , nd⟩ − ⟨n′
1, . . . , n

′
d|Â†

µÂµ|n′
1, . . . , n

′
d⟩
]

+
d∑

µ=1

Γµ

{
ρ
n′
1,...,n

′
µ−1,...,n′

d

n1,...,nµ−1,...,nd
⟨n1, . . . , nd|Âµ|n1, . . . , nµ − 1, . . . , nd⟩ ⟨n′

1, . . . , n
′
µ − 1, . . . , n′

d|Â†
µ|n′

1, . . . , n
′
d⟩

− 1

2
ρ
n′
1,...,n

′
d

n1,...,nd

[
⟨n1, . . . , nd|Â†

µÂµ|n1, . . . , nd⟩+ ⟨n′
1, . . . , n

′
d|Â†

µÂµ|n′
1, . . . , n

′
d⟩
]}

.

(12)

From the definitions (7) and (8) of the collective jump operators, ⟨n1, . . . , nd|Â†
µÂµ|n1, . . . , nd⟩ = (N−∑ν nν)(nµ+1)

and ⟨n1, . . . , nd|Âµ|n1, . . . , nµ − 1, . . . , nd⟩ =
√
(N −∑ν nν + 1)nµ. The master equation is thus

∂tρ
n′
1,...,n

′
d

n1,...,nd = −i

d∑

µ=1

χµ

[(
N −

∑

ν

nν

)
(nµ + 1)−

(
N −

∑

ν

n′
ν

)
(n′

µ + 1)

]
ρ
n′
1,...,n

′
d

n1,...,nd

+
d∑

µ=1

Γµ

{√√√√
(
N −

∑

ν

nν + 1

)
nµ

(
N −

∑

ν

n′
ν + 1

)
n′
µ ρ

n′
1,...,n

′
µ−1,...,n′

d

n1,...,nµ−1,...,nd

− 1

2

[(
N −

∑

ν

nν

)
(nµ + 1) +

(
N −

∑

ν

n′
ν

)
(n′

µ + 1)

]
ρ
n′
1,...,n

′
d

n1,...,nd

}
.

(13)

Note that the populations are decoupled from the coherences, which decay to zero at long times. Thus, for the
purposes of obtaining the steady state populations, we can ignore the dynamics of the coherences. The diagonal
terms from setting n′

µ = nµ read

Ṗn1,...,nd
=

d∑

µ=1

Γµ

[(
N −

∑

ν

nν + 1

)
nµPn1,...,nµ−1,nd

−
(
N −

∑

ν

nν

)
(nµ + 1)Pn1,...,nd

]
, (14)

which leads to the rate equation for the populations.

III. EFFECT OF NON-COLLECTIVE DECAY CHANNELS

Non-collective decay channels can be modelled as a leakage out of the subspace spanned by |e⟩ and the d ground
states |g1⟩ , . . . , |gd⟩. We model non-collective decay channels by introducing an additional ground state |g0⟩ for
each emitter. The transition |e⟩ → |g0⟩ occurs at a rate of Γleak which is not collectively enhanced. Defining the
lowering operator σ̂−

i = (|g0⟩ ⟨e|)i, the non-collective decay contributes a dissipative term Γleak

∑
i D[σ̂−

i ]ρ to the
master equation. We label states by |n0;n1, . . . , nd⟩, where nν is the number of emitters in the ground state |gν⟩,
ν = 0, 1, . . . , d. The number of emitters in the excited state is thus ne = N −∑d

ν=0 nν . However, due to the presence
of independent decay, the states |n0;n1, . . . , nd⟩ cannot be interpreted as a symmetrized state, since the local jump
operators σ̂i do not preserve permutation symmetry, although the density matrix remains symmetric if Γleak is the
same for all i ∈ {1, . . . , N} [1]. Instead, we modify the notation to use |n0;n1, . . . , nd⟩ as a shorthand to denote any
state containing nµ emitters in the ground state |gµ⟩, with µ = {0, . . . , d}.

Consider the state |n0;n1, . . . , nd⟩. The probability of a collective transition with the operator Âµ is

pµ ∝ Γµ ⟨n0;n1, . . . , nd|Â†
µÂµ|n0;n1, . . . , nd⟩ = Γµ

(
N −

d∑

ν=0

nν

)
(nµ + 1), (15)

and the total leakage probability is

pleak ∝ Γleak

N∑

i=1

⟨n0;n1, . . . , nd|σ̂+
i σ̂

−
i |n0;n1, . . . , nd⟩ = Γleak

(
N −

d∑

ν=0

nν

)
. (16)
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The point to note here is that the collective transition probabilities and the total leakage probability depend only on
the occupation numbers {nµ} and hold even if |n0;n1, . . . , nd⟩ is not a permutationally symmetric state. Thus, for
our purposes of calculating the DTR, the exact form of |n0;n1, . . . , nd⟩ is not relevant.

In the continuum approximation, this is modelled as a fluid flow in Rd+1
+ , with the velocity vector field v⃗(x⃗) =

(v0, v1, . . . , vd)
T having components

v0(x⃗) = Γleak

(
N −

d∑

ν=0

xν

)
, (17)

and

vµ(x⃗) = Γµ

(
N −

d∑

ν=0

xν

)
(xµ + 1), µ = 1, . . . , d. (18)

Dividing the components of v⃗(x⃗), we have (for µ = 1, . . . , d)

dx0

dxµ
=

Γleak

Γµ

1

xµ + 1
, (19)

which can be integrated to obtain

x0 =
Γleak

Γµ
ln(xµ + 1). (20)

In the steady state, x0 +
∑d

µ=1 xµ = N , so

x0 +

d∑

µ=1

(
eΓµx0/Γleak − 1

)
= N. (21)

Solving this for x0 exactly is difficult. Instead, for large N , we use dominant balance to get

eΓ1x0/Γleak ≈ N =⇒ x0 ≈ Γleak

Γ1
lnN. (22)

It remains to check that the omitted terms in Eq. (21) are subdominant to N . The largest omitted term is

eΓ2x0/Γleak ≈ er2 lnN = Nr2 ≪ N (23)

for a sufficiently large N . This is the same regime of validity as for our approximate DTR formula. Thus, for large
N , the various xµ ∼ Nrµ scale as a power law with N , while x0 ∼ lnN only scales logarithmically with N . We thus
conclude that non-collective decay does not affect the asymptotic behavior of our approximate DTR.

In the special case of d = 1, the system reduces to the well-studied problem of Dicke superradiance in two-level
systems, with additional leakage that is not collectively enhanced. There is no competition between the various
collective decay channels. As a result, the mean population density of the ground state |g1⟩ scales as

n1

N
≈ x1

N
∼ 1− Γleak

Γ1

lnN

N
(24)

which always converges to unity, even if Γ1 < Γleak.

IV. DEGENERATE CASE OF IDENTICAL DECAY RATES

In the main text, we analyze the collective transition quenching in the non-degenerate case, i.e, Γ1 > Γ2 > . . . > Γd.
Here, we analyze the degenerate case where some of the Γµ are identical. If all Γµ are the same, the steady state
probability distribution Pn1,...,nd

is the uniform distribution supported on points (n1, . . . , nd) satisfying the constraint
n1 + . . .+ nd = N [2]. More generally, we consider d ground states split into L degenerate blocks, with degeneracies

{m1,m2, . . . ,mL} and
∑L

µ=1 mµ = d. The decay rates are ordered as Γ1 > Γ2 > . . . > ΓL with the corresponding
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ratios 1 > r2 > . . . > rL. Note that the degeneracy here refers to identical decay rates (e.g., Γ1 = Γ2 = . . . = Γm1
)

and not identical ground state energies.
Following the continuum and single-particle approximation explained in the main text, we have

xΓν
µ ≈ xΓµ

ν , (25)

where xµ is interpreted as the population of any of mµ ground states in the µ-th degenerate block. Then, xµ ≈ x
rµ/rL
L .

The steady state condition is written as

L∑

µ=1

mµxµ = N =⇒
L∑

µ=1

mµx
rµ/rL
L ≈ N. (26)

Using dominant balance, we get

xL ≈
(

N

m1

)rL

. (27)

Equation (25) then gives the other ground state populations as

xµ ≈
(

N

m1

)rµ

, µ = 2, . . . , L. (28)

Plugging this into the steady state condition,

m1x1 +

L∑

µ=2

mµ

(
N

m1

)rµ

≈ N. (29)

Defining the dominant transition ratio (DTR) as x1/N , we obtain

DTR ≈ 1

m1
−

L∑

µ=2

mµ

m
1+rµ
1 N1−rµ

, (30)

which recovers the result in the main text when m1 = m2 = . . . = mL = 1. The factor of 1/m1 in the first term
reflects the fact that as N → ∞, the population density is shared equally between the m1 dominant ground states
with the largest decay rate Γ1.

V. FLUCTUATIONS OF THE GROUND STATE POPULATION DENSITY

We numerically simulate the rate equation for d = 2 ground states. From the steady state probability distribution
of the dominant ground state P (n1), we find the mean and variance of the distribution, to compute the relative
fluctuation δn1/n1, where δn1 is the standard deviation for the population of n1. We then fit the relative fluctuation
to the phenomenological power law ∼ N−β for N up to 104, to extract the fluctuation power-law index β. The
fit is done for small values of r2 = Γ2/Γ1, since larger values of r2 require a larger N to accurately capture the
asymptotic behavior. From our fit, we estimate β = 0.930 − 0.842r2. In the main text, we show that the variance
Var(n1/N) ≤ (1−DTR)DTR. Thus,

δn1

n1
=

√
Var(n1/N)

DTR
≤
√

1−DTR

DTR
∼ N (−1+r2)/2 (31)

for d = 2. Comparing this with the asymptotic behavior δn1/n1 ∼ N−β , this gives the lower bound

β ≥ 1

2
(1− r2). (32)

Our estimated β from the fitting satisfies this bound for all r2 ∈ (0, 1).
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∼ N−β

FIG. 1. Power law index β from fitting the tail of the relative fluctuation δn1/n1 of the dominant ground state population to
∼ N−β . The dashed line indicates the phenomenological fit β = 0.930 − 0.842r2. The inset shows the population distribution
of the dominant ground state for r2 = 0.2, plotted between 0.994 ≤ n1/N ≤ 1, with a width of order N−β .

VI. ESTIMATE OF THE CONVERGENCE TIME TO STEADY STATE

From the continuum approximation, we have the velocity field v⃗(x⃗) with components

vµ ≡ dxµ

dt
=

(
N −

d∑

µ=1

xµ

)
(xµ + 1). (33)

In the single-particle approximation, the trajectory C in Rd
+ is defined by the set of equations

(xµ + 1)Γν = (xν + 1)Γµ (34)

for all pairs µ, ν ∈ {1, . . . , d}, in the region
∑d

µ=1 xµ ≤ N . The convergence time can be written as a line integral

T =

ˆ

C

dx1

v1
=

1

Γ1

ˆ

C

dx1

(N − x1 −
∑

µ>1 xµ)(x1 + 1)
(35)

from x1 = 0 to x1 = N−∑µ>1 N
rµ . As in the main text, we consider the non-degenerate case of rµ being all different

for simplicity. Performing the integral directly is not trivial. Instead, we can obtain an approximation by splitting
the trajectory C into two parts [3]: C1, where the particle travels along C from x1 = 0 to x1 = Na for some 0 < a < 1,
and C2, where the particle travels along C from x1 = Na to x1 = N −∑µ>1 N

rµ . There is no loss of generality in
setting the intermediate point to be at x1 = Na, since we can always choose a point on C with 1 ≪ x1 ≪ N and
define a appropriately.

For the trajectory C1, N ≫ {x1, xµ>1}, so

T1 ≡
ˆ

C1

dx1

v1
≈ 1

NΓ1

ˆ Na

0

dx1

x1 + 1
≈ a

Γ1

lnN

N
. (36)

For the trajectory C2, x1 ≫ xµ>1, so

T2 ≡
ˆ

C2

dx1

v1
≈ 1

Γ1

ˆ N−∑
µ>1 Nrµ

Na

dx1

(N − x1)(x1 + 1)
≈ 1

NΓ1
ln

(
x1 + 1

N − x1

) ∣∣∣∣
N−∑

µ>1 Nrµ

Na

≈ 1

NΓ1
ln

(
N2

Nr2+a

)
=

2− r2 − a

Γ1

lnN

N
.

(37)
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This gives the convergence time T as

T = T1 + T2 ≈ 2− r2
Γ1

lnN

N
. (38)

The final result for T does not depend on a, which is consistent since the intermediate point is chosen arbitrarily.
Thus, adding competing collective decay channels does not affect the convergence timescale of ∼ lnN/N , but only
changes the prefactor.

VII. INTEGRABILITY AND CONSERVATION LAWS OF THE RATE EQUATION

Since the steady state is non-unique and depends on the initial conditions, the rate equation encodes conser-
vation laws that we now derive. Our goal is to find a function h(n1, . . . , nd) that satisfies the conservation law

∂th(n1, . . . , nd) ≡
∑

n1,...,nd
h(n1, . . . , nd)Ṗn1,...,nd

= 0, where Ṗn1,...,n2
is defined by the rate equation. Explicitly,

0 =
∑

n1,...,nd

d∑

µ=1

Γµ

[
−
(
N −

∑

ν

nν

)
(nµ + 1)Pn1,...,nµ,...,nd

+

(
N −

∑

ν

nν + 1

)
nµPn1,...,nµ−1,...,nd

]
h(n1, . . . , nd)

=
∑

n1,...,nd

d∑

µ=1

Γµ

(
N −

∑

ν

nν

)
(nµ + 1) [h(n1, . . . , nµ + 1, . . . , nd)− h(n1, . . . , nµ, . . . , nd)]Pn1,...,nd

.

(39)

Subsituting the separable ansatz

h(n1, . . . , nd) =
d∏

µ=1

hµ(nµ) (40)

into the conservation law, and dividing through by h(n1, . . . , nd), we have

∑

µ

Γµ(nµ + 1)

(
hµ(nµ + 1)

hµ(nµ)
− 1

)
= 0, (41)

using the fact that the probabilities Pn1,...,nd
are arbitrary. Since each term in the sum above only depends on nµ

that are arbitrary, we must have

Γµ(nµ + 1)

(
hµ(nµ + 1)

hµ(nµ)
− 1

)
= cµ (42)

where cµ are constants satisfying the constraint

d∑

µ=1

cµ = 0. (43)

Equation (42) is a recurrence relation for hµ(nµ), which has the general solution

hµ(nµ) ∝
Γ̃(1 + nµ + cµ/Γµ)

nµ!
, (44)

where Γ̃(z) is the gamma function. Multiplying the hµ’s together and choosing the normalization factor such that

h = 1 for the fully excited state (described by the probability distribution Pn1,...,nd
=
∏

µ δnµ,0), we obtain the
generating function

h(n1, . . . , nd) =

d∏

µ=1

Γ̃(1 + nµ + cµ/Γµ)

nµ!Γ̃(1 + cµ/Γµ)
. (45)
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By construction, the steady state distribution satisfies h = 1 with
∑

µ nµ = N . The generating function h(n1, . . . , nd)

is a polynomial of degree nµ in the variable cµ, which can be seen by expanding out Eq. (45) using the definition

Γ̃(1 + z) = zΓ̃(z) of the gamma function iteratively,

h(n1, . . . , nd) =

d∏

µ=1

1

nµ!

nµ∏

j=1

(
j +

cµ
Γµ

)
. (46)

This expression holds for nµ > 0. If nµ = 0, the product
∏

j(j+ cµ/Γµ) is replaced by 1. Thus, h(n1, . . . , nd) encodes
N + 1 independent conserved quantities, which are the coefficients of the polynomial. A trivial conserved quantity
can be obtained by setting all cµ = 0,

1 = h =
∑

n1,...,nd

Pn1,...,nd
, (47)

which is simply the conservation of probability. By choosing suitable values of cµ, we seek non-trivial conserved
quantities.

A. Dominant transition ratio

Let us choose cµ = Γµ for some particular µ > 1, and all other cν>1 = 0. From the constraint
∑d

k=1 ck = 0, this

fixes c1 = −Γµ. Substituting this into the conservation law h = 1, we obtain

〈
Γ̃(1 + n1 − rµ)Γ̃(2 + nµ)

n1!nµ!

〉
= Γ̃(1− rµ). (48)

The average on the LHS is taken with respect to the steady state probability distribution. We denote rµ = Γµ/Γ1 < 1.
Assuming that the main contribution from nµ comes from 1 ≪ nµ ≪ N , we use Stirling’s approximation to get

n
−rµ
1 nµ ≈ Γ̃(1− rµ). (49)

Since rµ < 1, the gamma function is always finite and positive. Substituting the steady state constraint n1 =
N −∑ν>1 nν , and Taylor expanding in powers of 1/N , we have

nµ +
rµ
N

∑

ν>1

nµnν ≈ Γ̃(1− rµ)N
rµ . (50)

To proceed further, we assume
∑

ν>1 nµnν ≪ Nnµ to finally arrive at

nµ ≈ Γ̃(1− rµ)N
rµ (51)

which gives the DTR as

DTR =
n1

N
= 1− 1

N

∑

µ>1

nµ = 1−
∑

µ>1

Γ̃(1− rµ)

N1−rµ
. (52)

The assumption
∑

ν>1 nµnν ≪ Nnµ can be thought of as a mean-field approximation nµnν ≈ nµ nν . Then, using
Eq. (51), we have

∑
ν>1 nµnν ≈ nµ

∑
ν>1 nν ≈ nµ

∑
ν>1 N

rν ≪ Nnµ which is self-consistent. Since the population
density n1/N ∈ [0, 1] is bounded, we can use the Bhatia-Davis inequality [4] to bound the variance by

Var(n1/N) ≤ (1−DTR)DTR ∼
∑

µ>1

Γ̃(1− rµ)

N1−rµ
. (53)

Although Eq. (51) is finite for any rµ < 1, one has to be careful about the divergence of the gamma function as

rµ → 1−. Since Γ̃(z) ∼ 1/z near z = 0, we get

nµ ≈ Nrµ

1− rµ
, rµ → 1−. (54)



9

To observe collective transition quenching, we demand nµ ≪ N which gives the condition

N ≫ yy, y =
1

1− rµ
. (55)

Physically, this means that for rµ close to 1, we require a larger system size to suppress the sub-dominant collective
transitions. As an estimate, if rµ = 0.9, then our theoretical predictions hold for N ≫ 1010.

B. Continuum approximation

We can also derive the conservation laws in the continuum approximation. Applying the continuum approximation
to the difference equation (39), we have

d∑

µ=1

Γµ(xµ + 1)
∂

∂xµ
h(x⃗) = 0. (56)

Using the separable ansatz

h(x⃗) =
d∏

µ=1

hµ(xµ), (57)

we obtain

d∑

µ=1

Γµ(xµ + 1)
h′
µ(xµ)

hµ(xµ)
= 0. (58)

Each term in the sum depends on an independent coordinate xµ, so the terms in the sum must all be equal to some
constant cµ

Γµ(xµ + 1)
h′
µ(xµ)

hµ(xµ)
= cµ (59)

with the constraint
∑d

µ=1 cµ = 0. Solving these equations, we get the generating function

h(x⃗) =

d∏

µ=1

(xµ + 1)cµ/Γµ . (60)

The fully excited initial state is represented by the Dirac delta distribution P (x⃗) = δd(x⃗), which satisfies h(x⃗) = 1.
Equation (60) is the continuous analog of Eq. (45). Similar to the discrete case, we can choose cµ = Γµ for some µ > 1
and all other cν>1 = 0, which constraints c1 = −Γµ. Assuming that the main contribution comes from 1 ≪ xµ ≪ N
and using x1 = N −∑µ>1 xµ, we have

xµ ≈ Nrµ , (61)

which gives the approximate DTR as

DTR ≈ 1−
∑

µ>1

1

N1−rµ
. (62)

This agrees with the approximate formula derived in the main text using the single-particle approximation.
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VIII. MOLECULAR PARAMETERS FOR PHOTOASSOCIATION

Vibrational quantum number ν Rotational quantum number J Branching factor Binding energy, MHz/h
-1 0 0.54 137
-1 2 0.27 67
-2 0 0.13 1400
-2 2 0.06 1227

TABLE I. Predominant decay paths from the excited (1)1u(ν′ = −1, J ′ = 1) state of a strontium dimer [5]. There are four
states with significant branching ratios, those with rotational quantum number J = {0, 2} and vibrational quantum number
ν = {−1,−2} (where negative vibrational numbers count down from the dissociation threshold) [6]. All other states have
branching ratios of < 0.01 and are ignored in the calculations. The minimum separation between these states is for the two
ν = −1 states, where the separation between the J = 0 and J = 2 states is 70 MHz [7], significantly larger than the linewidth
of the excited state which is ∼ 15 kHz [8].
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